APÈNDIX Nº 6. CÀLCUL DE MURS

Size: px
Start display at page:

Download "APÈNDIX Nº 6. CÀLCUL DE MURS"

Transcription

1 APÈNDIX Nº 6. CÀLCUL DE MURS PROJECTE CONSTRUCTIU DE MILLORA GENERAL. DESDOBLAMENT DE LA CARRETERA C-66 DE BANYOLES A BESALÚ. PK AL TRAM: CORNELLÀ DE TERRI MAIÀ DE MONTCAL

2 APÈNDIX Nº 6. CÀLCUL DE MURS PROJECTE CONSTRUCTIU DE MILLORA GENERAL. DESDOBLAMENT DE LA CARRETERA C-66 DE BANYOLES A BESALÚ. PK AL TRAM: CORNELLÀ DE TERRI MAIÀ DE MONTCAL

3 MURS ESCULLERA. TUNELS PROJECTE CONSTRUCTIU DE MILLORA GENERAL. DESDOBLAMENT DE LA CARRETERA C-66 DE BANYOLES A BESALÚ. PK AL TRAM: CORNELLÀ DE TERRI MAIÀ DE MONTCAL

4

5 MUR VERD. M-12.3-D PROJECTE CONSTRUCTIU DE MILLORA GENERAL. DESDOBLAMENT DE LA CARRETERA C-66 DE BANYOLES A BESALÚ. PK AL TRAM: CORNELLÀ DE TERRI MAIÀ DE MONTCAL

6

7

8

9

10

11 MUR PANTALLA PROVISIONAL DE MICROPILOTS PROJECTE CONSTRUCTIU DE MILLORA GENERAL. DESDOBLAMENT DE LA CARRETERA C-66 DE BANYOLES A BESALÚ. PK AL TRAM: CORNELLÀ DE TERRI MAIÀ DE MONTCAL

12 CALCULOS CON EL PROGRAMA FAGUS 1

13 CALCULOS CON EL PROGRAMA RIDO. Pantalla de 12 m ***** DATA FILE NAME : MICRP12M.RIO CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m *120L U:TT* : : : : : : : : CAL(2) 8... CAL(2) : EXC(2) EXC(2) 1.5 : CAL(2) CAL(2) : STR(0) STR(0) : CAL(2) CAL(2) : EXC(2) EXC(2) 4.5 : CAL(2) CAL(2) : STR(0) STR(0) : CAL(2) CAL(2) : EXC(2) EXC(2) 7 : CAL(2) CAL(2) : STR(0) STR(0) : CAL(2) CAL(2) : EXC(2) EXC(2) 8.5 : CAL(2) CAL(2) : SUB(1) SUB(1) : CAL(2) CAL(2) : FIN FIN : GRF GRF : STOP 27STOP 2

14 ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 1 ** ** STARTING DATA ** * BOUSSINESQ SURCHARGES FUNCTION OF STATE OF SOIL *** WALL DESCRIPTION : INERTIA PRODUCT EI CYLINDRICAL RIGIDITY SECTION NB 1 FROM m TO m : 150. T.m2/m 0. T/m3 *** SOIL DESCRIPTION : LAYER NB 1 FROM m TO m : SATURATED UNIT WEIGHT GH = T/m3 SUBMERGED UNIT WEIGHT GD = T/m3 HOR. ACTIVE PRESSURE COEFFICIENT KA = HOR. AT REST PRESSURE COEFFICIENT K0 = HOR. PASSIVE PRESSURE COEFFICIENT KP = COHESION C = T/m2 ANGLE OF INTERNAL FRICTION PHI = DEGREES FOR ACTIVE PRESS. DELTA/PHI = FOR PASSIVE PRESS. DELTA/PHI = ELASTIC REACTION COEFFICIENT (AT P=0) = T/m3 INCR. OF THIS COEFF. WITH PRESSURE = /m LAYER NB 2 FROM m TO m : SATURATED UNIT WEIGHT GH = T/m3 SUBMERGED UNIT WEIGHT GD = T/m3 HOR. ACTIVE PRESSURE COEFFICIENT KA = HOR. AT REST PRESSURE COEFFICIENT K0 = HOR. PASSIVE PRESSURE COEFFICIENT KP = COHESION C = T/m2 ANGLE OF INTERNAL FRICTION PHI = DEGREES FOR ACTIVE PRESS. DELTA/PHI = FOR PASSIVE PRESS. DELTA/PHI = ELASTIC REACTION COEFFICIENT (AT P=0) = T/m3 INCR. OF THIS COEFF. WITH PRESSURE = /m LAYER NB 3 FROM m TO m : SATURATED UNIT WEIGHT GH = T/m3 SUBMERGED UNIT WEIGHT GD = T/m3 HOR. ACTIVE PRESSURE COEFFICIENT KA = HOR. AT REST PRESSURE COEFFICIENT K0 = HOR. PASSIVE PRESSURE COEFFICIENT KP = COHESION C = T/m2 ANGLE OF INTERNAL FRICTION PHI = DEGREES FOR ACTIVE PRESS. DELTA/PHI =

15 FOR PASSIVE PRESS. DELTA/PHI = ELASTIC REACTION COEFFICIENT (AT P=0) = T/m3 INCR. OF THIS COEFF. WITH PRESSURE = /m ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 2 ** ** PHASE Nb 1 ** ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 3 ** PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 0.00 m STRUTS/ WATER LEVEL: m WATER LEVEL: m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD

16 m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 0.00 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = 0.00 m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 3 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 4 ** ** PHASE Nb 2 ** * EXCAVATION IN SOIL 2 TO LEVEL = m ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 5 ** PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 1.50 m STRUTS/ WATER LEVEL: m WATER LEVEL: m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD

17 m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 0.26 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = 0.04 m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 3 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 6 ** 6

18 ** PHASE Nb 3 ** * INSTALLATION LEVEL OF STRUTS NO 1 LEVEL = m SPACE = m INCLINATION = DEGREES PRELOAD = T STIFFNESS = T/m BILATERAL CONNECTION ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 7 ** PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 1.50 m STRUTS/ WATER LEVEL: m WATER LEVEL: m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD

19 m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 0.26 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = 0.11 m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 2 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 8 ** ** PHASE Nb 4 ** * EXCAVATION IN SOIL 2 TO LEVEL = m ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 9 ** PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 4.50 m STRUTS/ WATER LEVEL: m WATER LEVEL: m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD

20 m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 2.31 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 5 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 =

21 ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 10 ** ** PHASE Nb 5 ** * INSTALLATION LEVEL OF STRUTS NO 2 LEVEL = m SPACE = m INCLINATION = DEGREES PRELOAD = T STIFFNESS = T/m BILATERAL CONNECTION ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 11 ** PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 4.50 m STRUTS/ WATER LEVEL: m WATER LEVEL: m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD

22 m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 2.31 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 5 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 12 ** ** PHASE Nb 6 ** * EXCAVATION IN SOIL 2 TO LEVEL = m ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 13 ** PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 7.00 m STRUTS/ WATER LEVEL: m WATER LEVEL: m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 11

23 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 8.73 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = 1.15 m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 5 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 =

24 MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 14 ** ** PHASE Nb 7 ** * INSTALLATION LEVEL OF STRUTS NO 3 LEVEL = m SPACE = m INCLINATION = DEGREES PRELOAD = T STIFFNESS = T/m BILATERAL CONNECTION ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 15 ** PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 7.00 m STRUTS/ WATER LEVEL: m WATER LEVEL: m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD

25 m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 8.73 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = 1.16 m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 4 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 16 ** ** PHASE Nb 8 ** * EXCAVATION IN SOIL 2 TO LEVEL = m ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 17 ** 14

26 PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 8.50 m STRUTS/ WATER LEVEL: m WATER LEVEL: m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 8.71 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = 1.14 m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 5 IT.) 15

27 INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 18 ** ** PHASE Nb 9 ** * CANCELLATION BOUSSINESQ SURCHARGE ON SOIL 1 * ADDING A BOUSSINESQ SURCHARGE ON SOIL 1 LEV. = m A = m B = m Q = T/m2 ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES H=12 m ** PAGE 19 ** PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 8.50 m STRUTS/ WATER LEVEL: m WATER LEVEL: m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD

28 m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 8.78 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = 1.14 m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 4 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.97 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = *** END OF CALCULUS 17

29 18

30 CALCULOS CON EL PROGRAMA RIDO. Pantalla de 8 m ***** DATA FILE NAME : micrp8m.rio CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE ALTURA *120L U:TT* : : : : : : : : : CAL(2) 9... CAL(2) : EXC(2) EXC(2) 1.5 : CAL(2) CAL(2) : STR(0) STR(0) : CAL(2) CAL(2) : EXC(2) EXC(2) 4.5 : CAL(2) CAL(2) : STR(0) STR(0) : CAL(2) CAL(2) : EXC(2) EXC(2) 5.5 : CAL(2) CAL(2) : SUB(1) SUB(1) : CAL(2) CAL(2) : FIN FIN : GRF GRF : STOP 24STOP 19

31 ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 1 ** ** STARTING DATA ** * BOUSSINESQ SURCHARGES FUNCTION OF STATE OF SOIL *** WALL DESCRIPTION : INERTIA PRODUCT EI CYLINDRICAL RIGIDITY SECTION NB 1 FROM m TO m : 150. T.m2/m 0. T/m3 *** SOIL DESCRIPTION : LAYER NB 1 FROM m TO m : SATURATED UNIT WEIGHT GH = T/m3 SUBMERGED UNIT WEIGHT GD = T/m3 HOR. ACTIVE PRESSURE COEFFICIENT KA = HOR. AT REST PRESSURE COEFFICIENT K0 = HOR. PASSIVE PRESSURE COEFFICIENT KP = COHESION C = T/m2 ANGLE OF INTERNAL FRICTION PHI = DEGREES FOR ACTIVE PRESS. DELTA/PHI = FOR PASSIVE PRESS. DELTA/PHI = ELASTIC REACTION COEFFICIENT (AT P=0) = T/m3 INCR. OF THIS COEFF. WITH PRESSURE = /m LAYER NB 2 FROM m TO m : SATURATED UNIT WEIGHT GH = T/m3 SUBMERGED UNIT WEIGHT GD = T/m3 HOR. ACTIVE PRESSURE COEFFICIENT KA = HOR. AT REST PRESSURE COEFFICIENT K0 = HOR. PASSIVE PRESSURE COEFFICIENT KP = COHESION C = T/m2 ANGLE OF INTERNAL FRICTION PHI = DEGREES FOR ACTIVE PRESS. DELTA/PHI = FOR PASSIVE PRESS. DELTA/PHI = ELASTIC REACTION COEFFICIENT (AT P=0) = T/m3 INCR. OF THIS COEFF. WITH PRESSURE = /m LAYER NB 3 FROM m TO m : SATURATED UNIT WEIGHT GH = T/m3 SUBMERGED UNIT WEIGHT GD = T/m3 HOR. ACTIVE PRESSURE COEFFICIENT KA = HOR. AT REST PRESSURE COEFFICIENT K0 = HOR. PASSIVE PRESSURE COEFFICIENT KP = COHESION C = T/m2 ANGLE OF INTERNAL FRICTION PHI = DEGREES FOR ACTIVE PRESS. DELTA/PHI = FOR PASSIVE PRESS. DELTA/PHI =

32 ELASTIC REACTION COEFFICIENT (AT P=0) = T/m3 INCR. OF THIS COEFF. WITH PRESSURE = /m LAYER NB 4 FROM m TO m : SATURATED UNIT WEIGHT GH = T/m3 SUBMERGED UNIT WEIGHT GD = T/m3 HOR. ACTIVE PRESSURE COEFFICIENT KA = HOR. AT REST PRESSURE COEFFICIENT K0 = HOR. PASSIVE PRESSURE COEFFICIENT KP = COHESION C = T/m2 ANGLE OF INTERNAL FRICTION PHI = DEGREES FOR ACTIVE PRESS. DELTA/PHI = FOR PASSIVE PRESS. DELTA/PHI = ELASTIC REACTION COEFFICIENT (AT P=0) = T/m3 INCR. OF THIS COEFF. WITH PRESSURE = /m ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 2 ** ** PHASE Nb 1 ** ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 3 ** PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 0.00 m STRUTS/ WATER LEVEL: 8.50 m WATER LEVEL: 8.50 m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD

33 m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 0.00 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = 0.00 m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 3 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 4 ** ** PHASE Nb 2 ** * EXCAVATION IN SOIL 2 TO LEVEL = m ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 5 ** PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 1.50 m STRUTS/ WATER LEVEL: 8.50 m WATER LEVEL: 8.50 m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD

34 m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 0.22 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = 0.02 m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 3 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 6 ** ** PHASE Nb 3 ** * INSTALLATION LEVEL OF STRUTS NO 1 LEVEL = m SPACE = m INCLINATION = DEGREES PRELOAD = T STIFFNESS = T/m BILATERAL CONNECTION ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 7 ** 23

35 PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 1.50 m STRUTS/ WATER LEVEL: 8.50 m WATER LEVEL: 8.50 m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 0.19 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = 0.11 m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 2 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 8 ** 24

36 ** PHASE Nb 4 ** * EXCAVATION IN SOIL 2 TO LEVEL = m ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 9 ** PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 4.50 m STRUTS/ WATER LEVEL: 8.50 m WATER LEVEL: 8.50 m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 2.20 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = 0.32 m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 5 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m 25

37 MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 10 ** ** PHASE Nb 5 ** * INSTALLATION LEVEL OF STRUTS NO 2 LEVEL = m SPACE = m INCLINATION = DEGREES PRELOAD = T STIFFNESS = T/m BILATERAL CONNECTION ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 11 ** PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 4.50 m STRUTS/ WATER LEVEL: 8.50 m WATER LEVEL: 8.50 m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD

38 m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 2.20 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 5 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 12 ** ** PHASE Nb 6 ** * EXCAVATION IN SOIL 2 TO LEVEL = m ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 13 ** PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 5.50 m STRUTS/ WATER LEVEL: 8.50 m WATER LEVEL: 8.50 m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD

39 m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 2.17 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = 0.30 m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 5 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.00 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 14 ** ** PHASE Nb 7 ** * CANCELLATION BOUSSINESQ SURCHARGE ON SOIL 1 * ADDING A BOUSSINESQ SURCHARGE ON SOIL 1 LEV. = m A = m B = m Q = T/m2 ** R I D O 4.01 (C) R.F.L ** CORNELLA. PANTALLA PROVISIONAL DE MICROPILOTES DE 7,5 m DE A ** PAGE 15 ** 28

40 PHASE S O I L 1 S O I L 2 W A L L EXCAVATION: 0.00 m EXCAVATION: 5.50 m STRUTS/ WATER LEVEL: 8.50 m WATER LEVEL: 8.50 m ANCHORS CAQUOT SURC.: 0.00 T/m2 CAQUOT SURC.: 0.00 T/m2 LEVEL DISPLAC. ROTATION MOMENT CR.FO. SH LOAD STATE PRE. SURCH. ELAST. STATE PRE. SURCH. ELAST. NB LOAD m mm /1000 m.t/m T/m T/m2 T/m2 T/m2 T/m3 T/m2 T/m2 T/m3 T -1 = SEPARATION MAXIMUM DISPLACEMENT = 2.20 mm CODIFICATION : 0 = EXCAVATION OF STATE : 1 = ACTIVE PR. MAXIMUM MOMENT = 0.30 m.t/m OF SOIL : 2 = ELASTIC 3 = PASSIVE PR. ( 5 IT.) INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 1 = 0.80 T/m INTEGRATED HORIZONTAL EFFECT OF SURCHARGES ON THE SOIL 2 = 0.00 T/m MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 1 = MOBILIZED PRESSURE TO PASSIVE PRESSURE RATIO FOR SOIL NB 2 = *** END OF CALCULUS 29

41 30

42 APÈNDIX Nº 7. ABOCADORS PROJECTE CONSTRUCTIU DE MILLORA GENERAL. DESDOBLAMENT DE LA CARRETERA C-66 DE BANYOLES A BESALÚ. PK AL TRAM: CORNELLÀ DE TERRI MAIÀ DE MONTCAL

43 ANNEX NÚM. 8. GEOLOGIA I GEOTÈCNIA APÈNDIX Nº 7 ABOCADORS Pàg ABOCADORS Per acopiar els materials excavats en la traça que no són vàlids per a la seva ús als rebliments del tram, per a l'excedent de terres procedent de l'excavació en túnel i per als enderrocs de demolicions d'obres de fàbrica i paviments, s'ha localitzat una zona d'abocador en l'entorn del embrocament sud del túnel de Fares. Les necessitats d'abocador són en total m3, la zona prevista per a l'abocament és més que suficient per cobrir aquestes necessitats. SUPERFÌCIE PARCEL LA Acumulat Ha m2 m ,790 16, ,014 27, ,350 34, , ,971 36, ,144 64,734 DEMANDA VOLUM ABOCADORS Volumen (m3) S-EST3 100,618 PROCEDÈNCIA En banc Esponjat S-EST-2 3,124 Tronc 4,355 5,139 S-EST-1 3,388 Túnel Serinyà 117, ,577 S-Selecc (2) 101,900 Túnel Fares 25,314 29,871 S-Adequat (1) 17,244 Enllaç ,148 TOTAL 226,274 Demolició Ferma 39,926 47,112 Fresatge de ferm Escarificat de ferm 3,060 3,611 Préstec. Reserves Demolició Edificacions S-SeleccIonado 350,000 Demolició passos superiors 1,795 2,118 Montera 54,000 Obres de drenatge TOTAL 194, ,234 Característiques de Altura mitra (m) 3.54 l'abocador Superficie (m2) 64,755 Altura màxima (m) 4.25 Capacitat màxima (m3) 275,120 S'ha previst com abocador la mateixa zona que la dedicada a apilaments temporals situada a uns 400 m de la boca sud del túnel de Fares, en la marge dreta de l'autovia. Aquesta zona, està dedicada actualment al cultiu agrícola, sent una zona admissible d'acord amb la classificació del territori efectuada en el ANNEX NÚM 21 MESURES CORRECTORES D IMPACTE AMBIENTAL (ver Figura 4 Classificació del territori inclosa en el citat annex). A fi de poder ser restaurat paisatgísticament, els talusos laterals de l'abocador tindran un pendent no superior a 3H:2V. D'aquesta forma es podrà aplicar sobre ells i també sobre la seva coberta, una capa de terra vegetal. Sobre tota la superfície de l'abocador es realitzarà una hidrosiembra La superfície de les finques previstes per a la seva utilització com a àrea d'abocament i la superfície acumulada assoleix els m2, que cobreix la demanda de generada per l'obra. S'ha estimat que la capacitat de l'abocador s'assoleix amb una altura de 4,25 m. La capacitat és superior a la demanda en un 20%. PROJECTE CONSTRUCTIU DE MILLORA GENERAL. DESDOBLAMENT DE LA CARRETERA C-66 DE BANYOLES A BESALÚ. PK AL TRAM: CORNELLÀ DE TERRI MAIÀ DE MONTCAL.

44 ANNEX NÚM. 8. GEOLOGIA I GEOTÈCNIA APÈNDIX Nº 6. ABOCADORS Pàg. 2 PROJECTE CONSTRUCTIU DE MILLORA GENERAL. DESDOBLAMENT DE LA CARRETERA C-66 DE BANYOLES A BESALÚ. PK AL TRAM: CORNELLÀ DE TERRI MAIÀ DE MONTCAL.

Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER.

Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER. Sample Problems Problem 5.1 A gravity retaining wall is supporting a cohesionless soil. The active lateral force per linear foot of the retaining wall is most nearly (A) 5,000 lb/ft (B) 6,000 lb/ft (C)

More information

Lateral Earth Pressure

Lateral Earth Pressure 1 of 11 6/2/2012 4:28 AM Lateral Earth Pressure The magnitude of lateral earth pressure depends on: 1. Shear strength characteristics of soil 2. Lateral strain condition 3. Pore water pressure 4. State

More information

Project: Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free Earth Support In accordance Eurocode 7.

Project: Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free Earth Support In accordance Eurocode 7. App'd by Construction Stages Name Term Objects present in this stage Stage 1 Long Wall 1 (Generated) (Generated) On retained side: Ground 1 (Generated), Borehole 1 (Generated), On excavated side: Excavation

More information

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II

Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 51 Earth Pressure Theories II Welcome to lecture number two on earth pressure theories.

More information

Earth Pressure Theory

Earth Pressure Theory Lateral Earth Pressure Page 1 Earth Pressure Theory Examples of Retaining Walls Lateral Earth Pressure Page 2 At-Rest, Active and Passive Earth Pressure Wednesday, August 17, 2011 12:45 PM At-rest condition

More information

Department of Civil Engineer and Mining, University of Sonora, Hermosillo, Sonora 83000, México

Department of Civil Engineer and Mining, University of Sonora, Hermosillo, Sonora 83000, México Journal of Geological Resource and Engineering 6 (2016) 251-256 doi:10.17265/228-219/2016.06.001 D DAVID PUBLISHING José Medina, Nicolás Sau and Jesús Quintana Department of Civil Engineer and Mining,

More information

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES

LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Topic Outline LATERAL EARTH PRESSURE AND RETAINING STRUCTURES Types of retaining structures Lateral earth pressure Earth pressure at rest Rankine s Theory Coulomb s Theory Cullman s graphic solution Braced

More information

Foundation Analysis LATERAL EARTH PRESSURE

Foundation Analysis LATERAL EARTH PRESSURE Foundation Analysis LATERAL EARTH PRESSURE INTRODUCTION Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other

More information

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure.

UNIT V. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. UNIT V 1. Define Active Earth pressure. The active earth pressure occurs when the wall moves away from the earth and reduces pressure. 2. Define Passive Earth pressure. The passive earth pressure occurs

More information

Effect of Subsurface Conditions on the Behavior of Retaining Walls

Effect of Subsurface Conditions on the Behavior of Retaining Walls IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 1 Ver. I (Jan. - Feb. 2016), PP 51-67 www.iosrjournals.org Effect of Subsurface Conditions

More information

Cavity Expansion Methods in Geomechanics

Cavity Expansion Methods in Geomechanics Cavity Expansion Methods in Geomechanics by Hai-Sui Yu School of Civil Engineering, University of Nottingham, U. K. KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON TABLE OF CONTENTS Foreword Preface

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

Curso Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

Curso Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía. 1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

More information

FOUNDATION ENGINEERING UNIT V

FOUNDATION ENGINEERING UNIT V FOUNDATION ENGINEERING UNIT V RETAINING WALLS Plastic equilibrium in soils active and passive states Rankine s theory cohesion less and cohesive soil - Coloumb s wedge theory condition for critical failure

More information

Transactions on Information and Communications Technologies vol 20, 1998 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 20, 1998 WIT Press,   ISSN Design Of Retaining Walls : System Uncertainty & Fuzzy Safety Measures J. Oliphant *, P. W. Jowitt * and K. Ohno + * Department of Civil & Offshore Engineering, Heriot-Watt University, Riccarton, Edinburgh.

More information

Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation

Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation Mechanical Behaviors of Cylindrical Retaining Structures in Ultra-deep Excavation Pengfei Xu Tongji University August 4, 2015 Outline Introduction Two circular excavations for anchorage foundations 3D

More information

Rock Slope Analysis Small and Large Scale Failures Mode of Failure Marklands Test To establish the possibility of wedge failure. Plane failure is a special case of wedge failure. Sliding along

More information

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM] Objectives_template Objectives In this section you will learn the following Introduction Different Theories of Earth Pressure Lateral Earth Pressure For At Rest Condition Movement of the Wall Different

More information

Objectives. In this section you will learn the following. Rankine s theory. Coulomb s theory. Method of horizontal slices given by Wang (2000)

Objectives. In this section you will learn the following. Rankine s theory. Coulomb s theory. Method of horizontal slices given by Wang (2000) Objectives In this section you will learn the following Rankine s theory Coulomb s theory Method of horizontal slices given by Wang (2000) Distribution of the earth pressure Height of application of the

More information

Author(s) Okajima, Kenji; Tanaka, Tadatsugu; Symposium on Backwards Problem in G.

Author(s) Okajima, Kenji; Tanaka, Tadatsugu; Symposium on Backwards Problem in G. Title Backwards Analysis for Retaining Wa based upon ateral Wall Displacemen Author(s) Okajima, Kenji; Tanaka, Tadatsugu; Proceeding of TC302 Symposium Osaka Citation Symposium on Backwards Problem in

More information

INTI COLLEGE MALAYSIA

INTI COLLEGE MALAYSIA EGC373 (F) / Page 1 of 5 INTI COLLEGE MALAYSIA UK DEGREE TRANSFER PROGRAMME INTI ADELAIDE TRANSFER PROGRAMME EGC 373: FOUNDATION ENGINEERING FINAL EXAMINATION : AUGUST 00 SESSION This paper consists of

More information

Soil Mechanics 2015/2016

Soil Mechanics 2015/2016 Soil Mechanics 015/016 EXERCISES - CHAPTER 6 6.1 The purpose of this exercise is to study in a simplified form the movements of the Tower of Pisa (Italy) foundation due to the compressibility of the clay

More information

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University SHEET PILE WALLS Mehdi Mokhberi Islamic Azad University Lateral Support In geotechnical engineering, it is often necessary to prevent lateral soil movements. Tie rod Anchor Sheet pile Cantilever retaining

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

FINITE ELEMENT ANALYSIS OF ARKANSAS TEST SERIES PILE #2 USING OPENSEES (WITH LPILE COMPARISON)

FINITE ELEMENT ANALYSIS OF ARKANSAS TEST SERIES PILE #2 USING OPENSEES (WITH LPILE COMPARISON) FINITE ELEMENT ANALYSIS OF ARKANSAS TEST SERIES PILE #2 USING OPENSEES (WITH LPILE COMPARISON) Ahmed Elgamal and Jinchi Lu October 07 Introduction In this study, we conduct a finite element simulation

More information

Entrance exam Master Course

Entrance exam Master Course - 1 - Guidelines for completion of test: On each page, fill in your name and your application code Each question has four answers while only one answer is correct. o Marked correct answer means 4 points

More information

Verification Manual GT

Verification Manual GT Verification Manual GT Written by: The SoilVision Systems Ltd. Team Last Updated: Tuesday, February 20, 2018 SoilVision Systems Ltd. Saskatoon, Saskatchewan, Canada Software License The software described

More information

13 Dewatered Construction of a Braced Excavation

13 Dewatered Construction of a Braced Excavation Dewatered Construction of a Braced Excavation 13-1 13 Dewatered Construction of a Braced Excavation 13.1 Problem Statement A braced excavation is constructed in saturated ground. The excavation is dewatered

More information

Objectives. In this section you will learn the following. Development of Bearing Capacity Theory. Terzaghi's Bearing Capacity Theory

Objectives. In this section you will learn the following. Development of Bearing Capacity Theory. Terzaghi's Bearing Capacity Theory Objectives In this section you will learn the following Development of Bearing Capacity Theory Terzaghi's Bearing Capacity Theory Assumptions in Terzaghi s Bearing Capacity Theory. Meyerhof's Bearing Capacity

More information

Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading

Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading K. Abdel-Rahman Dr.-Ing., Institute of Soil Mechanics, Foundation Engineering and Waterpower

More information

Multi Linear Elastic and Plastic Link in SAP2000

Multi Linear Elastic and Plastic Link in SAP2000 26/01/2016 Marco Donà Multi Linear Elastic and Plastic Link in SAP2000 1 General principles Link object connects two joints, i and j, separated by length L, such that specialized structural behaviour may

More information

Chapter 12: Lateral Earth Pressure

Chapter 12: Lateral Earth Pressure Part 4: Lateral Earth Pressure and Earth-Retaining Structures Chapter 12: Lateral Earth Pressure Introduction Vertical or near-vertical slopes of soil are supported by retaining walls, cantilever sheetpile

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA

DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA DETERMINATION OF UPPER BOUND LIMIT ANALYSIS OF THE COEFFICIENT OF LATERAL PASSIVE EARTH PRESSURE IN THE CONDITION OF LINEAR MC CRITERIA Ghasemloy Takantapeh Sasan, *Akhlaghi Tohid and Bahadori Hadi Department

More information

(Refer Slide Time: 01:15)

(Refer Slide Time: 01:15) Soil Mechanics Prof. B.V.S. Viswanathan Department of Civil Engineering Indian Institute of Technology, Bombay Lecture 56 Stability analysis of slopes II Welcome to lecture two on stability analysis of

More information

Seismic design of bridges

Seismic design of bridges NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY FOR EARTHQUAKE ENGINEERING Seismic design of bridges Lecture 3 Ioannis N. Psycharis Capacity design Purpose To design structures of ductile behaviour

More information

Terra-Mechanical Simulation Using Distinct Element Method

Terra-Mechanical Simulation Using Distinct Element Method Shinya Kanou Masaharu Amano Yuji Terasaka Norihisa Matsumoto Tatsuo Wada To our company that designs and manufactures equipment for handling soil and rock, analyzing the interaction or contact between

More information

ReWaRD. Reference Manual. Version 2.5 RETAINING WALL DESIGN

ReWaRD. Reference Manual. Version 2.5 RETAINING WALL DESIGN ReWaRD Version 2.5 Reference Manual RETAINING WALL DESIGN 2 ReWaRD 2.5 Reference Manual Information in this document is subject to change without notice and does not represent a commitment on the part

More information

Influence of micropile inclination on the performance of a micropile network

Influence of micropile inclination on the performance of a micropile network Ground Improvement (6), No., 6 7 6 Influence of micropile inclination on the performance of a micropile network M. SADEK, I. SHAHROUR and H. MROUEH Laboratoire de Mécanique de Lille, Université des Sciences

More information

Chapter (7) Lateral Earth Pressure

Chapter (7) Lateral Earth Pressure Chapter (7) Lateral Earth Pressure Introduction Vertical or near vertical slopes of soil are supported by retaining walls, cantilever sheet-pile walls, sheet-pile bulkheads, braced cuts, and other similar

More information

ANCHORED PILED RETAINING WALL

ANCHORED PILED RETAINING WALL 10 8 5 0 35.0 25.0 15.0 Soil Profiles -3.0-5 -7.0-10 End of excavation -10-1 -15 Ground Water -15.0-15.0-20 -18.0-25 -30 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Soil Profile Layer S.E. (m) c (kn/m³)

More information

A note on inertial motion

A note on inertial motion Atmósfera (24) 183-19 A note on inertial motion A. WIIN-NIELSEN The Collstrop Foundation, H. C. Andersens Blvd. 37, 5th, DK 1553, Copenhagen V, Denmark Received January 13, 23; accepted January 1, 24 RESUMEN

More information

BEAM DEFLECTION THE ELASTIC CURVE

BEAM DEFLECTION THE ELASTIC CURVE BEAM DEFLECTION Samantha Ramirez THE ELASTIC CURVE The deflection diagram of the longitudinal axis that passes through the centroid of each cross-sectional area of a beam. Supports that apply a moment

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Sample Chapter HELICAL ANCHORS IN SAND 6.1 INTRODUCTION

Sample Chapter HELICAL ANCHORS IN SAND 6.1 INTRODUCTION 6 ELICAL ANCORS IN SAN At the present time, limited studies on helical anchors are available, the results of which can be used to estimate their ultimate uplift capacity. In many instances, the ultimate

More information

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test.

D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (d) COMPRESSIBILITY AND CONSOLIDATION D1. A normally consolidated clay has the following void ratio e versus effective stress σ relationship obtained in an oedometer test. (a) Plot the e - σ curve. (b)

More information

Active Earth Pressure on Retaining Wall Rotating About Top

Active Earth Pressure on Retaining Wall Rotating About Top INTERNATIONAL JOURNAL OF GEOLOGY Volume 9, 05 Active Earth Pressure on Retaining Wall Rotating About Top Ahad Ouria and Sajjad Sepehr Abstract Traditional methods for calculation of lateral earth pressure

More information

Minimization Solutions for Vibrations Induced by Underground Train Circulation

Minimization Solutions for Vibrations Induced by Underground Train Circulation Minimization Solutions for Vibrations Induced by Underground Train Circulation Carlos Dinis da Gama 1, Gustavo Paneiro 2 1 Professor and Head, Geotechnical Center of IST, Technical University of Lisbon,

More information

BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION

BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION Ahmed Elgamal and Jinchi Lu October 07 Introduction In this study: I) The response

More information

Instrumentation Techniques for Studying the Horizontal * Behavior of High-Speed Railways

Instrumentation Techniques for Studying the Horizontal * Behavior of High-Speed Railways Procedia Engineering Volume 143, 16, Pages 87 879 Advances in Transportation Geotechnics 3. The 3rd International Conference on Transportation Geotechnics (ICTG 16) Instrumentation Techniques for Studying

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment- Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student

More information

RETAINING WALL ANALYSIS

RETAINING WALL ANALYSIS Retaining Wall Analysis Example (EN997:2004) GEODOMISI Ltd. Dr. Costas Sachpazis Consulting Company for Tel.: (+30) 20 523827, 20 57263 Fax.:+30 20 5746 App'd by RETAINING WALL ANALYSIS In accordance with

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Module 15 Lecture 38 Vibration of Rigid Bodies Part-1 Today,

More information

LATERAL EARTH PRESSURE

LATERAL EARTH PRESSURE . INTRODUCTION Retaining structures commonly used in foundation engineering, such as retaining walls, basement walls and bulkheads to support almost vertical slopes of earth masses. Proper design and construction

More information

Reliability Analysis of Anchored and Cantilevered Flexible Retaining Structures

Reliability Analysis of Anchored and Cantilevered Flexible Retaining Structures LSD2003: International Workshop on Limit State Design in Geotechnical Engineering Practice Phoon, Honjo & Gilbert (eds) 2003 World Scientific Publishing Company Reliability Analysis of Anchored and Cantilevered

More information

Finite Element Solutions for Geotechnical Engineering

Finite Element Solutions for Geotechnical Engineering Release Notes Release Date: January, 2016 Product Ver.: GTSNX 2016 (v1.1) Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering Enhancements

More information

Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Monopile design

Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Monopile design Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering Monopile design Addis Ababa, September 2010 Monopile design Presentation structure: Design proofs

More information

Christian Linde Olsen Griffith University, Faculty of Engineering and Information Technology, Gold Coast Campus.

Christian Linde Olsen Griffith University, Faculty of Engineering and Information Technology, Gold Coast Campus. 1 Introduction Test on Cyclic Lateral Loaded Piles in Sand Christian Linde Olsen Griffith University, Faculty of Engineering and Information Technology, Gold Coast Campus. Abstract The following paper

More information

ANCHORED WALL DESIGN: COMPARING THE GLOBAL AND PARTIAL FACTORS OF SAFETY INCORPORATING THE AUSTRALIAN STANDARDS.

ANCHORED WALL DESIGN: COMPARING THE GLOBAL AND PARTIAL FACTORS OF SAFETY INCORPORATING THE AUSTRALIAN STANDARDS. Discussion on ANCHORED WALL DESIGN: COMPARING THE GLOBAL AND PARTIAL FACTORS OF SAFETY INCORPORATING THE AUSTRALIAN STANDARDS. Int. J. of GEOMATE, Sept., 2015, Vol 9, No. 1 (S1. No. 17), pp. 1395-1402.

More information

Reliability of sheet pile walls and the influence of corrosion structural reliability analysis with finite elements

Reliability of sheet pile walls and the influence of corrosion structural reliability analysis with finite elements Risk, Reliability and Societal Safety Aven & Vinnem (eds) 2007 Taylor & Francis Group, London, ISBN 978-0-415-44786-7 Reliability of sheet pile walls and the influence of corrosion structural reliability

More information

Physics 2001/2051 The Compound Pendulum Experiment 4 and Helical Springs

Physics 2001/2051 The Compound Pendulum Experiment 4 and Helical Springs PY001/051 Compound Pendulum and Helical Springs Experiment 4 Physics 001/051 The Compound Pendulum Experiment 4 and Helical Springs Prelab 1 Read the following background/setup and ensure you are familiar

More information

Settlement and Bearing Capacity of a Strip Footing. Nonlinear Analyses

Settlement and Bearing Capacity of a Strip Footing. Nonlinear Analyses Settlement and Bearing Capacity of a Strip Footing Nonlinear Analyses Outline 1 Description 2 Nonlinear Drained Analysis 2.1 Overview 2.2 Properties 2.3 Loads 2.4 Analysis Commands 2.5 Results 3 Nonlinear

More information

N.Nikolaev Antech TFA ltd, Sofia, Bulgaria. V.Parushev University of Mining and Geology, Sofia, Bulgaria. S.Nikolaev Antech TFA Ltd.

N.Nikolaev Antech TFA ltd, Sofia, Bulgaria. V.Parushev University of Mining and Geology, Sofia, Bulgaria. S.Nikolaev Antech TFA Ltd. 17th International Mining Congress and Exhibition of Turkey- IMCET 2001, 2001, ISBN 975-395-417-4 An Approach for Selection and Design of Rock Bolting Systems N.Nikolaev Antech TFA ltd, Sofia, Bulgaria

More information

Verification Manual. of GEO5 Gravity Wall program. Written by: Ing. Veronika Vaněčková, Ph.D. Verze: 1.0-en Fine Ltd.

Verification Manual. of GEO5 Gravity Wall program. Written by: Ing. Veronika Vaněčková, Ph.D. Verze: 1.0-en Fine Ltd. of program Written by: Ing. Veronika Vaněčková, Ph.D. Edited by: Ing. Jiří Laurin Verze: 1.0-en 1989-2009 Fine Ltd. www.finesotware.eu INTRODUCTION This Gravity Wall program Verification Manual contains

More information

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method 9210-203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached

More information

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil

Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus E i of the soil Appendix F Notation a b B C c C k C N C s C u C wt C θ D r D 1 D 2 D 10 D 30 Reciprocal of the initial shear stiffness of the interface K si under initial loading; reciprocal of the initial tangent modulus

More information

English version Version Française Deutsche Fassung

English version Version Française Deutsche Fassung EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM EN 1997-1:2004/AC February 2009 Février 2009 Februar 2009 ICS 93.020; 91.010.30 English version Version Française Deutsche Fassung Eurocode 7: Geotechnical

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

RETAINING WALL LOADS: Horizontal Equivalent Fluid Pressure = pcf. (Load Case = Soil)

RETAINING WALL LOADS: Horizontal Equivalent Fluid Pressure = pcf. (Load Case = Soil) QuickWall 8.0 - RETAINING WALL ANALYSIS AND DESIGN ================================================================================ Job ID : Job Description : Designed By : ================================================================================

More information

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2.

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2. Question 1 A pin-jointed plane frame, shown in Figure Q1, is fixed to rigid supports at nodes and 4 to prevent their nodal displacements. The frame is loaded at nodes 1 and by a horizontal and a vertical

More information

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

More information

Chapter 4. Ultimate Bearing Capacity of Shallow Foundations. Omitted parts: Sections 4.7, 4.8, 4.13 Examples 4.8, 4.9, 4.

Chapter 4. Ultimate Bearing Capacity of Shallow Foundations. Omitted parts: Sections 4.7, 4.8, 4.13 Examples 4.8, 4.9, 4. Chapter 4 Ultimate Bearing Capacity of Shallow Foundations Omitted parts: Sections 4.7, 4.8, 4.13 Examples 4.8, 4.9, 4.12 Pages 191-194 Ultimate Bearing Capacity of Shallow Foundations To perform satisfactorily,

More information

Dynamic Earth Pressure Problems and Retaining Walls. Behavior of Retaining Walls During Earthquakes. Soil Dynamics week # 12

Dynamic Earth Pressure Problems and Retaining Walls. Behavior of Retaining Walls During Earthquakes. Soil Dynamics week # 12 Dynamic Earth Pressure Problems and Retaining Walls 1/15 Behavior of Retaining Walls During Earthquakes - Permanent displacement = cc ' 2 2 due to one cycle of ground motion 2/15 Hence, questions are :

More information

Structural reliability analysis of deep excavations

Structural reliability analysis of deep excavations Timo Schweckendiek, TU Delft, Wim Courage, TNO Built Environment and Geosciences Introduction The Finite Element Method is nowadays widely used in structural design, both for the Servicebility Limit State

More information

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE CHAPTER ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE.1 INTRODUCTION An important objective of this research is to determine whether accurate analyses of the lateral load-deflection behavior

More information

FLEXIBLE BUILDING BASEMENT WITH MULTICOLUMNS

FLEXIBLE BUILDING BASEMENT WITH MULTICOLUMNS 011 FLEXIBLE BUILDING BASEMENT WITH MULTICOLUMNS Luis CARRILLO-GUTIERR 1 SUMMARY This invention is a passive seismic isolation system, which taking advantage of the resilience and flexibility that characterise

More information

Cyclic lateral response of piles in dry sand: Effect of pile slenderness

Cyclic lateral response of piles in dry sand: Effect of pile slenderness Cyclic lateral response of piles in dry sand: Effect of pile slenderness Rafa S. 1, Rouaz I. 1,Bouaicha A. 1, Abed El Hamid A. 1 Rafa.sidali@gmail.com 1 National Center for Studies and Integrated Researches

More information

Appraisal of Soil Nailing Design

Appraisal of Soil Nailing Design Indian Geotechnical Journal, 39(1), 2009, 81-95 Appraisal of Soil Nailing Design G. L. Sivakumar Babu * and Vikas Pratap Singh ** Introduction Geotechnical engineers largely prefer soil nailing as an efficient

More information

The theories to estimate lateral earth pressure due to a strip surcharge loading will

The theories to estimate lateral earth pressure due to a strip surcharge loading will Chapter LITERATURE REVIEW The theories to estimate lateral earth pressure due to a strip surcharge loading will be introduced in this chapter. Commonly geotechnical engineers apply the equations suggested

More information

R-Plus System Frontespizio_R_PlusSystem.indd 1 11/06/ :32:02

R-Plus System Frontespizio_R_PlusSystem.indd 1 11/06/ :32:02 R-Plus System R-Plus System R-Plus system R-Plus system description Fig. R-Plus system R-Plus System is Rollon s series of rack & pinion driven actuators. Rollon R-Plus System series linear units are designed

More information

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil [Jafar Bolouri Bazaz, Javad Keshavarz] Abstract Almost all types of piles are subjected to lateral loads. In many cases,

More information

SOIL MECHANICS: palgrave. Principles and Practice. Graham Barnes. macmiiian THIRD EDITION

SOIL MECHANICS: palgrave. Principles and Practice. Graham Barnes. macmiiian THIRD EDITION SOIL MECHANICS: Principles and Practice THIRD EDITION Graham Barnes palgrave macmiiian 'running Contents Preface xii Fine soil 19 List of symbols xiv Mass structure 21 Note on units xix Degree of weathering

More information

5.2 Rigid Bodies and Two-Dimensional Force Systems

5.2 Rigid Bodies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems 5.2 Rigid odies and Two-Dimensional Force Systems Procedures and Strategies, page 1 of 1 Procedures and Strategies for Solving Problems Involving Equilibrium

More information

Modelling of Earth Pressure from nearby Strip Footings on a Free & Anchored Sheet Pile Wall

Modelling of Earth Pressure from nearby Strip Footings on a Free & Anchored Sheet Pile Wall NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Modelling of Earth Pressure from nearby Strip Footings on a Free & Anchored Sheet

More information

CHAPTER 8 CALCULATION THEORY

CHAPTER 8 CALCULATION THEORY CHAPTER 8 CALCULATION THEORY. Volume 2 CHAPTER 8 CALCULATION THEORY Detailed in this chapter: the theories behind the program the equations and methods that are use to perform the analyses. CONTENTS CHAPTER

More information

RETAINING WALL ANALYSIS

RETAINING WALL ANALYSIS GEODOMISI Ltd. Dr. Costas Sachpazis Consulting Company for Tel.: (+30) 20 523827, 20 57263 Fax.:+30 20 5746 Retaining wall Analysis & Design (EN997:2004 App'd by RETAINING WALL ANALYSIS In accordance with

More information

N mg N Mg N Figure : Forces acting on particle m and inclined plane M. (b) The equations of motion are obtained by applying the momentum principles to

N mg N Mg N Figure : Forces acting on particle m and inclined plane M. (b) The equations of motion are obtained by applying the momentum principles to .004 MDEING DNMIS ND NTR I I Spring 00 Solutions for Problem Set 5 Problem. Particle slides down movable inclined plane. The inclined plane of mass M is constrained to move parallel to the -axis, and the

More information

Volcanic Ash 2 OUTLINE OF THE EXPERIMENTS 3 STATIC HORIZONTAL LOADING TEST (50 G)

Volcanic Ash 2 OUTLINE OF THE EXPERIMENTS 3 STATIC HORIZONTAL LOADING TEST (50 G) Experimental Study on Characteristics of Horizontal Dynamic Subgrade Reaction Using a Single-Pile Model Estudio Experimental sobre las Caracteristicas de la Reaccion Dinamica Horizontal de la Subrasante

More information

DREDGING DYNAMICS AND VIBRATION MEASURES

DREDGING DYNAMICS AND VIBRATION MEASURES DREDGING DYNAMICS AND VIBRATION MEASURES C R Barik, K Vijayan, Department of Ocean Engineering and Naval Architecture, IIT Kharagpur, India ABSTRACT The demands for dredging have found a profound increase

More information

Behavior of Offshore Piles under Monotonic Inclined Pullout Loading

Behavior of Offshore Piles under Monotonic Inclined Pullout Loading Behavior of Offshore Piles under Monotonic Inclined Pullout Loading Mohamed I. Ramadan Lecturer, Civil Engineering Department, Faculty of Engineering, Assiut University, Assiut, Egypt, mihr81@gmail.com

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. GTE 2016 Q. 1 Q. 9 carry one mark each. D : SOLID MECHNICS Q.1 single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system

More information

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE 07 3.0 ANALYSIS AND DESIGN OF RETAINING STRUCTURES LEARNING OUTCOMES Learning outcomes: At the end of this lecture/week the students would be able to: Understand

More information

In depth study of lateral earth pressure

In depth study of lateral earth pressure In depth study of lateral earth pressure A comparison between hand calculations and PLAXIS Master of Science Thesis in the Master s Programme Geo and Water Engineering MATTIAS PETERSSON MATHIAS PETTERSSON

More information

Computation of Passive Earth Pressure Coefficients for a Horizontal Cohesionless Backfill Using the Method of Slices

Computation of Passive Earth Pressure Coefficients for a Horizontal Cohesionless Backfill Using the Method of Slices Cloud Publications International Journal of Advanced Civil Engineering and Architecture Research 213, Volume 2, Issue 1, pp. 32-41, Article ID Tech-131 Research Article Open Access Computation of Passive

More information

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except

SHEAR STRENGTH OF SOIL. Chapter 10: Sections Chapter 12: All sections except SHEAR STRENGTH OF SOIL Chapter 10: Sections 10. 10.3 Chapter 1: All sections ecept 1.13 1.14 1.15 1.17 1.18 TOPICS Introduction Components of Shear Strength of Soils Normal and Shear Stresses on a Plane

More information

9/23/ S. Kenny, Ph.D., P.Eng. Lecture Goals. Reading List. Students will be able to: Lecture 09 Soil Retaining Structures

9/23/ S. Kenny, Ph.D., P.Eng. Lecture Goals. Reading List. Students will be able to: Lecture 09 Soil Retaining Structures Lecture 09 Soil Retaining Structures Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland spkenny@mun.ca Lecture Goals Students

More information

Evaluation of Horizontal Displacement of Long Piles Subject to Lateral Loading in Sandy Soil

Evaluation of Horizontal Displacement of Long Piles Subject to Lateral Loading in Sandy Soil 195 ; ; ; Evaluation of Horizontal Displacement of Long Piles Subject to Lateral Loading in Sand Soil J Keshavarz J Bolouri Bazaz Abstract In man structures, the applied lateral loads are comparable with

More information

Foundation Engineering

Foundation Engineering Foundation Engineering Draft Version April 01 S. van Baars PREFACE This book is just a help for the students fort the old course Grundbau. Luxembourg, April 01 Stefan Van Baars CONTENT I SHALLOW FOUNDATIONS...

More information

Contents. Dynamics and control of mechanical systems. Focus on

Contents. Dynamics and control of mechanical systems. Focus on Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies

More information

Active Thrust on an Inclined Wall under the Combined Effect of Surcharge and Self- Weight

Active Thrust on an Inclined Wall under the Combined Effect of Surcharge and Self- Weight IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684, PP: 01-15 www.iosrjournals.org Active Thrust on an Inclined Wall under the Combined Effect of Surcharge and Self- Weight D.

More information