Supplementary material

Size: px
Start display at page:

Download "Supplementary material"

Transcription

1 Ionic Liquid Design and Process Simulation for Decarbonization of Shale Gas XinyanLiu,, Ying Huang, Yongsheng Zhao, RafiqulGani, XiangpingZhang, *, SuojiangZhang *, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing , China Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing , China Department of Chemical & Biochemical Engineering, Technical University of Denmark, DK 2800 Kgs. Lyngby, Denmark Supplementary material 1

2 Supporting Information Table S1... Page 2 Table S2... Page 2 Table S Page 3 Table S4... Page 3 Table S5... Page 3 Table S6... Page 4 Table S7... Page 4 Figure S1.. Page 5 Table S8... Page 5-10 Figure S2.. Page 11 Table S9... Page Figure S3.. Page 15 Table S10. Page Figure S4.. Page 19 Table S11. Page 20 Table S12. Page 21 Table S13. Page 22 Table S14. Page 23 1

3 Table S1 CO 2 henry s constant in 90 kinds of ionic liquids T=303.15K [HOemim] [Emim] [Bmim] [Hmim] [Omim] [MeButPyrr] [N4111] [N-bupy] [Hmpy] [FEP] [TCA] [Tf 2 N] [DCA] [DEP] [C 2 SO 4 ] [OTF] [CH 3 SO 4 ] [NO 3 ] [BF 4 ] Table S2 CH 4 henry s constant in 90 kinds of ionic liquids T=303.15K [HOemim] [Emim] [Bmim] [Hmim] [Omim] [MeButPyrr] [N4111] [N-bupy] [Hmpy] [FEP] [DEP] [Tf 2 N] [C 2 SO 4 ] [CH 3 SO 4 ] [OTF] [NO 3 ] [TCA] [DCA] [BF 4 ]

4 Table S3 Scalar property parameters of [bmim][ntf 2 ] IL Parameter Units Data Standard boiling point K Critical temperature K Critical pressure bar 21.7 Critical volume cm 3 /mol Acentric factor / Table S4 Henry s constant parameters in binary system Parameters CO 2 CH 4 C C C C Table S5 Comparison of predicted value and experimental value for CO 2 Temperature (K) Solubility x Predicted P (bar) Calculated P (bar) AARD 8.54% 3

5 Table S6 Comparison of predicted value and experimental value for CH 4 Temperature (K) Solubility x Predicted P (bar) Calculated P (bar) AARD 4.35% Table S7 Energy and solvent consumption of different components of raw gas VCO 2 :VCH 4 20%:80% 40%:60% 60%:40% 80%:20% IL kg/h Lean load mol CO 2 /mol IL C1/kW P1/kW Electricity (kwe) Heat duty (kwth) Flash TEC/kW SEC/MJ/kgCH SEC/MJ/kgCO

6 Figure S1 Typical Decarbonization Process Flow Sheet using MDEA Table S8(a) Operation parameters of key equipment in MDEA processes Items Unit Value Absorber Pressure of the column bottom bar 60 Gas inlet temperature o C 20 Gas outlet temperature o C 24.5 Stage number 7 Flash (F101) Pressure bar 14 Temperature o C 25 Regenerator Stage number 10 Reflux ratio 1.3 Pressure bar 1 Top temperature o C Bottom temperature o C 59.5 Heat exchanger (E) Hot stream inlet temperature o C Hot stream outlet temperature o C 65 Cold stream inlet temperature o C 55 Cold stream outlet temperature o C 82.7 Heat exchanger (E101) Inlet temperature o C 65 Outlet temperature o C 40 Purified shale gas CH 4 mole fraction CO 2 mole fraction

7 Table S8(b) Temperature, Pressure and Vapor and Liquid Flow Rate Profiles of the Absorber of the Modified MDEA Process Stage Temperature Pressure Liquid from (Mole) Vapor from (Mole) C bar kmol/hr kmol/hr Table S8(c) Vapor and Liquid Composition Profiles of the Absorber of the MDEA Process Vapor (mole fraction) Stage MDEA H 2 O CO 2 CH 4 N 2 C 2 H 6 C 3 H 8 C 4 H C 5 H E E E E E E E

8 Liquid (mole fraction) Stage MDEA H 2O CO 2 H 3O + OH - HCO 3 - CO 3-2 MDEAH + CH 4 N 2 C 2H 6 C 3H 8 C 4H C 5H E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-07 7

9 Table S8(d) Temperature, Pressure and Vapor and Liquid Flow Rate Profiles of the Regenerator of the Modified MDEA Process Stage Temperature Pressure Heat duty Liquid from Vapor from (Mole) (Mole) C bar Watt kmol/hr kmol/hr Table S8(e) Vapor and Liquid Composition Profiles of the Regenerator of the MDEA Process Vapor (mole fraction) Stage MDEA H 2O CO 2 CH 4 N 2 C 2H 6 C 3H 8 C 4H C 5H E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-19 8

10 Liquid (mole fraction) Stage MDEA H 2O CO 2 H 3O + OH - HCO 3 - CO 3-2 MDEAH + CH 4 N 2 C 2H 6 C 3H 8 C 4H C 5H E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-24 9

11 Table S8(f) Stream results of the flowsheet for MDEA Decarbonization ACIDGAS GASIN GASOUT LEANIN RICHOUT Temperature o C Pressure bar Vapor Frac Mass Flow kg/hr Volume Flow cum/hr Enthalpy Gcal/hr Density kg/cum Mass Flow MDEA kg/hr H 2 O kg/hr CO 2 kg/hr H 3 O + kg/hr OH- kg/hr HCO 3- kg/hr CO -2 3 kg/hr MDEAH + kg/hr CH 4 kg/hr N 2 kg/hr C 2 H 6 kg/hr C 3 H 8 kg/hr C 4 H kg/hr C 5 H kg/hr

12 Figure S2 IL-based Decarbonization Flow Sheet (two single-stage) Table S9(a) Operation parameters of key equipment in IL-based decarbonization process (two single-stage) Items Unit Value Absorber Pressure of the column bottom bar 60 Gas inlet temperature o C 20 Gas outlet temperature o C 24.5 Stage number 10 Flash-1 Pressure bar 15 Temperature o C 25 Flash-2 Pressure bar 1 Temperature o C 27 Heat exchanger (E) Inlet temperature o C 27 Outlet temperature o C 20 Purified shale gas CH 4 mole fraction CO 2 mole fraction

13 Table S9(b) Temperature, Pressure and Vapor and Liquid Flow Rate Profiles of the Absorber of the IL-based Decarbonization Process (two single-stage) Stage Temperature Pressure Liquid from (Mole) Vapor from (Mole) C bar kmol/hr kmol/hr Table S9(c) Vapor and Liquid Composition Profiles of the Absorber of the IL-based Decarbonization Process (two single-stage) Vapor (mole fraction) Stage CO2 BMIMTF2N CH4 C2H6 C3H8 N2 H2O C4H10 C5H E E E E E E E E E E E E E E E E E E E E

14 Liquid (mole fraction) Stage CO2 BMIMTF2N CH4 C2H6 C3H8 N2 H2O C4H10 C5H E E E E E E E E E E E E E E E E E E E E

15 Table S9(d) Stream results of the flowsheet for IL-based Decarbonization (two single-stage) ACIDGAS Bmim Tf 2 N GASIN GASOUT RICHOUT Temperature o C Pressure bar Vapor Frac Mole Flow kmol/hr Mass Flow kg/hr Volume Flow cum/hr Enthalpy Gcal/hr Mass Flow kg/hr CO BmimTf 2 N CH C 2 H C 3 H N H 2 O C 4 H C 5 H

16 Figure S3 IL-based decarbonization flow sheet (Multi-stage flash) Table S10(a) Operation parameters of key equipment in IL-based decarbonization process (Multi-stage flash) Items Unit Value Absorber Pressure of the column bottom bar 60 Gas inlet temperature o C 20 Gas outlet temperature o C 23.6 Stage number 10 Flash-1 Pressure bar 55 Temperature o C 25 Flash-2 Pressure bar 40 Temperature o C 25 Flash-3 Pressure bar 30 Temperature o C 25 Flash-4 Pressure bar 0.4 Temperature o C 25 Heat exchanger (E-1) Inlet temperature o C 25 Outlet temperature o C 20 Purified shale gas CH 4 mole fraction CO 2 mole fraction

17 Table S10(b) Temperature, Pressure and Vapor and Liquid Flow Rate Profiles of the Absorber of the IL-based decarbonization Process (Multi-stage flash) Stage Temperature Pressure Liquid from (Mole) Vapor from (Mole) C bar kmol/hr kmol/hr Table S10(c) Vapor and Liquid Composition Profiles of the Absorber of the IL-based Decarbonization Process (Multi-stage flash) Vapor (mole fraction) Stage CO2 BMIMTF2N CH4 C2H6 C3H8 N2 H2O C4H10 C5H E E E E E E E E E E E E E E E E E E E E

18 Liquid (mole fraction) Stage CO2 BMIMTF2N CH4 C2H6 C3H8 N2 H2O C4H10 C5H E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-06 17

19 Table S10(d) Stream results of the flowsheet for IL-based Decarbonization (Multi-stage flash) ACIDGAS BMIMTf2N GASIN GASOUT RICHOUT Temperature C Pressure bar Vapor Frac Mole Flow scmh Mass Flow kg/hr Volume Flow cum/sec Enthalpy Gcal/hr Mass Flow kg/hr CO BMIMTF2N CH C2H C3H N H2O C4H C5H

20 Figure S4 Flowsheet of different raw gas component for IL-based Decarbonization (two single-stage) 19

21 Table S11 Stream results of the flowsheet for IL-based Decarbonization (two single-stage) (raw gas V CO2 :V CH4 =20%:80%) ACIDGAS BMIMNTF2 GASIN GASOUT LEAN RICHOUT Temperature C Pressure bar Vapor Frac Mole Flow kmol/hr Mass Flow kg/hr Volume Flow cum/hr Enthalpy Gcal/hr Mass Flow kg/hr CO BMIMTF 2 N trace trace trace trace trace trace CH Mass Frac CO BMIMTF 2 N trace trace trace trace trace trace CH PPM PPM PPM PPM Mole Flow kmol/hr CO BMIMTF 2 N trace trace trace trace trace trace CH Mole Frac CO BMIMTF 2 N trace trace 0.82 trace trace trace trace CH PPM PPM PPM

22 Table S12 Stream results of the flowsheet for IL Decarbonization (two single-stage) (raw gas V CO2 :V CH4 =40%:60%) ACIDGAS BMIMNTF2 GASIN GASOUT LEANOUT RICHOUT Temperature C Pressure bar Vapor Frac Mole Flow kmol/hr Mass Flow kg/hr Volume Flow cum/hr Enthalpy Gcal/hr Mass Flow kg/hr CO BMIMTF 2 N trace trace trace trace trace trace CH Mass Frac CO BMIMTF 2 N trace trace trace trace trace trace CH PPM PPM PPM PPM Mole Flow kmol/hr CO BMIMTF 2 N trace trace trace trace trace trace CH Mole Frac CO BMIMTF 2 N trace trace trace trace trace trace CH PPM PPM PPM

23 Table S13 Stream results of the flowsheet for IL-based Decarbonization (two single-stage) (raw gas V CO2 :V CH4 =60%:40%) ACIDGAS BMIMNTF2 GASIN GASOUT LEANOUT RICHOUT Temperature C Pressure bar Vapor Frac Mole Flow kmol/hr Mass Flow kg/hr Volume Flow cum/hr Enthalpy Gcal/hr Mass Flow kg/hr CO BMIMTF 2 N trace trace trace trace trace trace CH Mass Frac CO BMIMTF 2 N trace trace trace trace trace trace CH PPM PPM PPM PPM Mole Flow kmol/hr CO BMIMTF 2 N trace trace trace trace trace trace CH Mole Frac CO BMIMTF 2 N trace trace trace trace trace trace CH PPM PPM PPM

24 Table S14 Stream results of the flowsheet for IL-based Decarbonization (two single-stage) (raw gas V CO2 :V CH4 =80%:20%) ACIDGAS BMIMNTF2 GASIN GASOUT LEANOUT RICHOUT Temperature C Pressure bar Vapor Frac Mole Flow kmol/hr Mass Flow kg/hr Volume Flow cum/hr Enthalpy Gcal/hr Mass Flow kg/hr CO BMIMTF 2 N trace trace trace trace trace trace CH Mass Frac CO BMIMTF 2 N trace trace trace trace trace trace CH PPM PPB PPB PPB 945 PPM Mole Flow kmol/hr CO BMIMTF 2 N trace trace trace trace trace trace CH Mole Frac CO BMIMTF 2 N trace trace trace trace trace trace CH PPM PPM PPM

Can Ionic Liquids Be Cheap?

Can Ionic Liquids Be Cheap? Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI) Can Ionic Liquids Be Cheap? Long Chen, a, b,

More information

Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling

Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling Mass Transfer in a Small Scale Flue Gas Absorber Experimental and Modeling P.J.G. Huttenhuis, E.P. van Elk, S. Van Loo, G.F. Versteeg Procede Gas Treating B.V., The Netherlands 11 th MEETING of the INTERNATIONAL

More information

Py x P P P. Py x P. sat. dq du PdV. abs Q S. An Innovative Approach in the G U TS PV P P G U TS PV T H U PV H U PV. abs. Py x P. sat.

Py x P P P. Py x P. sat. dq du PdV. abs Q S. An Innovative Approach in the G U TS PV P P G U TS PV T H U PV H U PV. abs. Py x P. sat. E a 1 1 sat sat ln Py x P Py x P K H k Ae R E sat a Py x P 1 1 sat ln K1 R Py x P K H k Ae R 1 CO P H 1 1 abs ln K H H 1/ R Q C 1 1 CO P ln S K H K1 R 1 P H abs H P K1 R CP 1 K1 R 1/ R S Q P 1 E a E du

More information

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia

Shortcut Distillation. Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia Shortcut Distillation Agung Ari Wibowo, S.T., M.Sc Politeknik Negeri Malang Malang - Indonesia The use of separation column in HYSYS The column utilities in HYSYS can be used to model a wide variety of

More information

Density modelling NH 3 -CO 2 -H 2 O liquid mixtures. Technology for a better society

Density modelling NH 3 -CO 2 -H 2 O liquid mixtures. Technology for a better society 1 Density modelling NH 3 -CO 2 -H 2 O liquid mixtures 2 Liquid density model in Aspen Plus Clarke model (for aqueous electrolyte molar volume) Molar volume for electrolyte solutions (V m l ), applicable

More information

INTEGRATED PROCESS FOR γ-butyrolactone PRODUCTION

INTEGRATED PROCESS FOR γ-butyrolactone PRODUCTION U.P.B. Sci. Bull., Series B, Vol. 76, Iss. 3, 214 ISSN 1454 2331 INTEGRATED PROCESS FOR γ-butyrolactone PRODUCTION Ahtesham JAVAID 1, Costin Sorin BILDEA 2 An integrated process for the production of γ-butyrolactone

More information

A NEW SOLVENT FOR CO2 CAPTURE R.

A NEW SOLVENT FOR CO2 CAPTURE R. A NEW SOLVENT FOR CO 2 CAPTURE R. Viscardi, G. Vanga and V. Barbarossa vincenzo.barbarossa@enea.it C.R. Casaccia ENEA; via Anguillarese, 301; 00123 S. M. Galeria-Roma Abstract This experimental study describes

More information

Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination

Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination Getting started with BatchReactor Example : Simulation of the Chlorotoluene chlorination 2011 ProSim S.A. All rights reserved. Introduction This document presents the different steps to follow in order

More information

Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column

Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column Background Chapter 4. Problem SM.7 Ethylbenzene/Styrene Column In Problem SM.6 of the HYSYS manual, a modified form of successive substitution, called the Wegstein method, was used to close the material

More information

Exam 3 Concepts! CH110 FA10 SAS 33

Exam 3 Concepts! CH110 FA10 SAS 33 Exam 3 Concepts! CH110 FA10 SAS 33 Properties of Gases What sorts of elements and compounds tend to be found as gasses at room temperature? What are the physical properties of gases? What is pressure?

More information

Pilot / lab scale study of CO 2 separation with ionic liquid blending

Pilot / lab scale study of CO 2 separation with ionic liquid blending 12 June-14 June, 2017 Pilot / lab scale study of CO 2 separation with ionic liquid blending Dawei Shang, Xiangping Zhang, Suojiang Zhang Institute of Process Engineering, Chinese Academy of Sciences 1

More information

MASS TRANSFER AND GAS ABSORPTION EQUIPMENT

MASS TRANSFER AND GAS ABSORPTION EQUIPMENT MASS TRANSFER AND GAS ABSORPTION EQUIPMENT Mark J McCready University of Notre Dame Indiana, USA TOPICS Review of heat transfer and heat exchangers Some fundamental aspects of mass transfer Analysis of

More information

SIMULATION OF METHYLDIETHANOLAMINE- CARBON DIOXIDE-WATER SYSTEM USING EQUILIBRIUM APPROACH

SIMULATION OF METHYLDIETHANOLAMINE- CARBON DIOXIDE-WATER SYSTEM USING EQUILIBRIUM APPROACH SIMULATION OF METHYLDIETHANOLAMINE- CARBON DIOXIDE-WATER SYSTEM USING EQUILIBRIUM APPROACH A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Bachelor of Technology in Chemical

More information

Simulation of CO 2 removal in a split-flow gas sweetening process

Simulation of CO 2 removal in a split-flow gas sweetening process Korean J. Chem. Eng., 28(3), 643-648 (2011) DOI: 10.1007/s11814-010-0446-6 INVITED REVIEW PAPER Simulation of CO 2 removal in a split-flow gas sweetening process Hyung Kun Bae, Sung Young Kim, and Bomsock

More information

DME(10 TPD) Process Simulation Using Aspen Plus Release Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

DME(10 TPD) Process Simulation Using Aspen Plus Release Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University DME(10 TPD) Process Simulation Using Aspen Plus Release 12.1 Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University Overall Flowsheet for DME Production Unit 18 TO FLARE 17 DA-103

More information

CO 2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2007

CO 2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2007 CO 2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2007 Quarterly Progress Report Reporting Period Start Date: January 1, 2007 Reporting Period End Date: March 31, 2007 Authors:

More information

Simulation of Electrolyte Processes: Status and Challenges

Simulation of Electrolyte Processes: Status and Challenges Simulation of Electrolyte Processes: Status and Challenges Paul M Mathias and Chau-Chyun Chen Aspen Technology, Inc. 12 March 2002 AIChE Spring 2002 Meeting AIChE 2002 Spring Meeting. Summary Opportunities/needs

More information

SOLUBILITY AS AN EQUILIBRIUM PHENOMENA

SOLUBILITY AS AN EQUILIBRIUM PHENOMENA SOLUBILITY AS AN EQUILIBRIUM PHENOMENA Equilibrium in Solution solute (undissolved) solute (dissolved) Solubility A saturated solution contains the maximum amount of solute that will dissolve in a given

More information

Simulation of Ethanol Dehydration Using Cyclohexane as an Entrainer

Simulation of Ethanol Dehydration Using Cyclohexane as an Entrainer Simulation of Ethanol Dehydration Using Cyclohexane as an Entrainer 2013 년 9 월 23 일 ( 월 ) 공주대학교화학공학부조정호 Limit of Distillation by Azeotrope 1.0 Ethanol / Water System Distillation range is restricted by

More information

1. (25 points) C 6 H O 2 6CO 2 + 7H 2 O C 6 H O 2 6CO + 7H 2 O

1. (25 points) C 6 H O 2 6CO 2 + 7H 2 O C 6 H O 2 6CO + 7H 2 O MEEBAL Exam 2 November 2013 Show all work in your blue book. Points will be deducted if steps leading to answers are not shown. No work outside blue books (such as writing on the flow sheets) will be considered.

More information

MODULE 5: DISTILLATION

MODULE 5: DISTILLATION MOULE 5: ISTILLATION LECTURE NO. 3 5.2.2. Continuous distillation columns In contrast, continuous columns process a continuous feed stream. No interruptions occur unless there is a problem with the column

More information

Module 2: Solutions The Science of Mixing : Have you ever been in a wrong mix?

Module 2: Solutions The Science of Mixing : Have you ever been in a wrong mix? PART 1 Name: All matter around us exists in a mixed state. Chemists look at the atomic level and try to explain why certain matters mix homogeneously (uniformly) and certain types of matters (or compounds)

More information

Chapter 11. General Chemistry. Chapter 11/1

Chapter 11. General Chemistry. Chapter 11/1 Chapter 11 Solutions and Their Properties Professor Sam Sawan General Chemistry 84.122 Chapter 11/1 Solutions Solution: A homogeneous mixture. Solvent: The major component. Solute: A minor component. Copyright

More information

Methodology for Analysis of Metallurgical Processes

Methodology for Analysis of Metallurgical Processes Methodology for Analysis of Metallurgical Processes Metallurgical and chemical processes are classified as batch, continuous and semibatch 1. Batch processes The feed is charged into a vessel at the beginning

More information

Figure 4-1: Pretreatment schematic

Figure 4-1: Pretreatment schematic GAS TREATMENT The pretreatment process consists of four main stages. First, CO 2 and H 2 S removal stage which is constructed to assure that CO 2 would not exceed 50 ppm in the natural gas feed. If the

More information

Thinking Like a Chemist About Dissolution. Unit 5 Day 4

Thinking Like a Chemist About Dissolution. Unit 5 Day 4 Thinking Like a Chemist About Dissolution Unit 5 Day 4 What are we going to learn today? Thinking Like a Chemist in the Context of the Dissolution Process. Macro Modeling Micro Modeling Energy of the change

More information

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU Chapter 17 Thermochemistry 17.1 The Flow of Energy 17. Measuring and Expressing Enthalpy Changes 17.3 Heat in Changes of State 17.4 Calculating Heats of Reaction Why does sweating help

More information

Lecture 3: DESIGN CONSIDERATION OF DRIERS

Lecture 3: DESIGN CONSIDERATION OF DRIERS Lecture 3: DESIGN CONSIDERATION OF DRIERS 8. DESIGN OF DRYER Design of a rotary dryer only on the basis of fundamental principle is very difficult. Few of correlations that are available for design may

More information

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Mass Transfer Operations I Prof. Bishnupada Mandal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module - 4 Absorption Lecture - 4 Packed Tower Design Part - 3 Welcome to

More information

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i =

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i = Properties of Solution Practice Exam Solutions Name (last) (First) Read all questions before you start. Show all work and explain your answers. Report all numerical answers to the proper number of sig.

More information

Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant

Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant Chemistry 2000 Lecture 12: Temperature dependence of the equilibrium constant Marc R. Roussel February 12, 2019 Marc R. Roussel Temperature dependence of equilibrium February 12, 2019 1 / 15 Temperature

More information

Esterification in CSTRs in Series with Aspen Plus V8.0

Esterification in CSTRs in Series with Aspen Plus V8.0 Esterification in CSTRs in Series with Aspen Plus V8.0 1. Lesson Objectives Use Aspen Plus to determine whether a given reaction is technically feasible using three continuous stirred tank reactors in

More information

FORMULA SHEET (tear off)

FORMULA SHEET (tear off) FORMULA SHEET (tear off) N A = 6.022 x 10 23 C = ( 5 / 9 ) ( F - 32) F = ( 9 / 5 )( C) + 32 1 amu = 1.661 x 10-27 kg C = K - 273.15 K = C + 273.15 1 atm = 760 torr = 760 mm Hg 1 atm = 1.013 bar pv = nrt

More information

EVAPORATION YUSRON SUGIARTO

EVAPORATION YUSRON SUGIARTO EVAPORATION YUSRON SUGIARTO Evaporation: - Factors affecting evaporation - Evaporators - Film evaporators - Single effect and multiple effect evaporators - Mathematical problems on evaporation Principal

More information

C 6 H H 2 C 6 H 12. n C6H12 n hydrogen n benzene. n C6H6 n H2 100 C 6 H 6 n 2 n C6H H 2. n 1

C 6 H H 2 C 6 H 12. n C6H12 n hydrogen n benzene. n C6H6 n H2 100 C 6 H 6 n 2 n C6H H 2. n 1 1. Cyclohexane (C 6 H 12 ) can be made by the reaction of benzene (C 6 H 6 ) and hydrogen gas. The products from the reactor are sent to a separator where the cyclohexane and some of the unreacted hydrogen

More information

CHAPTER OUTLINE. I. The Structure of Water: An Introduction to Intermolecular Forces

CHAPTER OUTLINE. I. The Structure of Water: An Introduction to Intermolecular Forces The Chemistry of Water and the Nature of Liquids Chapter 11 CHAPTER OUTLINE 11.2 I. The Structure of Water: An Introduction to Intermolecular Forces II. A Closer Look at Intermolecular lar Forces A. London

More information

There are five problems on the exam. Do all of the problems. Show your work.

There are five problems on the exam. Do all of the problems. Show your work. CHM 3410 - Physical Chemistry 1 Second Hour Exam October 22, 2010 There are five problems on the exam. Do all of the problems. Show your work. R = 0.08206 L. atm/mole. K N A = 6.022 x 10 23 R = 0.08314

More information

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46

Overview. Types of Solutions. Intermolecular forces in solution. Concentration terms. Colligative properties. Osmotic Pressure 2 / 46 1 / 46 2 / 46 Overview Types of Solutions. Intermolecular forces in solution Concentration terms Colligative properties Osmotic Pressure 3 / 46 Solutions and Colloids A solution is a homogeneous mixture

More information

Absorption/Stripping

Absorption/Stripping Absorption/Stripping Gas-liquid separation processes (Ch. 10) Cooling (condenser) Feed A+B Distillation(Ch.11) Absorption (Ch.10) Stripping (Ch.10) B COUNTER-CURRENT MULTISTAGE CONTACT OF GAS AND LIQUID

More information

O solubility at high amine concentration and validation of O Analogy

O solubility at high amine concentration and validation of O Analogy N O solubility at high amine concentration and validation of N O Analogy Ardi Hartono, Emmanuel, O. Mba and Hallvard F. Svendsen The 6 th Trondheim CO Capture, Transport and Storage Conference Trondheim,

More information

Solutions and Their Properties

Solutions and Their Properties Chapter 11 Solutions and Their Properties Solutions: Definitions A solution is a homogeneous mixture. A solution is composed of a solute dissolved in a solvent. When two compounds make a solution, the

More information

StudyHub: AP Chemistry

StudyHub: AP Chemistry StudyHub+ 1 StudyHub: AP Chemistry Solution Composition and Energies, Boiling Point, Freezing Point, and Vapor Pressure StudyHub+ 2 Solution Composition: Mole Fraction: Formula: Mole Fraction of Component

More information

Design of A chemical Absorption System for The Separation of Propane/Propylene Mixture

Design of A chemical Absorption System for The Separation of Propane/Propylene Mixture Design of A chemical Absorption System for The Separation of Propane/Propylene Mixture Reda Zein, Ahmed F. Nassar, Tarek M. Mostafa Chemical Engineering Department Cairo University Giza Egypt reda.zein@eng1.cu.edu.eg

More information

Chemical Engineering

Chemical Engineering Chemical Engineering Basic Principles: Energy and material balances Transport Processes Momentum Transfer: Fluid Flow Energy Transfer: Heat Mass Transfer: mixing and separation processes Physical and Chemical

More information

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources 16 SOLUTIONS Chapter Test B A. Matching Match each term in Column B to the correct description in Column A. Write the letter of the correct term on the line. Column A Column B 1. the number of moles of

More information

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points

Chemistry 360 Spring 2017 Dr. Jean M. Standard April 19, Exam points Chemistry 360 pring 2017 Dr. Jean M. tandard April 19, 2017 Name Exam 3 100 points Note: You must show your work on problems in order to receive full credit for any answers. You must turn in your equation

More information

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule.

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule. 73 FREEZING POINT DEPRESSION concentration of solute (molality) Freezing point depression constant (for SOLVENT) Freezing point depression: The amount the freezing temperature is LOWERED by the solute.

More information

Esterification in a PFR with Aspen Plus V8.0

Esterification in a PFR with Aspen Plus V8.0 Esterification in a PFR with Aspen Plus V8.0 1. Lesson Objectives Use Aspen Plus to determine whether a given reaction is technically feasible using a plug flow reactor. 2. Prerequisites Aspen Plus V8.0

More information

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide

Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Korean J. Chem. Eng., 24(3), 438-444 (2007) SHORT COMMUNICATION Comparison of distillation arrangement for the recovery process of dimethyl sulfoxide Jungho Cho and Dong Min Kim* Department of Chemical

More information

Simulation of CO 2 Removal by Potassium Taurate Solution

Simulation of CO 2 Removal by Potassium Taurate Solution A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 57, 2017 Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza, Serafim Bakalis Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-48-8;

More information

Molality. Molality (m) is the number of moles of solute per kilogram of solvent. mol of solute kg solvent. Molality ( m) =

Molality. Molality (m) is the number of moles of solute per kilogram of solvent. mol of solute kg solvent. Molality ( m) = Molality Molality (m) is the number of moles of solute per kilogram of solvent. Molality ( m) = mol of solute kg solvent Sample Problem Calculate the molality of a solution of 13.5g of KF dissolved in

More information

Composition Shift of a Mixed-Gas Joule-Thomson Refrigerator Driven by an Oil-Free Compressor

Composition Shift of a Mixed-Gas Joule-Thomson Refrigerator Driven by an Oil-Free Compressor Composition Shift of a Mixed-Gas Joule-Thomson Refrigerator Driven by an Oil-Free Compressor M. Gong, Z. Deng, and J. Wu Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing

More information

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth University of Groningen Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

Development of a Systematic Synthesis and Design Methodology to Achieve Process Intensification in (Bio)Chemical Processes

Development of a Systematic Synthesis and Design Methodology to Achieve Process Intensification in (Bio)Chemical Processes Development of a Systematic Synthesis and Design Methodology to Achieve Process Intensification in (Bio)Chemical Processes Philip Lutze a, Rafiqul Gani b, John M. Woodley a a PROCESS, Center for Process

More information

Current status of R&D in post combustion CO 2 capture

Current status of R&D in post combustion CO 2 capture Current status of R&D in post combustion CO 2 capture Kaj Thomsen, Ph.D. Center for Energy Resources Engineering, CERE DTU Chemical Engineering Technical University of Denmark Outline Choice of solvent

More information

ChE 201 August 26, ChE 201. Chapter 8 Balances on Nonreactive Processes Heat of solution and mixing

ChE 201 August 26, ChE 201. Chapter 8 Balances on Nonreactive Processes Heat of solution and mixing ChE 201 Chapter 8 Balances on Nonreactive Processes Heat of solution and mixing Definitions A solution is a homogeneous mixture A solute is dissolved in a solvent. solute is the substance being dissolved

More information

Solid-Liquid Extraction

Solid-Liquid Extraction Chapter (10) Solid-Liquid Extraction (( Leaching )) Leaching: is the separation of a solute from solid mixture by dissolving it in a liquid phase. Leaching occurs in two steps: 1. Contacting solvent and

More information

Benefits from the Rigorous Mass Transfer Rate Approach to Modelling Acid Gas Absorption Using Mixed Amines

Benefits from the Rigorous Mass Transfer Rate Approach to Modelling Acid Gas Absorption Using Mixed Amines Benefits from the Rigorous Mass Transfer Rate Approach to Modelling Acid Gas Absorption Using Mixed Amines David J. Vickery and John T. Adams ChemShare Corporation, Houston Texas and Robert D. Wright Amoco

More information

CHM 1046 FINAL REVIEW

CHM 1046 FINAL REVIEW CHM 1046 FINAL REVIEW Prepared & Presented By: Marian Ayoub PART I Chapter Description 6 Thermochemistry 11 States of Matter; Liquids and Solids 12 Solutions 13 Rates of Reactions 18 Thermodynamics and

More information

Analyzing solubility of acid gas and light alkanes in triethylene glycol

Analyzing solubility of acid gas and light alkanes in triethylene glycol From the SelectedWorks of ali ali 208 Analyzing solubility of acid gas and light alkanes in triethylene glycol ali ali Available at: https://works.bepress.com/bahadori/8/ Journal of Natural Gas Chemistry

More information

4. Which of the following compounds is polar? A. CCl 4 B. BF 3 C. H 2 CCH 2 D. CO 2 E. NH 3 *

4. Which of the following compounds is polar? A. CCl 4 B. BF 3 C. H 2 CCH 2 D. CO 2 E. NH 3 * Exam2 Name Part A Follow the directions and select the BEST answer for each section. Mark your answers on the scantron answer sheet carefully. Make sure your scantron answer sheet is filled out properly-

More information

Name: Discussion Section:

Name: Discussion Section: CBE 141: Chemical Engineering Thermodynamics, Spring 2017, UC Berkeley Midterm 2 FORM A March 23, 2017 Time: 80 minutes, closed-book and closed-notes, one-sided 8 ½ x 11 equation sheet allowed Please show

More information

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00

Systems Engineering Spring Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant. Date: 2/25/00 Due: 3/3/00 10.551 Systems Engineering Spring 2000 Group Project #1: Process Flowsheeting Calculations for Acetic Anhydride Plant Date: 2/25/00 Due: 3/3/00 c Paul I. Barton, 14th February 2000 At our Nowhere City

More information

Thermochemistry and Thermodynamics. What is the standard heat of formation of methane, H f CH 4 (g), as calculated from the data above?

Thermochemistry and Thermodynamics. What is the standard heat of formation of methane, H f CH 4 (g), as calculated from the data above? Thermochemistry and Thermodynamics 38% 1. H 4 (g) + 2 O 2 (g) O 2 (g) + 2 H 2 O(l); = - 889.1 kj H f H 2 O(l) = - 285.8 kj / mole H f O 2 (g) = - 393.3 kj / mole What is the standard heat of formation

More information

Boyan Iliev, Marcin Smiglak, Anna Świerczyńska, Thomas Schubert. IOLITEC Ionic Liquids Technologies GmbH Salzstraße 184 D Heilbronn

Boyan Iliev, Marcin Smiglak, Anna Świerczyńska, Thomas Schubert. IOLITEC Ionic Liquids Technologies GmbH Salzstraße 184 D Heilbronn ILSEPT, Sitges, Spain, September 6th Boyan Iliev, Marcin Smiglak, Anna Świerczyńska, Thomas Schubert IOLITEC Ionic Liquids Technologies GmbH Salzstraße 184 D-74076 Heilbronn Outline 1 Introduction 2 Solubility

More information

Solutions: Physical Properties and Behavior

Solutions: Physical Properties and Behavior Solutions: Physical Properties and Behavior In the previous chapter you were exposed to a great deal of information about the forces present in and the properties of individual pure substances (for example,

More information

OPERATIONAL CONSIDERATIONS OF SIDE REACTIONS IN GAS SWEETENING SYSTEMS ABSTRACT

OPERATIONAL CONSIDERATIONS OF SIDE REACTIONS IN GAS SWEETENING SYSTEMS ABSTRACT OPERATIONAL CONSIDERATIONS OF SIDE REACTIONS IN GAS SWEETENING SYSTEMS Laurance Reid Gas Conditioning Conference February 26-March, 27 Norman, Oklahoma USA Joel Cantrell Bryan Research & Engineering, Inc.

More information

CH 222 Chapter Eleven Concept Guide

CH 222 Chapter Eleven Concept Guide CH 222 Chapter Eleven Concept Guide 1. Molality A 4.5 M nitric acid solution contains 65.0 g of HNO 3 in 288 g of solution. What is the molality of this solution? Molality is calculated by dividing the

More information

Modern Chemistry Chapter 12- Solutions

Modern Chemistry Chapter 12- Solutions Modern Chemistry Chapter 12- Solutions Section 1- Types of Mixtures Solutions are homogeneous mixtures of two or more substances in a single phase. Soluble describes a substance as capable of being dissolved.

More information

Chemistry 2000 Lecture 11: Chemical equilibrium

Chemistry 2000 Lecture 11: Chemical equilibrium Chemistry 2000 Lecture 11: Chemical equilibrium Marc R. Roussel February 4, 2019 Marc R. Roussel Chemical equilibrium February 4, 2019 1 / 27 Equilibrium and free energy Thermodynamic criterion for equilibrium

More information

solubility solubilities that increase with increasing temperature

solubility solubilities that increase with increasing temperature Solubility The concentration of the solute in a saturated solution is the solubility of the solute About 95% of all ionic compounds have aqueous solubilities that increase with increasing temperature Temperature

More information

Revamp of Saturated Gas Concentration Unit (SGCU)

Revamp of Saturated Gas Concentration Unit (SGCU) Revamp of Saturated Gas Concentration Unit (SGCU) ADVANCING CHEMICAL ENGINEERING WORLDWIDE Contents 1. Definitions... 4 2. Introduction... 5 3. Setup... 6 4. The process in SGCU... 7 5. The problem...

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011 Homework Assignment #: Due at 500 pm Wednesday July 6. University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 0 ) he respiratory system uses oxygen to degrade glucose to carbon

More information

Richard D. Noble. Douglas L. Gin. Alfred T. & Betty E. Look Professor of Chemical Engineering. Chemistry/ChBE Dept.

Richard D. Noble. Douglas L. Gin. Alfred T. & Betty E. Look Professor of Chemical Engineering. Chemistry/ChBE Dept. CO 2 Separations Using Room Temperature Ionic Liquids and Membranes Richard D. oble Alfred T. & Betty E. Look Professor of Chemical Engineering Douglas L. Gin Chemistry/ChBE Dept. Ionic Liquids Imidazolium-based

More information

INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS

INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS INDUSTRIAL EXPERIENCE WITH HYBRID DISTILLATION PERVAPORATION OR VAPOR PERMEATION APPLICATIONS Mario Roza, Eva Maus Sulzer Chemtech AG, Winterthur, Switzerland; E-mails: mario.roza@sulzer.com, eva.maus@sulzer.com

More information

Optimization of Batch Distillation Involving Hydrolysis System

Optimization of Batch Distillation Involving Hydrolysis System 273 Optimization of Batch Distillation Involving Hydrolysis System Elmahboub A. Edreder 1, Iqbal M. Mujtaba 2, Mansour Emtir 3* 1 Libyan Petroleum Institute, P.O. Box 6431, Tripoli, Libya 2 School of Engineering

More information

Copyright 2018 Dan Dill 1

Copyright 2018 Dan Dill 1 TP Based on Coulomb s law, which of the following has the largest magnitude enthalpy of aquation, Δ aq? 1. LiCl 2. NaCl 3. KCl Lecture 12 CH102 A1 (MWF 9:05 am) Friday, February 16, 2018 Complete: Predicting

More information

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION

Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Vapor-liquid Separation Process MULTICOMPONENT DISTILLATION Outline: Introduction to multicomponent distillation Phase Equilibria in Multicomponent Distillation (Pg. 737) Bubble-point and dew-point calculation

More information

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han

,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han Jungho Cho, So-Jin Park,, Myung-Jae Choi,, Seong-Bo Kim,Hai-SongBae, and Jeong-Sik Han Department of Chemical Engineering, Dong-Yang University, Kyoungbuk, 750-711, Korea *Department of Chemical Engineering,

More information

Chapter 15 REVIEW. Part 1. Part 2

Chapter 15 REVIEW. Part 1. Part 2 () Yes, the evidence from many systems shows that the rate at which reactant particles are colliding to form products is equal to the rate at which products are colliding to form reactants. (3) When a

More information

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces

Solutions. Chapter 14 Solutions. Ion-Ion Forces (Ionic Bonding) Attraction Between Ions and Permanent Dipoles. Covalent Bonding Forces Solutions Chapter 14 1 Brief Review of Major Topics in Chapter 13, Intermolecular forces Ion-Ion Forces (Ionic Bonding) 2 Na + Cl - in salt These are the strongest forces. Lead to solids with high melting

More information

MODULE TITLE : MASS AND ENERGY BALANCE TOPIC TITLE : ENERGY BALANCE TUTOR MARKED ASSIGNMENT 3

MODULE TITLE : MASS AND ENERGY BALANCE TOPIC TITLE : ENERGY BALANCE TUTOR MARKED ASSIGNMENT 3 THIS BOX MUST BE COMPLETED Student Code No.... Student's Signature... Date Submitted... Contact e-mail... MODULE TITLE : MASS AND ENERGY BALANCE TOPIC TITLE : ENERGY BALANCE TUTOR MARKED ASSIGNMENT 3 NAME...

More information

Energy and Energy Balances

Energy and Energy Balances Energy and Energy Balances help us account for the total energy required for a process to run Minimizing wasted energy is crucial in Energy, like mass, is. This is the Components of Total Energy energy

More information

Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 12 Properties of Solutions

Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 12 Properties of Solutions Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] Chapter 12 Properties of Solutions Section 12 1: The Nature of Aqueous Solutions 1) Sec 12 1.1 Mixtures of Two Liquids When two liquids

More information

Topic 5: Energetics. Heat & Calorimetry. Thursday, March 22, 2012

Topic 5: Energetics. Heat & Calorimetry. Thursday, March 22, 2012 Topic 5: Energetics Heat & Calorimetry 1 Heat is energy that is transferred from one object to another due to a difference in temperature Temperature is a measure of the average kinetic energy of a body

More information

CHEMISTRY - UTEXAS 1E CH.7 - PHYSICAL EQUILIBRIA.

CHEMISTRY - UTEXAS 1E CH.7 - PHYSICAL EQUILIBRIA. !! www.clutchprep.com CONCEPT: PHASE DIAGRAMS Under appropriate conditions of pressure and temperature, most substances can exist in 3 states of matter:, and. Microscopic Explanation for the Behavior of

More information

Supporting Information

Supporting Information Supporting Information Page 2-4. The B3LYP optimized gas phase structures of [Bmim + Cl - ] Pd complex. Page 5-10. The B3LYP optimized gas phase structures of [Bmim + Cl - ] Pd 2 complex. Page 11-14. The

More information

Problem Set #10 Assigned November 8, 2013 Due Friday, November 15, 2013 Please show all work for credit To Hand in

Problem Set #10 Assigned November 8, 2013 Due Friday, November 15, 2013 Please show all work for credit To Hand in Problem Set #10 Assigned November 8, 2013 Due Friday, November 15, 2013 Please show all work for credit To Hand in 1. 2. 1 3. 4. The vapor pressure of an unknown solid is approximately given by ln(p/torr)

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/10/eaas9319/dc1 Supplementary Materials for Transformation of alcohols to esters promoted by hydrogen bonds using oxygen as the oxidant under metal-free conditions

More information

Energy Balances. F&R Chapter 8

Energy Balances. F&R Chapter 8 Energy Balances. F&R Chapter 8 How do we calculate enthalpy (and internal energy) changes when we don t have tabulated data (e.g., steam tables) for the process species? Basic procedures to calculate enthalpy

More information

Supporting Information for The Viscosity and Density of Ionic Liquid + Tetraglyme Mixtures and the Effect of Tetraglyme on CO2 Solubility.

Supporting Information for The Viscosity and Density of Ionic Liquid + Tetraglyme Mixtures and the Effect of Tetraglyme on CO2 Solubility. Supporting Information for The Viscosity and Density of Ionic Liquid + Tetraglyme Mixtures and the Effect of Tetraglyme on CO2 Solubility. Joseph J. Fillion, Joshua Edward Bennett and Joan F. Brennecke*

More information

Warm up. 1. What is a solution? 2. What is a solute? 3. What is a solvent?

Warm up. 1. What is a solution? 2. What is a solute? 3. What is a solvent? Warm up 1. What is a solution? 2. What is a solute? 3. What is a solvent? Solutions Chapter 12.2 Solubility The amount of substance that can dissolve at a given temperature to produce a saturated solution

More information

Chapter 12. Preview. Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes

Chapter 12. Preview. Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes Preview Objectives Solutions Suspensions Colloids Solutes: Electrolytes Versus Nonelectrolytes Section 1 Types of Mixtures Objectives Distinguish between electrolytes and nonelectrolytes. List three different

More information

Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution.

Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution. Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution. 2. Which type of solid solution will result by mixing two solid components with large difference

More information

Phase Equilibrium of Ionic Liquid/Organic/CO 2 Systems

Phase Equilibrium of Ionic Liquid/Organic/CO 2 Systems Phase Equilibrium of Ionic Liquid/Organic/CO 2 Systems Bang-Hyun Lim, Hoa Van Nguyen, and Jae-Jin Shim* School of Display and Chemical Engineering, Yeungnam University, 214-1 Dae-dong, Gyeongsan, Gyeongbuk

More information

Introduction to Heat and Mass Transfer

Introduction to Heat and Mass Transfer Introduction to Heat and Mass Transfer Week 16 Merry X mas! Happy New Year 2019! Final Exam When? Thursday, January 10th What time? 3:10-5 pm Where? 91203 What? Lecture materials from Week 1 to 16 (before

More information

TOPIC: Conceptual Flowsheet for Production of Benzene from Toluene. Proposed Solution:

TOPIC: Conceptual Flowsheet for Production of Benzene from Toluene. Proposed Solution: Norwegian University of Science and Technology Course: Energy and Process Department of Energy and Process Engineering No.: TEP 4230 Trondheim, 17.09.04, T. Gundersen Part: Production Systems Task: 5 Year:

More information

PILOT SCALE RECTIFICATION COLUMN MODELING AND DESIGN FOR THE SEPARATION OF FATTY ACID MIXTURE

PILOT SCALE RECTIFICATION COLUMN MODELING AND DESIGN FOR THE SEPARATION OF FATTY ACID MIXTURE PILOT SCALE RECTIFICATION COLUMN MODELING AND DESIGN FOR THE SEPARATION OF FATTY ACID MIXTURE Chow A. W. 1, Foo C. Y. 2, R. M. Yunus 1, R. A. Aziz 2, Z. A. Manan 1 1 Chemical Engineering Department 2 Chemical

More information

INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works?

INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works? HEAT EXCHANGERS 1 INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants How it works? 2 WHAT ARE THEY USED FOR? Classification according to service. Heat

More information

Functional Genomics Research Stream. Lecture: February 17, 2009 Masses, Volumes, Solutions & Dilutions

Functional Genomics Research Stream. Lecture: February 17, 2009 Masses, Volumes, Solutions & Dilutions Functional Genomics Research Stream Lecture: February 17, 2009 Masses, Volumes, Solutions & Dilutions Agenda Lab Work: Last Week New Equipment Solution Preparation: Fundamentals Solution Preparation: How

More information