Analysis of Free Ammonia in Chloramination Applications Using Lab Method and the APA6000

Size: px
Start display at page:

Download "Analysis of Free Ammonia in Chloramination Applications Using Lab Method and the APA6000"

Transcription

1 Analysis of Free Ammonia in Chloramination Applications Using Lab Method and the APA6000 Chloramination Chemistry Knowledge of chloramination chemistry is required to understand the rationale behind the need to test for free ammonia in chloramination applications. Free ammonia is defined as the chemical species present in the water either as ammonia, NH 3, or as the ammonium ion, NH 4 +, depending upon the ph of the sample matrix. With the promulgation of the D/DBP rule, the use of chloramines as a drinking water disinfectant has increased. Plants needing to reduce their levels of disinfection byproducts (DBPs) may choose chloramines as an alternative disinfectant. Chloramines form fewer DBPs than free chlorine. These DBPs are formed when natural organic matter, usually referred to as NOM, reacts with chlorine. Chloroform is the most commonly produced DBP. Roughly 35% of drinking water facilities in the United States now use chloramines as a disinfectant. Chloramines are formed when chlorine and ammonia are added to water and allowed to react. This process of forming chloramines is called chloramination. Chlorine and ammonia are added to the water to maintain a Cl 2 :N ratio of approximately 5:1 by weight. This is the theoretical ratio to optimize the formation of monochloramine, the preferred chloramine species. Cl 2 + NH 3 NH 2 Cl + HCl 2 x MW of Cl = 2 x = 70.9; MW of N = 14; Cl 2 :N = 70.9:14 = 5:1 ratio However, the feed ratio of chlorine to ammonia is seldom at a ratio of 5:1 as the chlorine demand of the water and the ammonia already present in the source water all must be accounted for in setting the chlorine and ammonia feed rates. In practice, the chlorine and ammonia ratio is adjusted until the required monochloramine concentration is reached. This will vary from facility to facility according to the individual water characteristics; hence, the need for good analytical tools is required to optimize the process. Initially, chlorine reacts with the ammonia to form monochloramine. As chlorine addition continues, monochloramine continues to form until all of the ammonia present has been converted to monochloramine. At this point, additional chlorine added reacts with the monochloramine to form dichloramine, nitrogen trichloride, and various chlorinated organic nitrogen compounds. As dichloramine and nitrogen trichloride form, the addition of chlorine continues to oxidize these compounds to nitrogen gases. The point at which all chloramines are converted to nitrogen gas is the breakpoint (9:1 Cl 2 :N ratio). After the breakpoint, additional chlorine added to the water persists only as free chlorine.

2 The disinfection properties of dichloramine are similar to those of monochloramine, which suggests that either the monochloramine or the dichloramine form would be acceptable for disinfection. While this is true, the formation of dichloramine should be avoided in order to control taste and odor problems and to reduce the costs associated with the over-feeding of chlorine. For optimal disinfection, most drinking water facilities try to remain just shy of the first peak on the chloramination curve. See Figure 2. At this point on the curve, there is maximum formation of monochloramine with a low concentration of ammonia remaining in solution. It is important to minimize the ammonia level to as close to zero as possible in order to maintain nitrification control throughout the distribution system. It is important to note that different species only exist at specific points throughout the chloramination curve. The two major species of importance in chloramination monitoring and control are ammonia and monochloramine. A graph of which chemical species are present at the various stages throughout the chloramination process is also attached. See Figure 2. Ammonia begins at a given concentration. As ammonia reacts with chlorine to form monochloramine, the free ammonia concentration decreases. At the top of the first peak, all of the ammonia has been converted to monochloramine, and ammonia is no longer present in the system. At the beginning of the chlorine addition, no monochloramine exists in solution. As chlorine is added, it reacts with the free ammonia to form monochloramine. The monochloramine concentration increases until the top of the first peak, where all ammonia has been converted to monochloramine. At this point, the monochloramine concentration decreases as additional chlorine reacts with monochloramine to form dichloramine. Chloramination Control Monitoring the various chemical species present throughout the process can help optimize the chloramination process. Typically monitored species include total chlorine, monochloramine, and ammonia. Monitoring methods for each of these species are discussed below. Chlorine Alone, a total chlorine value does not provide meaningful information regarding chloramination control or guidance for optimization. For example, a 1 mg/l total chlorine value could indicate one of three possible locations on the chloramination curve in Figure 1: sub-optimal chlorine feed, overfeed of chlorine resulting in the formation of dichloramine and nitrogen trichloride, or breakpoint chlorination. The total chlorine value would not guide an operator as to whether he should add more chlorine or more ammonia to increase to his target disinfectant level of 2 mg/l. However, a total chlorine measurement used in conjunction with free ammonia and monochloramine measurements provides a more complete picture of the chloramination process and where he is at on the chlorine breakpoint curve. It is the ability to monitor free ammonia that gives an operator the information to determine where he is at on the breakpoint curve.

3 Total chlorine can be monitored using any of Hach s DPD chemistries, amperometric titration, or the CL17 on-line chlorine analyzer. The primary value for determining the total chlorine concentration is that this value is used to report residual disinfectant levels for regulatory reporting purposes. Free chlorine monitoring is not ordinarily recommended for chloramination control. Free chlorine will only be present after the breakpoint in the chloramination curve. This is well beyond the optimum control point. Also, the high levels of chloramines used in chloramination can interfere with the DPD Free Chlorine chemistry and will cause steadily increasing values in the free chlorine reading. This can partially be avoided by reading the free chlorine results within ten seconds of reagent addition. It should be noted that free chlorine residuals occurring prior to the breakpoint have been reported in the literature. These occurrences can be attributed to ph and temperature conditions that slow the chlorine/ammonia reaction, insufficient mixing that causes stratifying or dead zones, and erroneous interpretation of free chlorine values in not recognizing the chloramine breakthrough in the free chlorine test method. Free chlorine measurements are useful when one is purposely trying to reach breakpoint conditions. Breakpoint chlorination is used to treat nitrification episodes in distribution system lines, storage reservoirs and at booster stations where chloraminated water concentrations are boosted with free chlorine only. Free chlorine measurements are also used when utilities periodically switch back to free chlorine for a limited number of weeks to burn-out the entire distribution system that may have nitrification issues. The free chlorine value will be generally stable when read before one minute in these types of sample waters., in conjunction with free ammonia measurements, is another useful value in chloramination monitoring. In the lab method, Hach s Monochlor-F chemistry was developed specifically for monitoring monochloramine in chloramination applications. This chemistry is specific for the monochloramine species, and utilizes the Berthelot reaction sequence, which results in the formation of a colored indophenol complex. The APA6000 and Free Ammonia analyzer provides on-line monitoring capability for monochloramine. The APA6000 utilizes an all-liquid form of the chemistry, which is chemically equivalent to the indophenol laboratory chemistry. The APA6000 s analysis method will be described in detail later in this document. Ammonia If only one measurement could be used to monitor chloramination, that measurement would be ammonia. Ammonia is a very useful measurement in controlling chloramination. This is because complete formation of monochloramine results when all of the free ammonia in the system has been converted to monochloramine. Optimal feed

4 rates and production of monochloramine result in a small amount of residual ammonia, usually less than 0.1 mg/l NH 3 -N. Higher concentrations of ammonia present in the system may indicate sub-optimal chlorine feed and a propensity for biofilm growth and nitrification in the distribution system. Free ammonia is the food source for bacterial regrowth in the distribution system. This is the main driver for keeping the concentration as close to zero as possible. Absence of ammonia indicates a possible overfeed of chlorine and the presence of dichloramine. For laboratory determination in a chloramination application, free ammonia can be monitored using the new Free Ammonia colorimetric method or by using an ammonia ion selective electrode (ISE). The Free Ammonia colorimetric method is used in combination with the Monochlor F test for monochloramine. A sample is taken and split. Hypochlorite is added to one sample. This converts the free ammonia present into monochloramine. Both samples are then analyzed for monochloramine using the Monochlor F reagent. Free ammonia is determined by difference between the two samples. In the ISE method, potassium hydroxide is added to a sample to convert all ammonia present as ammonia, NH 3, or as the ammonium ion, NH 4 +, into ammonia. The ammonia then diffuses through a membrane on the ISE probe and is measured. It should be noted that the Hach ISE method for ammonia using the Hach ionic strength adjuster with the colorimetric indicator should not be used. The indicator reacts with the monochloramine to produce additional ammonia and will give high results. The ISE procedure should be run using potassium hydroxide only to adjust the sample ph. These are the only direct ammonia methods with which chloramines do not interfere. Chloramines interfere directly with both the Nessler, salicylate and phenate chemistries for ammonia and cannot be used to test for free ammonia. The APA6000 /Free Ammonia analyzer provides continuous free ammonia monitoring capability. The analyzer measures monochloramine present in the sample directly using a liquid reagent similar in composition to the lab method. To measure free ammonia, the sample is spiked with hypochlorite. The addition of hypochlorite converts the free ammonia to additional monochloramine. All of the monochloramine in the spiked sample is determined, effectively giving a total monochloramine value. The initial monochloramine is subtracted from the total monochloramine value. The free ammonia is the difference between the two. This is very similar to what is happening in the laboratory Monochlor F and Free Ammonia chemistry. What can we expect when comparing the laboratory method vs. the on-line analyzer method? Monochlor F and Free Ammonia Lab Method vs. APA6000 The reaction in the lab method for monochloramine and free ammonia is chemically equivalent to the method used on the APA6000. The major difference is the physical form of the reagent. is determined directly using the indophenol chemistry. A water sample is taken and split into two samples. One sample is spiked

5 with hypochlorite to convert the free ammonia present into monochloramine. This sample will have a monochloramine concentration equal to the sum of the free ammonia concentration plus the original monochloramine concentration in the sample. The second sample will have only the original monochloramine concentration. Both samples are then analyzed for monochloramine using the Monochlor F Reagent supplied in powder form. The difference between the two samples is the free ammonia concentration. Although the theory is quite simple, conversion of free ammonia into monochloramine is a challenge. A complete conversion of the free ammonia into monochloramine is extremely important in order to obtain an accurate free ammonia concentration. As observed on the chloramination curve in Figure 2, a narrow ratio of chlorine to ammonia (approximately 5:1 Cl 2 :N) is required to completely convert all of the ammonia in a sample to monochloramine. To theoretically optimize this conversion, implies that one already knows the chlorine and ammonia nitrogen concentrations. Since ammonia nitrogen is the target analyte and the concentration is unknown, the strategy is to target a concentration range and optimize the chlorine dose for that range. The mg/l ammonia nitrogen is the targeted optimum range of the lab method. Chlorine must be added reproducibly and at the optimum concentration for best results. The chlorine solution is packaged in a high-density poly bottle and dispensed by adding drops from the dispenser tip. Inaccurate measurements can result due to overchlorination or underchlorination caused by addition of the hypochlorite solution. Slight variations in drop size and changes in chlorine concentration can contribute to variable results. The bottle should be held in a completely vertical position to give a reproducible drop size. This chlorine solution, called the Free Ammonia Reagent Solution, should always be kept capped, stored in a cool environment and reagent expiration dates should be closely monitored. The indicator in the Monochlor F is specific to monochloramine. If overchlorination occurs (chlorine reacting with the monochloramine already present) and dichloramine or nitrogen trichloride are formed, these species will not be measured colorimetrically. The total monochloramine value will be low, and an inaccurate free ammonia measurement will result. Also, an incomplete conversion of ammonia to monochloramine caused by underchlorination will result in a low total monochloramine value and inaccurate free ammonia measurement. Additional sources of error may occur due to the temperature sensitivity of the chemical reaction. The temperature compensation chart should be closely observed when running the test. or ammonia loss can also occur in sample handling and in sampling. It is important that a composite sample be taken and then split as directed in the procedure. Hach Company has observed situations when the sampling site was at a location where the ammonia/chlorine reaction was not complete and taking two separate samples gave variable results in test reproducibility studies. Best results are also obtained when one sample is analyzed at a time instead of trying to do a series of samples. The sample should be capped and shaken immediately after the addition of the Monochlor F reagent. This sometimes does not occur when a series of samples are being run. Also, a

6 Hardness Treatment Reagent is available for lab samples giving a slight turbidity in certain matrices containing high hardness and alkalinity. This has only been observed in a limited number of samples. No similar reagent exists for the APA6000 nor has it ever been documented that a turbidity problem exists with the APA6000 reagents. The lab method can be used to optimize plant chloramination operations. The method is much simpler than the lab ISE method and can be used to check free ammonia levels at various sites within the plant and to track nitrification issues in distribution system and at storage reservoirs. The method can also serve as a back-up method for the APA6000 analyzer. It is a lower cost alternative for users that do not have the resources to purchase or maintain the APA6000. Because the APA6000 /Free Ammonia analyzer is automated, is temperature controlled and has reproducible reagent dispensation, it can be expect to have improved precision as compared to the bench method for chloramination monitoring. Further experiments have shown that accurate free ammonia results can be obtained if the amount of hypochlorite added can be optimized and controlled. This is what the APA6000 analysis method entails. Although the APA6000 analysis method also involves spiking a sample with hypochlorite, what differentiates the APA6000 from the lab method is that the strength of the hypochlorite solution is constantly monitored. The ammonia standards are periodically spiked with hypochlorite to ensure complete formation of monochloramine. If it is determined that the hypochlorite solution has degraded to the point that complete formation of monochloramine does not occur, the analyzer displays an error message. Also, the amount of hypochlorite added to the sample is optimized for the free ammonia measurement, and the ph of the reaction is tightly controlled to minimize formation of dichloramine. The analyzer is an excellent choice for monitoring monochloramine and free ammonia at a fixed site. The analyzer provides continuous results that can be used to identify trends and concentration changes that are occurring at the analysis site under controlled reproducible analysis conditions. The analyzer can be used to signal feed pumps as necessary to keep the monochloramine and free ammonia values within the desired operating ranges. As has been found with the lab method, it is important to insure that the fixed site chosen for the analyzer be a site where the chlorine/ammonia reaction is complete and where sample is well mixed and completely blended. The performance of the APA relative to the new lab method is very comparable for the monochloramine values over the range of both products. The APA is optimized for a wider range of free ammonia values (0-2 mg/l NH 3 -N) and the lab method is optimized for a tighter range (0-0.5 mg/l NH 3 -N). The new lab method has superior accuracy at the low end of the range. The APA and the new lab method read within ppb NH 3 -N at 100 ppb N on laboratory samples (e.g. lab method reads 100 ppb NH 3 -N versus APA value of ppb NH 3 -N). The new lab method is a much simpler method than the available bench method for the APA if customers would like to verify performance of the APA using the new lab method.

7 At higher levels of free ammonia ( ppb NH 3 -N) the APA and new lab method are comparable in terms of accuracy. The precision of the APA is generally superior to the new lab method. Most customers are interested in trending the free ammonia values both products are very adequate for trending the free ammonia values. The table below summarizes the analysis methods that can be used for the determination of free ammonia, monochloramine, and chlorine in the chloramination process. Analyte Method Chloramination Suitability? Free Ammonia Nessler Method 8038 NO interference Salicylate Method NO interference Free Ammonia Method and Method YES ISE Method YES Monochlor-F Methods & and Free Ammonia Method YES NO (Obsolete) Chlorine Total DPD Methods 8167 & YES Chlorine Free DPD Methods 8021 & NO interference; use for breakpoint chlorination only.

8 Three Equivalent Chlorine Concentrations on Breakpoint Curve Figure 1.

9 Chlorine Measured Chlorine Measured Figure 2. Chloramination Ratios and Chloramination Species Chloramination I II Free Chlorination III 5:1 Cl 2 :N Ratio Breakpoint 9:1 Cl 2 :N Ratio Chlorine Added Chloramination I II Free Chlorination III Total Chlorine Free Chlorine Free Ammonia Chlorine Added

DBP Control: Chloramine Chemistry. Chris Griffin Hach Company

DBP Control: Chloramine Chemistry. Chris Griffin Hach Company DBP Control: Chloramine Chemistry Chris Griffin Hach Company 1 BEFORE WE BEGIN 2 Who currently Uses Chlorine only? Before we begin. Uses Chloramination at their water plant or in distribution? Uses Chloramination

More information

CHLORAMINATION AND CHLORAMINE ANALYSIS SW AWWA 2014

CHLORAMINATION AND CHLORAMINE ANALYSIS SW AWWA 2014 CHLORAMINATION AND CHLORAMINE ANALYSIS SW AWWA 2014 COMBINED CHLORINE - CHLORAMINATION Chlorine (HOCl and OCl - ) reacts with ammonia to form chloramines, commonly referred to as combined chlorine The

More information

Understanding Chlorine Measurement. Rebecca Luedee Environmental Sales

Understanding Chlorine Measurement. Rebecca Luedee Environmental Sales Understanding Chlorine Measurement Rebecca Luedee Environmental Sales Introduction to Chlorine Reaction with Water Forms hydrochloric (HCl) and hypochlorous (HOCl) acids: Cl 2 + H 2 O HOCl + HCl HOCl dissociates

More information

TCEQ Directed Assistance Module (DAM) No. 5: Understanding and Controlling the Chloramination Process

TCEQ Directed Assistance Module (DAM) No. 5: Understanding and Controlling the Chloramination Process TCEQ Directed Assistance Module (DAM) No. 5: Understanding and Controlling the Chloramination Process Presented at the West Harris County Regional Water Authority Chloramines 101 Workshop July 10, 2008

More information

ChemScan PROCESS ANALYZERS

ChemScan PROCESS ANALYZERS ChemScan PROCESS ANALYZERS, Applied Spectrometry Associates, Inc. www.chemscan.com ChemScan Application Summary #54 Peak Point Chloramination Control Rev. 9/ Over the past few years the EPA has tightened

More information

Science of Chloramination. Maine Water Utilities Association June 8, 2010

Science of Chloramination. Maine Water Utilities Association June 8, 2010 Science of Chloramination June 8, 2010 What is chloramination? Chloramination is the process of disinfecting water using chloramines, compounds of chlorine and ammonia. The use of chloramines in the United

More information

Technical Publication. Project Report and Data Summary. Evaluation of On-Line Analyzer System for Potable Water Chloramination Monitoring and Control

Technical Publication. Project Report and Data Summary. Evaluation of On-Line Analyzer System for Potable Water Chloramination Monitoring and Control Technical Publication Project Report and Data Summary Evaluation of On-Line Analyzer System for Potable Water Chloramination Monitoring and Control City of Milwaukee Howard Avenue WTP ASA Publication #78

More information

Chloramine (Mono) and Nitrogen, Free Ammonia

Chloramine (Mono) and Nitrogen, Free Ammonia Chloramine (Mono) and Nitrogen, Free Ammonia DOC316.53.01016 Indophenol Method 1 Method 10200 0.04 to 4.50 mg/l Cl 2 0.01 to 0.50 mg/l NH 3 N Powder Pillows Scope and application: For the determination

More information

Chlorine, Free and Total, High Range

Chlorine, Free and Total, High Range Chlorine, Free and Total, High Range DOC316.53.01490 USEPA DPD Method 1 Method 10069 (free) 10070 (total) 0.1 to 10.0 mg/l Cl 2 (HR) Powder Pillows Scope and application: For testing higher levels of free

More information

Chlorine, Free and Total, High Range

Chlorine, Free and Total, High Range Chlorine, Free and Total, High Range DOC316.53.01449 USEPA DPD Method 1 Method DPD 0.1 to 8.0 mg/l Cl 2 Powder Pillows Scope and application: For testing residual chlorine and chloramines in water, wastewater,

More information

CHLORINE, FREE, Ultra-high Range ( mg/l Cl 2 ) Method 10069

CHLORINE, FREE, Ultra-high Range ( mg/l Cl 2 ) Method 10069 CHLORINE, FREE, Ultra-high Range (0.0 10.0 mg/l Cl 2 ) Method 10069 DPD Method USEPA accepted for reporting drinking water analyses * For testing higher levels of free chlorine (hypochlorous acid and hypochlorite)

More information

DPD Test N Tube Method *

DPD Test N Tube Method * CHLORINE, FREE (0 to 5.00 mg/l) DPD Test N Tube Method * Method 10102 For water, wastewater, and seawater 1. Enter the stored program number for Test N Tube free chlorine (Cl 2 ). Press: PRGM The display

More information

CHLORINE, TOTAL (0 to 4.00 mg/l)

CHLORINE, TOTAL (0 to 4.00 mg/l) CHLORINE, TOTAL (0 to 4.00 mg/l) DOC316.53.01261 For water, wastewater, and seawater Method 10250 DPD Method Powder Pillows USEPA accepted for reporting water and wastewater analyses * Note: This product

More information

CEE 371 Water and Wastewater Systems

CEE 371 Water and Wastewater Systems Updated: 21 November 2009 CEE 371 Water and Wastewater Systems Print version Lecture #14 Drinking Water Treatment: Chlorination Reading: Chapter 7, pp.233-238, 259-262 David Reckhow CEE 371 L#14 1 Forms

More information

Science of Chloramination. Maine Water Utilities Association Michael Koza, Portland Water District June 2010

Science of Chloramination. Maine Water Utilities Association Michael Koza, Portland Water District June 2010 Science of Chloramination Michael Koza, Portland Water District June 2010 Chloramination The process of combining chlorine and ammonia to create a combined form of chlorine for drinking water disinfection

More information

Disinfection Overview. Learning Objectives. Topics to be Covered. Be able to discuss the purpose and types of disinfection

Disinfection Overview. Learning Objectives. Topics to be Covered. Be able to discuss the purpose and types of disinfection Disinfection Overview Workshop developed by RCAP/AWWA and funded by the USEPA Learning Objectives Be able to discuss the purpose and types of disinfection Be able to discuss the basics of chlorination

More information

Method to 0.50 mg/l NH 3 N Powder Pillows

Method to 0.50 mg/l NH 3 N Powder Pillows , 8155 Salicylate Method 1 Scope and Application: For water, wastewater and seawater 1 Adapted from Clin. Chim. Acta., 14, 403 (1966) DOC316.53.01077 Method 8155 0.01 to 0.50 mg/l NH 3 N Powder Pillows

More information

Method to 0.50 mg/l NH 3 N Powder Pillows

Method to 0.50 mg/l NH 3 N Powder Pillows , 8155 Salicylate Method 1 Scope and Application: For water, wastewater and seawater 1 Adapted from Clin. Chim. Acta., 14, 403 (1966) DOC316.53.01077 Method 8155 0.01 to 0.50 mg/l NH 3 N Powder Pillows

More information

Method (0.04 to 4.50 mg/l Cl 2 ) Powder Pillows

Method (0.04 to 4.50 mg/l Cl 2 ) Powder Pillows Chlorine Free, Indophenol, 10241 Indophenol 1 1 Patent pending. DOC316.53.01256 Method 10241 (0.04 to 4.50 mg/l Cl 2 ) Powder Pillows Scope and Application: For determining residual free chlorine levels

More information

Nitrogen, Ammonia. Test Preparation. Powder Pillows Method Method 8155 Salicylate Method 1 Powder Pillows

Nitrogen, Ammonia. Test Preparation. Powder Pillows Method Method 8155 Salicylate Method 1 Powder Pillows FILL LINE Method 8155 Salicylate Method 1 Powder Pillows Scope and Application: For water, wastewater, and seawater 1 Adapted from Clin. Chim. Acta., 14, 403 (1966) (0.01 to 0.50 mg/l NH 3 N) Test Preparation

More information

Chlorine, Free and Total, Low Range

Chlorine, Free and Total, Low Range Chlorine, Free and Total, Low Range DOC316.53.01450 USEPA DPD Method 1 Method 8021 (free) 8167 (total) 0.02 to 2.00 mg/l Cl 2 (LR) Powder Pillows or AccuVac Ampuls Scope and application: For testing residual

More information

Disinfection, Chlorination and Oxidation. Daniel B. Stephens & Associates, Inc.

Disinfection, Chlorination and Oxidation. Daniel B. Stephens & Associates, Inc. Disinfection, Chlorination and Oxidation Chlorination/Disinfection Glossary Bacteria: living single-celled microscopic organisms having characteristics of both plants and animals; often useful but may

More information

Chlorine, Total. USEPA DPD Method 1 Method to mg/l as Cl 2 Chemkey Reagents. Test preparation. Before starting.

Chlorine, Total. USEPA DPD Method 1 Method to mg/l as Cl 2 Chemkey Reagents. Test preparation. Before starting. Chlorine, Total DOC316.53.01497 USEPA DPD Method 1 Method 10260 0.04 to 10.00 mg/l as Cl 2 Chemkey Reagents Scope and application: For drinking water. This product has not been evaluated to test for chlorine

More information

Low cost, rapid and in situ accurate quantification of chloramines and ammonia

Low cost, rapid and in situ accurate quantification of chloramines and ammonia Low cost, rapid and in situ accurate quantification of chloramines and ammonia National Environmental Monitoring Conference 2018 Merwan Benhabib, PhD VP Engineering Chlorine + Ammonia Rate of formation

More information

CHLORINATION, CHLORAMINATION AND CHLORINE MEASUREMENT

CHLORINATION, CHLORAMINATION AND CHLORINE MEASUREMENT CHLORINATION, CHLORAMINATION AND CHLORINE MEASUREMENT By Terry L. Engelhardt, Application Development Manager, Drinking Water Vadim B. Malkov, PhD, Product Applications Manager, Process Instrumentation

More information

Trihalomethane Formation Potential (THMFP)

Trihalomethane Formation Potential (THMFP) Trihalomethane Formation Potential (THMFP) DOC316.53.01147 THM Plus Method 1 Method 10224 Scope and application: To determine the potential of potable source waters that form trihalomethanes and other

More information

Paper 4.3. Introduction

Paper 4.3. Introduction Paper 4.3 Removal of free and combined chlorine at GAC surfaces and impact on pool water quality Bertram Skibinski, PhD student, Susanne Müller, PhD student and Wolfgang Uhl, Chairholder, Water Supply

More information

Salicylate Method Method HR (2 to 47 mg/l NH 3 N) TNTplus 832

Salicylate Method Method HR (2 to 47 mg/l NH 3 N) TNTplus 832 , TNTplus 832, 10205 DOC316.53.01083 Salicylate Method Method 10205 HR (2 to 47 mg/l NH 3 N) TNTplus 832 Scope and Application: For surface waters, municipal and industrial wastewaters. Test preparation

More information

Nitrogen, Total Inorganic

Nitrogen, Total Inorganic Nitrogen, Total Inorganic DOC316.53.01090 Titanium Trichloride Reduction Method Method 10021 0.2 to 25.0 mg/l N Test N Tube Vials Scope and application: For water, wastewater and seawater. Test preparation

More information

Glossary of Common Laboratory Terms

Glossary of Common Laboratory Terms Accuracy A measure of how close a measured value is to the true value. Assessed by means of percent recovery of spikes and standards. Aerobic Atmospheric or dissolved oxygen is available. Aliquot A measured

More information

Do Cation Exchange Systems Affect the Chlorination Process? Presented By: Jeffrey W. Freeman, P.E., CFM, LEED AP Engineering Enterprises, Inc.

Do Cation Exchange Systems Affect the Chlorination Process? Presented By: Jeffrey W. Freeman, P.E., CFM, LEED AP Engineering Enterprises, Inc. Do Cation Exchange Systems Affect the Chlorination Process? Presented By: Jeffrey W. Freeman, P.E., CFM, LEED AP Engineering Enterprises, Inc. March 22, 2016 Presentation Overview Ebony-Ammonia & Ammonium-

More information

Meinsberger Chlorine Measuring

Meinsberger Chlorine Measuring Januar 2014 Meinsberger Chlorine Measuring TO KNOW WHAT S INSIDE 1 Applications Primary: drinking water Drinking water plants Pump stations Water authorities Water- & environmentmonitoring companies Construction

More information

Parameter Method Range # of Tests Code Page. Acidity (as % Oleic acid) titration % acidity 6 HI

Parameter Method Range # of Tests Code Page. Acidity (as % Oleic acid) titration % acidity 6 HI Single Parameter Test Kits Parameter # of Tests Code Page Acidity Acidity (as % Oleic acid) 0.00-1.00 % acidity 6 HI387.8 Acidity (as CaCO₃) Methyl/Orange and Total 0-100 mg/l (ppm); 0-500 mg/l (ppm) 110

More information

CHLORINE THEORY & MEASUREMENT

CHLORINE THEORY & MEASUREMENT CHLORINE THEORY & MEASUREMENT Introduction Chlorine, dissolved in liquid, is one of the most effective and economical germ-killers for the treatment of water to make it potable or safe to drink. Chlorine's

More information

CE 370. Disinfection. Location in the Treatment Plant. After the water has been filtered, it is disinfected. Disinfection follows filtration.

CE 370. Disinfection. Location in the Treatment Plant. After the water has been filtered, it is disinfected. Disinfection follows filtration. CE 70 Disinfection 1 Location in the Treatment Plant After the water has been filtered, it is disinfected. Disinfection follows filtration. 1 Overview of the Process The purpose of disinfecting drinking

More information

Persulfate Digestion Method Method to 150 mg/l N (HR) Test N Tube Vials

Persulfate Digestion Method Method to 150 mg/l N (HR) Test N Tube Vials Nitrogen, Total DOC316.53.01085 Persulfate Digestion Method Method 10072 2 to 150 mg/l N (HR) Test N Tube Vials Scope and application: For water and wastewater. Test preparation Instrument-specific information

More information

Persulfate Digestion Method Method to 25.0 mg/l N (LR) Test N Tube Vials

Persulfate Digestion Method Method to 25.0 mg/l N (LR) Test N Tube Vials Nitrogen, Total DOC316.53.01086 Persulfate Digestion Method Method 10071 0.5 to 25.0 mg/l N (LR) Test N Tube Vials Scope and application: For water and wastewater. Test preparation Instrument-specific

More information

Nitrogen, ammonia, colorimetry, salicylate-hypochlorite, automated-segmented flow

Nitrogen, ammonia, colorimetry, salicylate-hypochlorite, automated-segmented flow 1. Application Nitrogen, ammonia, colorimetry, salicylate-hypochlorite, automated-segmented flow Parameters and Codes: Nitrogen, ammonia, dissolved, I-2522-90 (mg/l as N): 00608 Nitrogen, ammonia, total-in-bottom-material,

More information

NITROGEN, AMMONIA, High Range, Test N Tube

NITROGEN, AMMONIA, High Range, Test N Tube NITROGEN, AMMONIA, High Range, Test N Tube Method 10031 (0 to 50 mg/l NH 3 -N) For water, wastewater, and seawater Salicylate Method * 1. Enter the stored program number for nitrogen, ammonia, high range

More information

ALLOWAY METHOD OUTLINE

ALLOWAY METHOD OUTLINE ALLOWAY METHOD OUTLINE Standard Laboratory Method SM4500-Cl -G Parameter Residual Chlorine & Free Chlorine Method DPD Colorimetric Test Kit Date Issued Originator: Section Supervisor: QA Manager Date:

More information

Russell D. Grubbs Water Utilities Manager City of Nacogdoches

Russell D. Grubbs Water Utilities Manager City of Nacogdoches Russell D. Grubbs Water Utilities Manager City of Nacogdoches Appreciation of where we are knowing where we have been 500 BC, Historical records show that the boiling of water had been recommended even

More information

FC80 Free Chlorine Analyzer ELECTRO-CHEMICAL DEVICES

FC80 Free Chlorine Analyzer ELECTRO-CHEMICAL DEVICES FC80 Free Chlorine Analyzer ELECTRO-CHEMICAL DEVICES FC80 System Configuration Free Chlorine Analyzer 1) Constant Head Flow Controller 2) S80- ph with Temperature Sensor 3) Free Chlorine Sensor (FCS) 4)

More information

Water Treatment Technology

Water Treatment Technology Lecture 8: Disinfection Water Treatment Technology Water Resources Engineering Civil Engineering ENGC 6305 Dr. Fahid Rabah PhD. PE. 1 Disinfection 1. Principles of Disinfection A. Definition of Disinfection

More information

Hach Method Spectrophotometric Measurement of Free Chlorine (Cl 2 ) in Finished Drinking Water

Hach Method Spectrophotometric Measurement of Free Chlorine (Cl 2 ) in Finished Drinking Water Hach Method 1041 Spectrophotometric Measurement of Free Chlorine (Cl ) in Finished Drinking Water Hach Company Method 1041 Revision 1. November 015 Spectrophotometric Measurement of Free Cl in Finished

More information

Scope and application: For water, wastewater and seawater. Distillation is required for wastewater and seawater.

Scope and application: For water, wastewater and seawater. Distillation is required for wastewater and seawater. Nitrogen, Ammonia DOC316.53.01078 USEPA 1 Nessler Method 2 Method 8038 0.02 to 2.50 mg/l NH 3 N Reagent Solution Scope and application: For water, wastewater and seawater. Distillation is required for

More information

The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer are indicated.

The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer are indicated. Chlorine L a) 0.02-4.0 mg/l Cl 2 DPD 101 CL6 Instrument specific information The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer

More information

Immediate Free Chlorine Correction for Fluctuating Flow & Changes in Water Quality. Sadiq Khan May 25th, 2016

Immediate Free Chlorine Correction for Fluctuating Flow & Changes in Water Quality. Sadiq Khan May 25th, 2016 Immediate Free Chlorine Correction for Fluctuating Flow & Changes in Water Quality Sadiq Khan May 25th, 2016 3 Main Current Methods Of Dosing Chlorine Manual dosing with adjustment based on sampling Online

More information

Peracetic Acid (PAA) and Hydrogen Peroxide (H 2 O 2 )

Peracetic Acid (PAA) and Hydrogen Peroxide (H 2 O 2 ) Peracetic Acid (PAA) and Hydrogen Peroxide (H 2 O 2 ) DOC316.53.01523 DPD Method Method 10290 0.10 to 10.00 mg/l PAA / 0.05 to 5.00 mg/l H 2 O 2 Powder Pillows Scope and application: For testing peracetic

More information

FC400G Free Available Chlorine Analyzer (Reagent-Free Type) 1. Overview Features What is Residual Chlorine...4

FC400G Free Available Chlorine Analyzer (Reagent-Free Type) 1. Overview Features What is Residual Chlorine...4 Technical Information FC400G Free Available Chlorine Analyzer (Reagent-Free Type) Contents 1. Overview...2 2. Features...3 3. What is Residual Chlorine...4 3.1 Definition of Residual Chlorine... 4 3.2

More information

Tetraphenylborate Method Method to 7.0 mg/l K Powder Pillows

Tetraphenylborate Method Method to 7.0 mg/l K Powder Pillows Potassium DOC316.53.01127 Tetraphenylborate Method Method 8049 0.1 to 7.0 mg/l K Powder Pillows Scope and application: For water, wastewater and seawater. Test preparation Instrument-specific information

More information

SECTION D.2 AMMONIA NITROGEN

SECTION D.2 AMMONIA NITROGEN SECTION D.2 AMMONIA NITROGEN CEDR Method Code: NH4F L01 a) Scope and Application i) This method describes the determination of low-level ammonia nitrogen concentrations in filtered samples taken from fresh

More information

Chlorine Disinfection. Sidney Innerebner, PhD, PE, CWP Indigo Water Group Littleton, Colorado

Chlorine Disinfection. Sidney Innerebner, PhD, PE, CWP Indigo Water Group Littleton, Colorado Chlorine Disinfection Sidney Innerebner, PhD, PE, CWP Indigo Water Group Littleton, Colorado Wastewater Exam Cram Disinfection is Awesome! Source: http://www.impatientoptimists.org/posts/2013/04/ltyphoidletsactnowtoprotectchildrenfromthis19thcenturydisease

More information

Chlorine disinfectant in the water industry

Chlorine disinfectant in the water industry Chlorine disinfectant in the water industry Based on its chemical characteristics and its reactivity response, chlorine is very well suited for disinfection of water and to prevent contamination with bacteria

More information

CEL 795- Water and Wastewater Treatment Unit Processes 1 st -Semester Disinfection Dr. Arun Kumar

CEL 795- Water and Wastewater Treatment Unit Processes 1 st -Semester Disinfection Dr. Arun Kumar CEL 795- Water and Wastewater Treatment Unit Processes 1 st -Semester 2011-2012 Disinfection Dr. Arun Kumar (arunku@civil.iitd.ac.in) Courtesy: Dr. Irene Xagoraraki (MSU, USA) Disinfection Water is often

More information

Phosphorus, Total. USEPA 1 PhosVer 3 with Acid Persulfate Digestion Method Method to 3.50 mg/l PO. Test preparation

Phosphorus, Total. USEPA 1 PhosVer 3 with Acid Persulfate Digestion Method Method to 3.50 mg/l PO. Test preparation Phosphorus, Total DOC316.53.01121 USEPA 1 PhosVer 3 with Acid Persulfate Digestion Method Method 8190 0.06 to 3.50 mg/l PO 3 4 (0.02 to 1.10 mg/l P) Test N Tube Vials Scope and application: For water,

More information

Factors affecting effective disinfection include turbidity and resistant organisms

Factors affecting effective disinfection include turbidity and resistant organisms DISINFECTION! refers to operations in water treatment that kills or renders harmless pathogenic microorganisms but does not refer to sterilization.! sterilization; the complete 40 30 destruction of all

More information

Process Instrumentation analyzers

Process Instrumentation analyzers PCA300 Family Chlorine, ph, ORP and Temperature Analyzers Backlit LCD display Nema 4X protection.10 DPD chlorine measurement method Colorimeter diagnostics Reagent reminder Amplified ph/temperature probe

More information

Properties of DISINFECTANTS

Properties of DISINFECTANTS Properties of DISINFECTANTS Disinfectant Requirements Disinfectants used in potable water must meet the following requirements: Provide Pathogen-Free Water Minimize DBP Formation Provide Residual Disinfectant

More information

Mercuric Thiocyanate Method Method to 25.0 mg/l Cl Reagent Solution

Mercuric Thiocyanate Method Method to 25.0 mg/l Cl Reagent Solution Chloride DOC316.53.01017 Mercuric Thiocyanate Method Method 8113 0.1 to 25.0 mg/l Cl Reagent Solution Scope and application: For water and wastewater. Test preparation Instrument-specific information Table

More information

Chromotropic Acid Method Method to 30.0 mg/l NO 3 N (HR) Test N Tube Vials

Chromotropic Acid Method Method to 30.0 mg/l NO 3 N (HR) Test N Tube Vials Nitrate, HR DOC316.53.01068 Chromotropic Acid Method Method 10020 0.2 to 30.0 mg/l NO 3 N (HR) Test N Tube Vials Scope and application: For water and wastewater. Test preparation Instrument-specific information

More information

Disinfection. Disinfection is used to treat both domestic water and wastewater.

Disinfection. Disinfection is used to treat both domestic water and wastewater. Disinfection Disinfection is the selective destruction of disease causing organisms (viruses, bacteria, protozoans). It destroys most recognized pathogenic microorganisms, but not necessarily all microbial

More information

CCS140 and CCS141. Technical Information. Sensors for free chlorine Amperometric, membrane-covered sensors for installation in the CCA250 assembly

CCS140 and CCS141. Technical Information. Sensors for free chlorine Amperometric, membrane-covered sensors for installation in the CCA250 assembly Technical Information CCS140 and CCS141 Sensors for free chlorine Amperometric, membrane-covered sensors for installation in the CCA250 assembly Application Oxidising agents such as chlorine or anorganic

More information

Cadmium Reduction Method Method to 10.0 mg/l NO 3 N (MR, spectrophotometers) 0.2 to 5.0 mg/l NO 3 N (MR, colorimeters)

Cadmium Reduction Method Method to 10.0 mg/l NO 3 N (MR, spectrophotometers) 0.2 to 5.0 mg/l NO 3 N (MR, colorimeters) Nitrate, MR DOC316.53.01069 Cadmium Reduction Method Method 8171 0.1 to 10.0 mg/l NO 3 N (MR, spectrophotometers) 0.2 to 5.0 mg/l NO 3 N (MR, colorimeters) Scope and application: For water, wastewater

More information

Direct Measurement ISE Method Method to 4.00 mg/l NO 3 N TISAB Solution

Direct Measurement ISE Method Method to 4.00 mg/l NO 3 N TISAB Solution , drinking water, 8359 DOC316.53.01239 Direct Measurement ISE Method Method 8359 0.04 to 4.00 mg/l NO 3 N TISAB Solution Scope and Application: Drinking water Test preparation How to use instrument-specific

More information

Standard Methods for the Examination of Water and Wastewater

Standard Methods for the Examination of Water and Wastewater 4500-NO 2 NITROGEN (NITRITE)*#(1) 4500-NO 2 A. Introduction 1. Occurrence and Significance For a discussion of the chemical characteristics, sources, and effects of nitrite nitrogen, see Section 4500-N.

More information

Instruction Manual. Waterproof Portable Colorimeter C401 / 301 / 201 / 101 / 102 / 103 / 104 / 105. Part of Thermo Fisher Scientific

Instruction Manual. Waterproof Portable Colorimeter C401 / 301 / 201 / 101 / 102 / 103 / 104 / 105. Part of Thermo Fisher Scientific Instruction Manual C401 / 301 / 201 / 101 / 102 / 103 / 104 / 105 Waterproof Portable Colorimeter Technology Made Easy... 68X357704 Rev 2 05/08 Part of Thermo Fisher Scientific Preface This manual functions

More information

Instrument Sample cell orientation Sample cell DR 6000 DR 3800 DR 2800 DR 2700 DR 5000 DR The fill line is to the right.

Instrument Sample cell orientation Sample cell DR 6000 DR 3800 DR 2800 DR 2700 DR 5000 DR The fill line is to the right. Barium DOC316.53.01315 Turbidimetric Method 1 Method 10251 2 to 100, 20 to 1000, 200 to 10,000 mg/l Ba (spectrophotometers) Powder Pillows 2 to 80, 20 to 800, 200 to 8000 mg/l Ba (colorimeters) Scope and

More information

Dimethylphenol Method Method to mg/l NO 3 N or 1.00 to mg/l NO

Dimethylphenol Method Method to mg/l NO 3 N or 1.00 to mg/l NO Nitrate DOC316.53.01070 Dimethylphenol Method Method 10206 0.23 to 13. NO 3 N or 1.00 to 60.00 mg/l NO 3 (LR) TNTplus 835 Scope and application: For wastewater, drinking water, surface water and process

More information

Effects of water quality characters on chlorine decay in water distribution networks

Effects of water quality characters on chlorine decay in water distribution networks Effects of water quality characters on chlorine decay in water distribution networks Theses of the PhD Dissertation by AL Heboos Sonia Department of Sanitary and Environmental Engineering Faculty of Civil

More information

Cadmium Reduction Method Method to 0.50 mg/l NO 3 N (LR) Powder Pillows

Cadmium Reduction Method Method to 0.50 mg/l NO 3 N (LR) Powder Pillows Nitrate DOC316.53.01067 Cadmium Reduction Method Method 8192 0.01 to 0.50 mg/l NO 3 N (LR) Powder Pillows Scope and application: For water, wastewater and seawater. Test preparation Instrument-specific

More information

Chromium, Total. Alkaline Hypobromite Oxidation Method 1 Method to 0.70 mg/l Cr (spectrophotometers) 0.01 to 0.60 mg/l Cr (colorimeters)

Chromium, Total. Alkaline Hypobromite Oxidation Method 1 Method to 0.70 mg/l Cr (spectrophotometers) 0.01 to 0.60 mg/l Cr (colorimeters) Chromium, Total DOC316.53.01034 Alkaline Hypobromite Oxidation Method 1 Method 8024 0.01 to 0.70 mg/l Cr (spectrophotometers) 0.01 to 0.60 mg/l Cr (colorimeters) Scope and application: For water and wastewater.

More information

METHOD STATEMENT. Determinand: Ammonia, Chloride, Nitrate, Nitrite, Orthophosphate, Sulphate & TON. Matrix: Leachates, effluents and wastewaters

METHOD STATEMENT. Determinand: Ammonia, Chloride, Nitrate, Nitrite, Orthophosphate, Sulphate & TON. Matrix: Leachates, effluents and wastewaters : Ammonia,, Nitrate,, Orthophosphate, & TON Matrix: Leachates, effluents and wastewaters Principle of Method: Certain analytes, when reacted with specific reagents, will form coloured complexes. The intensity

More information

Oxygen Demand, Chemical

Oxygen Demand, Chemical Oxygen Demand, Chemical DOC316.53.01104 USEPA Reactor Digestion Method Method 10212 250 to 15,000 mg/l COD (UHR) TNTplus 823 Scope and application: For wastewater and process waters; digestion is required.

More information

Phenolphthalein and Total Alkalinity Method to 4000 mg/l as CaCO 3 Digital Titrator

Phenolphthalein and Total Alkalinity Method to 4000 mg/l as CaCO 3 Digital Titrator Alkalinity DOC316.53.01166 Phenolphthalein and Total Alkalinity Method 8203 10 to 4000 mg/l as CaCO 3 Digital Titrator Scope and application: For water, wastewater and seawater. Test preparation Before

More information

Cadmium Reduction Method Method to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls

Cadmium Reduction Method Method to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls Nitrate DOC316.53.01066 Cadmium Reduction Method Method 8039 0.3 to 30.0 mg/l NO 3 N (HR) Powder Pillows or AccuVac Ampuls Scope and application: For water, wastewater and seawater. Test preparation Instrument-specific

More information

Oxygen Demand, Chemical

Oxygen Demand, Chemical Oxygen Demand, Chemical DOC316.53.01103 USEPA Reactor Digestion Method Method 10211 1 to 60 mg/l COD (ULR) TNTplus 820 Scope and application: For wastewater, process water, surface water, and cooling water.

More information

Persulfate Digestion Method Method to 40 mg/l N (HR) TNTplus 827

Persulfate Digestion Method Method to 40 mg/l N (HR) TNTplus 827 Nitrogen, Total DOC316.53.01088 Persulfate Digestion Method Method 10208 5 to 40 mg/l N (HR) TNTplus 827 Scope and application: For water and wastewater. Test preparation Instrument-specific information

More information

Dimethylglyoxime Method Method to 6.0 mg/l Ni TNTplus 856

Dimethylglyoxime Method Method to 6.0 mg/l Ni TNTplus 856 Nickel DOC316.53.01065 Dimethylglyoxime Method Method 10220 0.1 to 6.0 mg/l Ni TNTplus 856 Scope and application: For water and wastewater. Test preparation Instrument-specific information Table 1 shows

More information

FerroZine Method 1 Method to 100 µg/l Fe (10-cm cell) Reagent Solution. Instrument Adapter Sample cell DR 6000 LZV

FerroZine Method 1 Method to 100 µg/l Fe (10-cm cell) Reagent Solution. Instrument Adapter Sample cell DR 6000 LZV Iron, Total DOC316.53.01338 FerroZine Method 1 Method 10264 1 to 100 µg/l Fe (10-cm cell) Reagent Solution Scope and application: For ultrapure water. 1 Adapted from Stookey, L.L., Anal. Chem., 42(7),

More information

Disinfection, Chlorination and Oxidation. Daniel B. Stephens & Associates, Inc.

Disinfection, Chlorination and Oxidation. Daniel B. Stephens & Associates, Inc. Disinfection, Chlorination and Oxidation Chlorination/Disinfection Glossary Bacteria: living single-celled microscopic organisms having characteristics of both plants and animals; often useful but may

More information

Nitrogen in All Its Forms. Assoc. Prof. Kozet YAPSAKLI

Nitrogen in All Its Forms. Assoc. Prof. Kozet YAPSAKLI Nitrogen in All Its Forms Assoc. Prof. Kozet YAPSAKLI Nitrogen is in the Nonmetals Group OXIDATION STATES OF NITROGEN N has 5 electrons in valence shell a7 oxidation states from 3 to +5 Increasing oxidation

More information

Chapter 1: Matter, Energy, and the Origins of the Universe

Chapter 1: Matter, Energy, and the Origins of the Universe Chapter 1: Matter, Energy, and the Origins of the Universe Problems: 1.1-1.40, 1.43-1.98 science: study of nature that results in a logical explanation of the observations chemistry: study of matter, its

More information

Powder Pillows 0.01 to 1.60 mg/l SiO 2 (LR, colorimeters)

Powder Pillows 0.01 to 1.60 mg/l SiO 2 (LR, colorimeters) Silica DOC316.53.01132 Heteropoly Blue Method 1 Method 8186 0.010 to 1.600 mg/l SiO 2 (LR, spectrophotometers) Powder Pillows 0.01 to 1.60 mg/l SiO 2 (LR, colorimeters) Scope and application: For boiler

More information

Chapter 6 TABLE OF CONTENTS. Chlorine Residual Determination. Section 1: General Section 2: Introduction to Chlorine... 3

Chapter 6 TABLE OF CONTENTS. Chlorine Residual Determination. Section 1: General Section 2: Introduction to Chlorine... 3 Chapter 6 TABLE OF CONTENTS Chlorine Residual Determination Page Section 1: General... 3 Section 2: Introduction to Chlorine... 3 Section 3: Glossary... 3-4 Section 4: Approved Methods... 4 Section 5:

More information

Cyanide: The Molecule and Its Analysis A Simple Compound with Complex Problems Part 2: Cyanide Sample Collection, Pretreatment and Preservation

Cyanide: The Molecule and Its Analysis A Simple Compound with Complex Problems Part 2: Cyanide Sample Collection, Pretreatment and Preservation Cyanide: The Molecule and Its Analysis A Simple Compound with Complex Problems Part 2: Cyanide Sample Collection, Pretreatment and Preservation Edward F. Askew PhD Askew Scientific Consulting The first

More information

IMPACT OF CHLORINE AND MONOCHLORAMINE ON ULTRAVIOLET LIGHT DISINFECTION

IMPACT OF CHLORINE AND MONOCHLORAMINE ON ULTRAVIOLET LIGHT DISINFECTION IMPACT OF CHLORINE AND MONOCHLORAMINE ON ULTRAVIOLET LIGHT DISINFECTION Banu Örmeci Department of Civil and Environmental Engineering Duke University, Durham, NC Gina A. Ishida Department of Environmental

More information

Ion Selective Electrodes for the Laboratory. Presented by Chris Cushman OTCO Water Laboratory Analyst Workshop Thursday, May 14, 2015

Ion Selective Electrodes for the Laboratory. Presented by Chris Cushman OTCO Water Laboratory Analyst Workshop Thursday, May 14, 2015 Ion Selective Electrodes for the Laboratory Presented by Chris Cushman OTCO Water Laboratory Analyst Workshop Thursday, May 14, 2015 Outline Review ISE measurement technology How to properly calibrate

More information

Assess then Address: Evaluating Contaminant Sources and Selecting Viable Treatment Barriers for the Clapper Road WTP

Assess then Address: Evaluating Contaminant Sources and Selecting Viable Treatment Barriers for the Clapper Road WTP Assess then Address: Evaluating Contaminant Sources and Selecting Viable Treatment Barriers for the Clapper Road WTP April 14, 2016 Marc Santos, PE Hazen and Sawyer Agenda Background Objectives/Strategy

More information

CHEMICALS & REAGENTS

CHEMICALS & REAGENTS BUFFER SOLUTION, ph 1.68 B-41 3.8 14.45 21.60 64.90 BUFFER SOLUTION, ph 2.00 ± 0.02 B-42 3.8 BUFFER SOLUTION, ph 4.00 ± 0.02 Color coded red BUFFER SOLUTION, COLORLESS, ph 4.00 (ph 4.00 ± 0.02 - Colorless

More information

Tailoring activated carbon for enhanced adsorption of disinfection byproduct precursors

Tailoring activated carbon for enhanced adsorption of disinfection byproduct precursors Tailoring activated carbon for enhanced adsorption of disinfection byproduct precursors Thien D. Do, M.S. Julian L. Fairey, Ph.D., P.E. Southwest AWWA Annual Conference October 12-14, 2014, Tulsa, OK DBP

More information

A New On-line Cyanide Analyzer for Measurement of Cyanide in Hydrometallurgical Processing of Precious Metal Ores

A New On-line Cyanide Analyzer for Measurement of Cyanide in Hydrometallurgical Processing of Precious Metal Ores Application Note 37890312 A New On-line Cyanide Analyzer for Measurement of Cyanide in Hydrometallurgical Processing of Precious Metal Ores Keywords CNSolution 9310 On-line Cyanide Analyzer Cyanidation

More information

Quaternary Ammonium Compounds

Quaternary Ammonium Compounds , 8337 Quaternary Ammonium Compounds DOC316.53.01128 Direct Binary Complex Method Method 8337 0.2 to 5.0 mg/l as CTAB Powder Pillows Scope and Application: For cooling tower water and pool/spa water Test

More information

ENVIRONMENT AGENCY. Chemical disinfecting agents in waters and effluents (2008) Methods for the Examination of Waters and Associated Materials

ENVIRONMENT AGENCY. Chemical disinfecting agents in waters and effluents (2008) Methods for the Examination of Waters and Associated Materials ENVIRONMENT AGENCY Chemical disinfecting agents in waters and effluents (2008) Methods for the Examination of Waters and Associated Materials Chemical disinfecting agents in waters and effluents (2008)

More information

Copyrighted Material ~ All Rights Reserved Course Materials for NEHA-CERT Course SP0703 Page 1

Copyrighted Material ~ All Rights Reserved Course Materials for NEHA-CERT Course SP0703 Page 1 Chlorine Generators Fact vs Fiction Presented by Marty Fisher Overview What is a Chlorine Generator? Liquid Chlorine Some Facts. How Salty is A Saltwater Pool? Types of Acceptable Salt. Saltwater Pool

More information

Cadmium Reduction Method (Using Powder Pillows or AccuVac Ampuls)

Cadmium Reduction Method (Using Powder Pillows or AccuVac Ampuls) Method 8171 NITRATE, Mid Range (0 to 5.0 mg/l NO 3- -N) For water, wastewater and seawater* Cadmium Reduction Method (Using Powder Pillows or AccuVac Ampuls) Using Powder Pillows 1. Enter the stored program

More information

Chem 161. Dr. Jasmine Bryant

Chem 161. Dr. Jasmine Bryant Chem 161 Dr. Jasmine Bryant Chapter 1: Matter, Energy, and the Origins of the Universe Problems: 1.1-1.10, 1.14-1.22, 1.24-1.93, 1.96 Science: study of nature that results in a logical explanation of the

More information

Exercise 2-2. Titration of a Strong Acid EXERCISE OBJECTIVES

Exercise 2-2. Titration of a Strong Acid EXERCISE OBJECTIVES Exercise 2-2 Titration of a Strong Acid EXERCISE OBJECTIVES To describe the effect of a ph variation on a chemical indicator; To titrate water containing a strong base solution with a strong acid solution;

More information

METHOD 9200 NITRATE. 1.2 The applicable range of concentration is 0.1 to 2 mg NO -N per liter. 3 of sample.

METHOD 9200 NITRATE. 1.2 The applicable range of concentration is 0.1 to 2 mg NO -N per liter. 3 of sample. METHOD 9200 NITRATE 1.0 SCOPE AND APPLICATION 1.1 This method is applicable to the analysis of ground water, drinking, surface, and saline waters, and domestic and industrial wastes. Modification can be

More information

Angel International School - Manipay 1 st Term Examination November, 2015

Angel International School - Manipay 1 st Term Examination November, 2015 Grade 11B Angel International School - Manipay 1 st Term Examination November, 2015 Chemistry - I Duration: 1.00 Hour Part 1 1) A liquid boils at a temperature of 100 o C. Which other property of the liquid

More information