From Which Planet is the Soil Sample From?

Size: px
Start display at page:

Download "From Which Planet is the Soil Sample From?"

Transcription

1 Teacher From Which Planet is the Soil Sample From? NGSSS: SC.912.P.8.2: Differentiate between physical and chemical properties and physical and chemical changes of matter. Purpose of Lab/Activity: To separate and determine the unknown percent masses of iron fillings, sand, salt, and water within 3 different samples. To match the percent mass abundance of iron fillings, sand, salt, and water from 3 different samples Prerequisite: Prior to this activity the student should be able to: Describe the units used to measure matter in science. Use equipment for measuring mass and volume. Key words to review: solubility, magnetism, solute, solvent, separation, filter, filtration, evaporation Manipulate separation techniques like filtering, evaporation, and magnetic separation of ferrous metals Materials (individual or per group): Class chemical set-up: Have 3 large beakers or other containers, each with different percentages of salt, sand, iron filings and water. Separate 3 sets of the soil mixture per lab group from the larger containers into 3 smaller containers; the smaller containers are labeled A, B, and C. Materials per lab group 50-ml glass beaker 3, 50-ml containers (labeled A, B, and C) Plastic wrap balance (50g capacity) water hot plate magnet spoon salt iron fillings fine sand funnel filter paper ring stand apparatus Chemistry HSL Page 1

2 Teacher Procedures: Day of Activity What the teacher will do: a. Set up the 3 soil samples so that each beaker contains the following: Sample A has (compared to samples B and C) a relatively small amount of sand, a relatively medium amount of iron fillings and relatively large amount of salt. Sample B, has a medium (relatively) amount of sand, a relatively large amount of iron fillings and a relatively small amount of salt. Before activity: Sample C has a relatively large amount of sand, a small amount of iron fillings and medium amount of salt. Fill the water level of each beaker that contains the 3 samples to approximately the same height. b. Define the following terms with the class: mass, extracting, filtering, magnetism, evaporation, mixture, percent abundance. c. Ask the students if they have any idea how salt could be obtained from sea water? Ask students what property could be used to detect if an object is made of steel or iron versus another material? d. Demonstrate how to perform the following techniques associated with each term: Measuring mass, extracting, filtering, evaporating the liquid so that a solid remains, magnetic removal of substances that are attracted to magnets. e. Have the lab equipment ready to use for each lab group. f. State the intent of the lab: To separate the contents (sand, salt, iron, water) of the 3 different mixtures by visualizing the steps needed and utilizing the equipment provided. A secondary intent is to match the percent mass of the contents of each mixture with given percent mass values written on the board. g. Review or teach the concept of percent mass. Demonstrate how to do a calculation demonstrating percent mass. During activity: What the teacher will do: a. Monitor that students are using the instruments to separate the iron from the sand, separate the sand from the salty water, and then separate the water from the salt. b. As you visit each group, make sure that they are proceeding at a good pace. It is important to correct if you determine that a group is progressing in the wrong direction in analyzing the samples. c. Tips: The saran wrap can be used to wrap around the magnet to extract the filings. When removed from the magnet, the filings will drop off the wrap easily. Some students may not realize this and use the magnet without the wrap it will work fine, but they will have to scrap the filings off, taking more time. Many students will use techniques out of the most logical order they will evaporate the water before filtering the sand. d. Ask students to calculate the percent mass for each of the 3 samples of salt, sand, iron and water. e. Match student Samples A, B, and C with data corresponding to soils from different planets. Chemistry HSL Page 2

3 Teacher After activity: What the teacher will do: a. Have students share their lab group data with the whole class. b. Have students orally explain their thought process in determining the order of the procedures that they did to separate the each of the mixtures. c. Lead a discussion to try to explain the differences in the values reported by each group. Introduce the concept of random variation in measurements caused by different students measuring the same quantity with different equipment. d. Have students describe multiple sources of error and what they could have done to minimize the errors. Chemistry HSL Page 3

4 From Which Planet is the Soil Sample From? NGSSS: SC.912.P.8.2: Differentiate between physical and chemical properties and physical and chemical changes of matter. Background: Mixtures are not unique to chemistry; you use and consume them on a daily basis. The beverages you drink each morning, the fuel you use in your automobile, and the ground you walk on are mixtures. Very few materials that you encounter are pure. Any material made up of two or more substances that are not chemically combined is a mixture. The isolation of pure components of a mixture requires the separation of one component from another. Techniques needed to do this separation take advantage of the differences in physical properties of the components. The techniques you will use in this lab include the following: 1. Magnetic separation: A process in which magnetically susceptible material is extracted from a mixture using a magnetic force. This separation technique can be useful in mining iron as it is attracted to a magnet. 2. Extraction: This uses a solvent to selectively dissolve one component of the solid mixture. With this technique, a soluble solid can be separated from an insoluble solid. 3. Decantation: This separates a liquid from an insoluble solid by carefully pouring the liquid from the solid without disturbing the solid. 4. Filtration: This separates a solid from a liquid through the use of a porous material as a filter. Paper is a good filter. Filters allow the liquid to, pass through but not the solid. 5. Evaporation: This is the process of heating a mixture in order to drive off a volatile liquid and make the remaining component dry. The mixture that will be separated in this lab contains four components: water, common table salt, NaCl, sand, SiO2 and iron fillings, Fe. The separation will be done according to a student created scheme for the procedures but will involve three separation techniques: 1. Magnetic separation. 2. Extraction, decantation and filtration. 3. Evaporation Chemistry HSL Page 4

5 Purpose of Lab/Activity: To separate and determine the unknown masses of iron fillings, sand, salt and water present mass within 3 different samples. To match the percent mass abundance of iron fillings, sand, salt, and water from 3 different samples Prerequisite: Prior to this activity the student should be able to: Describe the units used to measure matter in science. Use equipment for measuring mass and volume. Key words to review: solubility, magnetism, solute, solvent, separation, filter, extraction, filtration, evaporation Manipulate separation techniques like extraction, filtering, evaporation, and magnetic removal of ferrous metals Materials (individual or per group): Class chemical set-up: Have 3 large beakers or other containers, each with different percentages of salt, sand, iron filings and water. Separate 3 sets per lab group of smaller containers labeled A, B, and C that will contain each of 3 different mixtures. Materials per lab group 50-ml glass beaker 3, 50-ml containers Plastic wrap balance (50g capacity) water hot plate magnet spoon salt iron fillings fine sand funnel filter paper ring stand apparatus Chemistry HSL Page 5

6 Safety: Always wear safety goggles in the lab. Vocabulary: mass, filtering, magnetic separation, decanting, extraction, evaporation, mixture, percent abundance. Procedures (Possible): 1. Demonstrate how to perform the following techniques associated with each term: Measure mass, extraction, filtering, evaporating the liquid so that a solid remains, magnetic removal of substances that are attracted to magnets. 2. Ensure that all lab equipment is ready for use. 3. Take the mass of beaker plus the soil sample. 4. Wrap the magnet with saran wrap. Stir the mixture with the wrapped magnet until all the iron filings have been collected 5. Remove the wrap from the magnet, being careful to keep all the iron filings in the wrap. 6. Set up a filtration station: Fold filter paper into fourths, place in the funnel and wet down. Place funnel in ceramic triangle on ring on ring stand (or in funnel rack). Place an empty beaker underneath the funnel, with funnel tip inside and touching the side of the beaker. 7. Decant the mixture down the stirring rod into the funnel. 8. Remove the filter paper with the sand from the funnel and lay flat on a paper towel to dry. 9. Place the beaker containing the filtrate (water and salt) on the hot plate (or Bunsen burner setup). Heat until near dryness. Remove beaker from heat source using caution with hot glassware and allow the heat in the glass to finish the drying. 10. Place all components of the mixture in areas designated by the teacher to take the mass of each. 11. Calculate the percent mass for each of the 3 samples of salt, sand, iron and water. 12. Match student Samples A, B, and C with data corresponding to soils from different planets posted on the board. Observations/Data: Data for Sample A Percent mass of salt, sand, iron and water in Sample A Mass of sample + container (g) Mass of container (g) Mass of sample A Mass of water (g) Percent water in entire sample (%) Mass of salt (g) Percent salt in entire sample (%) Mass of sand (g) Percent sand in entire sample (%) Mass of iron (g) Percent iron in entire sample (%) Qualitative Description: Describe how does Sample A compares to Sample B and Sample C (use as many descriptive words as you can). Chemistry HSL Page 6

7 Data for Sample B Percent mass of salt, sand, iron and water in Sample B Mass of sample + container (g) Mass of container (g) Mass of sample A Mass of water (g) Percent water in entire sample (%) Mass of salt (g) Percent salt in entire sample (%) Mass of sand (g) Percent sand in entire sample (%) Mass of iron (g) Percent iron in entire sample (%) Qualitative Description: Describe how does Sample B compares to the other samples: Data for Sample C Percent mass of salt, sand, iron and water in Sample C Mass of sample + container (g) Mass of container (g) Mass of sample A Mass of water (g) Percent water in entire sample (%) Mass of salt (g) Percent salt in entire sample (%) Mass of sand (g) Percent sand in entire sample (%) Mass of iron (g) Percent iron in entire sample (%) Qualitative Description: Describe how does Sample C compares to the other samples: Observation/Data Analysis: 1. Why can sand and salt be separated using this experiment? 2. Why is the salt, sand and water mixture filtered? 3. Why is the salt solution heated? 4. How might the final traces of water be removed from your samples to ensure that they re totally dry? 5. Give two reasons why the sand you have obtained might still be contaminated with salt. 6. Describe the technique that your team used to remove the iron from the mixture. 7. How could you adapt your experiment to obtain a purer sample of sand? 8. Give two reasons why the salt you have obtained might still be contaminated with sand. 9. How could you adapt your experiment to obtain a purer sample of salt? Chemistry HSL Page 7

8 Conclusion: 1. Describe in your own words the procedures used to separate each substance from the mixture. 2. How well did each procedure work? 3. What would you change next time? Why? 4. What did this lab teach you about mixtures? 5. List and describe at least 2 sources of error and then describe how you could reduce these errors. Chemistry HSL Page 8

General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques

General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques Introduction When two or more substances that do not react chemically are blended together, the components of the

More information

DATE PERFORMANCE TASK #1

DATE PERFORMANCE TASK #1 NAME SECTION PERFORMANCE TASK #1 DATE Be sure to read this entire lab before you come to class to perform the activity. Part II requires outside work that must be completed before you can start the task.

More information

Substances and Mixtures:Separating a Mixture into Its Components

Substances and Mixtures:Separating a Mixture into Its Components MiraCosta College Introductory Chemistry Laboratory Substances and Mixtures:Separating a Mixture into Its Components EXPERIMENTAL TASK To separate a mixture of calcium carbonate, iron and sodium chloride

More information

Minneapolis Community and Technical College. Separation of Components of a Mixture

Minneapolis Community and Technical College. Separation of Components of a Mixture Minneapolis Community and Technical College Chemistry Department Chem1020 Separation of Components of a Mixture Objectives: To separate a mixture into its component pure substances. To calculate the composition

More information

Periodicity of Properties of Oxides

Periodicity of Properties of Oxides Microscale Periodicity of Properties of Oxides Some oxides produce acidic solutions when they dissolve in water. These oxides are classified as acidic oxides (acid anhydrides), and they are the primary

More information

EXPERIMENT 7: THE LIMITING REACTANT

EXPERIMENT 7: THE LIMITING REACTANT EXPERIMENT 7: THE LIMITING REACTANT PURPOSE To find the ratio of moles of a reactant to moles of a product of a chemical reaction. To relate this ratio to the coefficients of these substances in the balanced

More information

Separation of the Components of a Mixture

Separation of the Components of a Mixture Separation of the Components of a Mixture Prepared by Edward L. Brown, Lee University EXPERIMENT 3 To become familiar with the laboratory techniques used to separate different substances from one another.

More information

Physical and Chemical Properties of Matter Lab

Physical and Chemical Properties of Matter Lab Physical and Chemical Properties of Matter Lab Purpose To introduce the student to physical and chemical properties of matter and their use for the identification and separation of compounds. Each student

More information

Chemical Reactions: The Copper Cycle

Chemical Reactions: The Copper Cycle 1 Chemical Reactions: The Copper Cycle ORGANIZATION Mode: pairs assigned by instructor Grading: lab notes, lab performance and post-lab report Safety: Goggles, closed-toe shoes, lab coat, long pants/skirts

More information

GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT. REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985

GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT. REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985 1 GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985 Typical techniques used in gravimetric analyses by quantitatively determining

More information

The ABCs of Chemistry

The ABCs of Chemistry Hands-On Science The ABCs of Chemistry Michael Margolin illustrated by Lloyd Birmingham WALCH EDUCATION Contents To the Teacher... v... vii... viii... xvi... 1... 9.... 17... 28... 38... 45.... 52... 62...

More information

Separating the Mixture

Separating the Mixture Separating the Mixture 40- to 1 50-minute session ACTIVITY OVERVIEW I N V E S T 5 I O N I G AT Students perform their procedures written in Activity 3, A Plan to Separate the Mixture, to physically separate

More information

Lab Activity 3: Gravimetric Stoichiometry 2

Lab Activity 3: Gravimetric Stoichiometry 2 Chemistry 2202 Gravimetric Stoichiometry Lab 2 1 Lab Activity 3: Gravimetric Stoichiometry 2 Introduction: Stoichiometry involves making predictions about how much of one substance should react or be produced

More information

Physical and ChemJcaJ Change

Physical and ChemJcaJ Change 2 Textreference: Sections 1,3, 1.9 Physical and ChemJcaJ Change Background Have you ever thought of your eyes as powerful tools for studying chemistry? Many of the properties of matter and the changes

More information

By the end of this experiment the student should have learned:

By the end of this experiment the student should have learned: Experiment 3 SUBSTANCES, REACTIONS MIXTURES, AND Learning Objectives By the end of this experiment the student should have learned: 1. To distinguish elements from compounds. 2. To distinguish heterogeneous

More information

EXPERIMENT 20. Solutions INTRODUCTION

EXPERIMENT 20. Solutions INTRODUCTION EXPERIMENT 20 Solutions INTRODUCTION A solution is a homogeneous mixture. The solvent is the dissolving substance, while the solute is the dissolved substance. A saturated solution is one in which the

More information

Mystery Substance Laboratory Experiment

Mystery Substance Laboratory Experiment Mystery Substance Laboratory Experiment Name: 5 th Grade PSI Science Score: / 5 Experiment Question: How effectively can you determine what a mystery substance is by testing its observable properties?

More information

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Objectives Part 1: To determine the limiting reagent and percent yield of CuCO

More information

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise.

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Experiment 10 Stoichiometry- Gravimetric Analysis Pre-lab Assignment Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose The purpose this experiment

More information

7-A. Inquiry INVESTIGATION. 322 MHR Unit 3 Quantities in Chemical Reactions. Skill Check. Safety Precautions

7-A. Inquiry INVESTIGATION. 322 MHR Unit 3 Quantities in Chemical Reactions. Skill Check. Safety Precautions Inquiry INVESTIGATION 7-A Skill Check Initiating and Planning Performing and Recording Analyzing and Interpreting Communicating Safety Precautions Wear safety eyewear throughout this investigation. Wear

More information

Part II. Cu(OH)2(s) CuO(s)

Part II. Cu(OH)2(s) CuO(s) The Copper Cycle Introduction In this experiment, you will carry out a series of reactions starting with copper metal. This will give you practice handling chemical reagents and making observations. It

More information

Working in the Chemistry Laboratory

Working in the Chemistry Laboratory Working in the Chemistry Laboratory Accelerated Chemistry I Introduction: One of the most important components of your chemistry course is the laboratory experience. Perhaps you have done experiments in

More information

Data Sheet for Task 1: Mixing It Up!

Data Sheet for Task 1: Mixing It Up! Data Sheet for Task 1: Mixing It Up! 1. Mix 25 ml water and 1 ml of Mystery Material A in a small container. Then mix 25 ml water and 1 ml of Mystery Material B in another container. Put the lids on and

More information

Name Class Date DATASHEET FOR IN-TEXT LAB

Name Class Date DATASHEET FOR IN-TEXT LAB Inquiry Mixture Separation DATASHEET FOR IN-TEXT LAB The ability to separate and recover pure substances from mixtures is extremely important in scientific research and industry. Chemists need to work

More information

What is Science? Science is both a collection of knowledge and the process for building that knowledge.

What is Science? Science is both a collection of knowledge and the process for building that knowledge. Introduction to Science Junior Science What is Science? Science is both a collection of knowledge and the process for building that knowledge. Science asks questions about the natural world and looks for

More information

Separating Mixtures. Name: Class:

Separating Mixtures. Name: Class: Separating Mixtures Name: Class: Directions: Match the words with the big ideas by writing the letter beside the idea. Use the same words in the short article below. Use key words and phrases from the

More information

Saturated and Unsaturated Solutions

Saturated and Unsaturated Solutions Why? Saturated and Unsaturated Solutions Is there a limit to the amount of solute that will dissolve in a solvent? We use solutions every day. People who wear contact lenses use lens solution to rinse

More information

EXPERIMENT #4 Separation of a Three-Component Mixture

EXPERIMENT #4 Separation of a Three-Component Mixture OBJECTIVES: EXPERIMENT #4 Separation of a Three-Component Mixture Define chemical and physical properties, mixture, solubility, filtration, sublimation, and percent Separate a mixture of sodium chloride

More information

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2)

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2) www.pedersenscience.com AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2) 1.A.1: Molecules are composed of specific combinations of atoms; different molecules are composed of combinations

More information

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs.

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs. Limiting Reagent Introduction The quantities of substances involved in a chemical reaction represented by a balanced equation are often referred to as stoichiometric amounts. Solution stoichiometry is

More information

Relative Solubility of Transition Elements

Relative Solubility of Transition Elements Microscale Relative Solubility of Transition Elements The transition elements are found in periods 4, 5, and 6 between groups 2 and 13 of the periodic table. As the atomic number increases across a row

More information

Heat Lost and Heat Gained Determining the Specific Heat of a Metal

Heat Lost and Heat Gained Determining the Specific Heat of a Metal 20 Determining the Specific Heat of a Metal This lab is divided into two parts. In the first part you will examine the relationship between heat lost and heat gained when two liquids are mixed. In the

More information

MATTER. Chemistry is the study of matter and the changes that matter undergoes. Matter is anything that has mass and takes up space.

MATTER. Chemistry is the study of matter and the changes that matter undergoes. Matter is anything that has mass and takes up space. MATTER Chemistry is the study of matter and the changes that matter undergoes. Matter is anything that has mass and takes up space. Properties of Matter Physical Properties Can be observed without changing

More information

CALORIMETRY: Heat of Fusion of Ice

CALORIMETRY: Heat of Fusion of Ice Pre-Lab Discussion CALORIMETRY: Heat of Fusion of Ice When a chemical or physical change takes place, heat is either given off or absorbed That is, the change is either exothermic or endothermic It is

More information

HHPS WHMIS. Rules MSDS Hazard Codes Systems. Biology based. Chemistry based. Safety Symbols. Safety in the Lab. Lab Equipment

HHPS WHMIS. Rules MSDS Hazard Codes Systems. Biology based. Chemistry based. Safety Symbols. Safety in the Lab. Lab Equipment Safety Symbols HHPS WHMIS Safety in the Lab Rules MSDS Hazard Codes Systems Lab Equipment Chemistry based Biology based Safety Symbols We will be discussing two types of Information Systems Hazardous Household

More information

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield EXPERIMENT 7 Reaction Stoichiometry and Percent Yield INTRODUCTION Stoichiometry calculations are about calculating the amounts of substances that react and form in a chemical reaction. The word stoichiometry

More information

Methods of Separating Mixtures. Filtration separates a liquid from a solid. Chromatography 9/13/2013. Magnet Filter Decant Evaporation Centrifuge

Methods of Separating Mixtures. Filtration separates a liquid from a solid. Chromatography 9/13/2013. Magnet Filter Decant Evaporation Centrifuge Methods of Separating Mixtures Magnet Filter Decant Evaporation Centrifuge Chromatography Distillation Filtration separates a liquid from a solid Mixture of solid and liquid Funnel Filter paper traps solid

More information

2.8-1 SCIENCE EXPERIMENTS ON FILE Revised Edition. Dew Formation

2.8-1 SCIENCE EXPERIMENTS ON FILE Revised Edition. Dew Formation 2.8-1 SCIENCE EXPERIMENTS ON FILE Revised Edition Dew Formation Topic Dew Time 30 minutes! Safety Please click on the safety icon to view safety precautions. Be careful using the thermometer. Be careful

More information

Synthesis of Potassium Ferric Oxalate Trihydrate

Synthesis of Potassium Ferric Oxalate Trihydrate Experiment 7 Revision 1.0 Synthesis of Potassium Ferric Oxalate Trihydrate To learn about Coordination Compounds. To learn about metal ion - ligand complexes. To learn about chemical stoichiometry and

More information

Mixtures, Solutions, and Suspensions

Mixtures, Solutions, and Suspensions Purpose To explore how mixtures, solutions, and suspensions form by combining and then attempting to separate various materials. Process Skills Observe, measure, predict, collect data, interpret data,

More information

Methods of purification

Methods of purification Methods of purification Question Paper 1 Level IGSE Subject hemistry (0620/0971) Exam oard ambridge International Examinations (IE) Topic Experimental techniques Sub-Topic Methods of purification ooklet

More information

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs.

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs. Limiting Reagent Introduction The quantities of substances involved in a chemical reaction represented by a balanced equation are often referred to as stoichiometric amounts. Solution stoichiometry is

More information

Physical Science Review Sheet Matter & Physical Properties

Physical Science Review Sheet Matter & Physical Properties Name: Date: 1. The four diagrams below model the results of mixing atoms of different substances. Each atom is represented by a different symbol. Which diagram correctly models a chemical change? 4. Base

More information

Lab Equipment and Safety

Lab Equipment and Safety Printed Page 3 [Notes/Highlighting] LESSON 1 Tools of the Trade Think About It A chef depends on a wide variety of gadgets and kitchenware to create delicious meals in the kitchen from whisks and mixers,

More information

Coordination Complexes

Coordination Complexes Coordination Complexes Experiment 9 Introduction Coordination complexes are formed between a metal ion (Lewis acid) and ligands (Lewis base). The splitting of the d-orbitals (crystal field splitting) and

More information

Universal Indicator turns green. Which method is used to obtain pure solid X from an aqueous solution? A. mixture

Universal Indicator turns green. Which method is used to obtain pure solid X from an aqueous solution? A. mixture 1 The results of some tests on a colourless liquid X are shown. oiling point = 102 Universal Indicator turns green What is X? ethanol hydrochloric acid pure water sodium chloride (salt) solution 2 blue

More information

Synthesizing Alum Reaction yields and green chemistry

Synthesizing Alum Reaction yields and green chemistry Synthesizing Alum Reaction yields and green chemistry Introduction Aluminum cans are often recycled to make more aluminum products. In this experiment, you will synthesize a compound called alum, starting

More information

To understand concept of limiting reagents. To learn how to do a vacuum filtration. To understand the concept of recrystallization.

To understand concept of limiting reagents. To learn how to do a vacuum filtration. To understand the concept of recrystallization. E x p e r i m e n t Synthesis of Aspirin Experiment : http://genchemlab.wordpress.com/-aspirin/ objectives To synthesize aspirin. To understand concept of limiting reagents. To determine percent yield.

More information

GRIGNARD REACTION Synthesis of Benzoic Acid

GRIGNARD REACTION Synthesis of Benzoic Acid 1 GRIGNARD REACTION Synthesis of Benzoic Acid In the 1920 s, the first survey of the acceleration of chemical transformations by ultrasound was published. Since then, many more applications of ultrasound

More information

Analytical Chemistry National 4 and 5

Analytical Chemistry National 4 and 5 Analytical Chemistry National 4 and 5 Analytical Chemistry is a subject which spans almost all areas of Chemistry. It is concerned with identifying, measuring and separating the chemicals present in a

More information

Experiment 2: THE DENSITY OF A SOLID UNKNOWN AND CALIBRATION WITH DATASTUDIO SOFTWARE

Experiment 2: THE DENSITY OF A SOLID UNKNOWN AND CALIBRATION WITH DATASTUDIO SOFTWARE Experiment 2: THE DENSITY OF A SOLID UNKNOWN AND CALIBRATION WITH DATASTUDIO SOFTWARE Concepts: Density Equipment Calibration Approximate time required: 90 minutes for density 90 minutes for two thermometers

More information

IONIC VS. COVALENT COMPOUNDS LAB

IONIC VS. COVALENT COMPOUNDS LAB IONIC VS. COVALENT COMPOUNDS LAB A compound is defined as a chemical combination of two or more elements. A chemical bond is the glue holding together atoms of different elements. Ionic bonds generally

More information

Na Na + +e - Cl+e - Cl -

Na Na + +e - Cl+e - Cl - LAB-Ionic vs. Covalent Bonding Have you ever accidentally used salt instead of sugar? Drinking tea that has been sweetened with salt or eating vegetables that have been salted with sugar tastes awful!

More information

Chromatography Lab # 4

Chromatography Lab # 4 Chromatography Lab # 4 Chromatography is a method for separating mixtures based on differences in the speed at which they migrate over or through a stationary phase which means that a complex mixture will

More information

LAB TEST Physical and Chemical Changes

LAB TEST Physical and Chemical Changes NAME: DATE: STATION: LAB TEST Physical and Chemical Changes PURPOSE: To observe physical and chemical changes in matter MATERIALS: 3 medium test tubes 1 small test tube test tube rack test tube holder

More information

NGSSS: SC.912.L.18.12

NGSSS: SC.912.L.18.12 Teacher NGSSS: SC.912.L.18.12 Discuss the special properties of water that contribute to Earth's suitability as an environment for life: cohesive behavior, ability to moderate temperature, expansion upon

More information

Copyright 2015 Edmentum - All rights reserved.

Copyright 2015 Edmentum - All rights reserved. Study Island Copyright 2015 Edmentum - All rights reserved. Generation Date: 03/16/2015 Generated By: Kristina Brown 1. Edgar is stranded on an island surrounded by an ocean of salt water. He is thirsty,

More information

Chemical Bonds. MATERIALS 24-well microplate calcium chloride candle citric acid conductivity tester ethanol gloves iron ring lab apron

Chemical Bonds. MATERIALS 24-well microplate calcium chloride candle citric acid conductivity tester ethanol gloves iron ring lab apron Microscale Chemical Bonds Chemical compounds are combinations of atoms held together by chemical bonds. These chemical bonds are of two basic types ionic and covalent. Ionic bonds result when one or more

More information

EXTRA CREDIT PAGES K

EXTRA CREDIT PAGES K Mixtures (13K) EXTRA CREDIT PAGES 13-14 K Elements and compounds are pure substances, but most of the materials you see every day are not. Instead, they are mixtures. A mixture is made of two or more substances

More information

Density of an Unknown

Density of an Unknown Experiment 3 Density of an Unknown Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. Purpose The density of an

More information

CHEMICAL SEPARATION EXPERIMENT 2

CHEMICAL SEPARATION EXPERIMENT 2 CHEMICAL SEPARATION EXPERIMENT 2 INTRODUCTION The term analysis in chemistry usually refer to the quantitative and qualitative determination of the components of a sample. Qualitative refering to the identity

More information

Virtual Solution Lab::

Virtual Solution Lab:: Name A Solution is a type of homogeneous mixture formed when one substance dissolves in another. The particles of the mixing substances are evenly spread throughout. The substance that is dissolved is

More information

3. Separation of a Mixture into Pure Substances

3. Separation of a Mixture into Pure Substances 3. Separation of a Mixture into Pure Substances Paper Chromatography of Metal Cations What you will accomplish in this experiment This third experiment provides opportunities for you to learn and practice:

More information

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate CEAC 105 GENERAL CHEMISTRY Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate Purpose: To enhance the understanding of stoichiometry, a reaction between iron and copper (II) sulfate

More information

Chemistry 151 Last Updated Dec Lab 8: Precipitation Reactions and Limiting Reagents

Chemistry 151 Last Updated Dec Lab 8: Precipitation Reactions and Limiting Reagents Chemistry 151 Last Updated Dec. 2013 Lab 8: Precipitation Reactions and Limiting Reagents Introduction In this lab you will perform a simple precipitation reaction between strontium nitrate and potassium

More information

Unit 6M.2: Making pure substances from mixtures

Unit 6M.2: Making pure substances from mixtures Unit 6M.2: Making pure substances from mixtures Making pure substances from mixtures Crystals Science skills: Classifying Observing Predicting By the end of this unit you should: Be able to suggest ways

More information

6.7 Design Your Own Experiment: Factors

6.7 Design Your Own Experiment: Factors 6.7 Design Your Own Experiment: Factors That Affect the Rate of Dissolving Page 158 PRESCRIBED LEARNING OUTCOMES measure substances and solutions according to ph, solubility, and concentration conduct

More information

Titration with an Acid and a Base

Titration with an Acid and a Base Skills Practice Titration with an Acid and a Base Titration is a process in which you determine the concentration of a solution by measuring what volume of that solution is needed to react completely with

More information

The Eight Solution Problem Exploring Reactions of Aqueous Ionic Compounds

The Eight Solution Problem Exploring Reactions of Aqueous Ionic Compounds 15 Exploring Reactions of Aqueous Ionic Compounds INTRODUCTION Your goal in this lab is to identify eight unknown solutions. You and your partner will first collect data by observing reactions between

More information

Basic Equipments and Instruments used in Chemistry laboratory: Balance: It is an instrument for measuring mass.

Basic Equipments and Instruments used in Chemistry laboratory: Balance: It is an instrument for measuring mass. Basic Equipments and Instruments used in Chemistry laboratory: Balance: It is an instrument for measuring mass. Pipettes: They are used to transfer of known volumes of liquids from one container to another.

More information

Chemical Reactions: Titrations

Chemical Reactions: Titrations 1 Chemical Reactions: Titrations ORGANIZATION Mode: laboratory work, work in pairs Grading: lab notes, lab performance (titration accuracy), and post-lab report Safety: goggles, lab coat, closed-toe shoes,

More information

EXPERIMENT 6. Physical and Chemical Changes Part 2 INTRODUCTION

EXPERIMENT 6. Physical and Chemical Changes Part 2 INTRODUCTION EXPERIMENT 6 Physical and Chemical Changes Part 2 INTRODUCTION Evidence of chemical change can be the evolution of heat or light, the formation of a gas (seen in Experiment 5), the appearance of a material

More information

Lab #5 - Limiting Reagent

Lab #5 - Limiting Reagent Objective Chesapeake Campus Chemistry 111 Laboratory Lab #5 - Limiting Reagent Use stoichiometry to determine the limiting reactant. Calculate the theoretical yield. Calculate the percent yield of a reaction.

More information

Answers. Mixtures. Year 7 Science Chapter 4. p75. p77. p79

Answers. Mixtures. Year 7 Science Chapter 4. p75. p77. p79 Answers Mixtures Year 7 Science Chapter 4 p75 p77 p79 1 A pure substance has a definite and consistent composition. Pure water is a pure substance consisting only of water atoms (H 2 O). 2 Pure salt is

More information

Experiment 8 Synthesis of Aspirin

Experiment 8 Synthesis of Aspirin Experiment 8 Synthesis of Aspirin Aspirin is an effective analgesic (pain reliever), antipyretic (fever reducer) and anti-inflammatory agent and is one of the most widely used non-prescription drugs. The

More information

Chapter 5, Lesson 5 Using Dissolving to Identify an Unknown

Chapter 5, Lesson 5 Using Dissolving to Identify an Unknown Chapter 5, Lesson 5 Using Dissolving to Identify an Unknown Key Concepts Different substances are made from different atoms, ions, or molecules, which interact with water in different ways. Since dissolving

More information

UNIT 01 LAB SAFETY & EQUIPMENT

UNIT 01 LAB SAFETY & EQUIPMENT UNIT 01 LAB SAFETY & EQUIPMENT Hook: What s wrong with this picture? Mrs. Medina Slide 2 Lab Safety 1. Conduct yourself in a responsible manner No horseplay or pranks No wandering or distracting students

More information

8 Enthalpy of Reaction

8 Enthalpy of Reaction E x p e r i m e n t Enthalpy of Reaction Lecture and Lab Skills Emphasized Calculating the heat and enthalpy of reactions. Writing net ionic equations. Using Hess s law to determine the enthalpy of a reaction.

More information

Student s Name: Date : Precipitation and gravimetric analysis of lead Iodide

Student s Name: Date : Precipitation and gravimetric analysis of lead Iodide Student s Name: Date : Background Precipitation and gravimetric analysis of lead Iodide In this experiment, you will obtain quantitative results for the reaction between lead (II) nitrate and sodium iodide

More information

Name Period Date. Lab 10: Paper Chromatography

Name Period Date. Lab 10: Paper Chromatography Name Period Date Lab 10: Paper Chromatography Objectives Known and unknown solutions of the metal ions Fe +, Cu 2+ and Ni 2+ will be analyzed using paper chromatography. An unknown solution containing

More information

Coordination Complexes

Coordination Complexes Coordination Complexes Experiment 9 Part I (Day 1) Synthesis and Analysis of Coordination Complexes Coordination complexes are formed between a metal ion (Lewis acid) and ligands (Lewis base). The splitting

More information

Chemistry 3202 Lab 6 Hess s Law 1

Chemistry 3202 Lab 6 Hess s Law 1 Chemistry 3202 Lab 6 Hess s Law 1 Lab 6 Hess's Law Introduction Chemical and physical changes are always accompanied by a change in energy. Energy changes may be observed by detecting heat flow between

More information

o Test tube In this experiment, you ll be observing the signs of chemical reactions. These include the following:

o Test tube In this experiment, you ll be observing the signs of chemical reactions. These include the following: Experiment: Chemical Reactions & Chemical s Objective In this experiment, students perform a variety of chemical reactions. For each reaction, student identify the signs that a reaction has occurred, write

More information

PART I: MEASURING MASS

PART I: MEASURING MASS Chemistry I Name Dr. Saulmon 2014-15 School Year Laboratory 1 Measuring Mass, Volume, and Temperature Monday, August 25, 2014 This laboratory is broken into three parts, each with its own introduction,

More information

Solubility Product Constants

Solubility Product Constants Solubility Product Constants PURPOSE To measure the solubility product constant (K sp ) of copper (II) iodate, Cu(IO 3 ) 2. GOALS To measure the molar solubility of a sparingly soluble salt in water. To

More information

Name: Block: Date: Student Notes. OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter.

Name: Block: Date: Student Notes. OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter. Name: Block: Date: LCPS Core Experience Heat Transfer Student Notes OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter. LINK 1. Particles in

More information

Working with Solutions. (and why that s not always ideal)

Working with Solutions. (and why that s not always ideal) Page 1 of 13 Working with Solutions (and why that s not always ideal) Learning Objectives: Solutions are prepared by dissolving a solute into a solvent A solute is typically a solid, but may also be a

More information

Evaluation copy. The Molar Mass of a Volatile Liquid. computer OBJECTIVES MATERIALS

Evaluation copy. The Molar Mass of a Volatile Liquid. computer OBJECTIVES MATERIALS The Molar Mass of a Volatile Liquid Computer 3 One of the properties that helps characterize a substance is its molar mass. If the substance in question is a volatile liquid, a common method to determine

More information

Chemical Reactions of Copper and Percent Recovery

Chemical Reactions of Copper and Percent Recovery and Percent Recovery EXPERIMENT 9 Prepared by Edward L. Brown, Lee University To take copper metal through series of chemical reactions that regenerates elemental copper. Students will classify the various

More information

2. Synthesis of Aspirin

2. Synthesis of Aspirin This is a two-part laboratory experiment. In part one, you will synthesize (make) the active ingredient in aspirin through a reaction involving a catalyst. The resulting product will then be purified through

More information

Chromatography Extraction and purification of Chlorophyll CHM 220

Chromatography Extraction and purification of Chlorophyll CHM 220 INTRODUCTION Extraction and purification of naturally occurring molecules is of the most common methods of obtaining organic molecules. Locating and identifying molecules found in flora and fauna can provide

More information

Solutions, Suspensions, and Colloids

Solutions, Suspensions, and Colloids Movie Special Effects Activity 3 Solutions, Suspensions, and Colloids GOALS In this activity you will: Explore different ways that materials can be mixed together to make new materials. Test some materials

More information

Buffers for Biological Systems Laboratory Instructor s Manual

Buffers for Biological Systems Laboratory Instructor s Manual Buffers for Biological Systems Laboratory Instructor s Manual 1. Purpose and Concepts Covered...1 2. Effect of Temperature and Concentration on ph...1 A. Preparing Buffers...2 B. Analysis and Discussion...3

More information

Saturday Science Lesson Plan Fall 2008

Saturday Science Lesson Plan Fall 2008 Saturday Science Lesson Plan Fall 2008 LEARNING OBJECTIVES STANDARDS 1.1.1 Observe, describe, draw, and sort objects carefully to learn about them. 1.2.6 Describe and compare objects in terms of number,

More information

Percentage of Acetic Acid in Vinegar

Percentage of Acetic Acid in Vinegar Microscale Percentage of Acetic Acid in Vinegar When sweet apple cider is fermented in the absence of oxygen, the product is an acid, vinegar. Most commercial vinegars are made by fermentation, but some,

More information

Physical and Chemical Changes Or How Do You Know When You ve Made Something New?

Physical and Chemical Changes Or How Do You Know When You ve Made Something New? Introduction Or How Do You Know When You ve Made Something New? Remember that all matter has characteristic physical and chemical properties. Matter can also undergo physical and chemical changes. How

More information

Core practical 6: Investigating chlorination of 2-methylpropan-2-ol

Core practical 6: Investigating chlorination of 2-methylpropan-2-ol Core practical 6 Teacher sheet Core practical 6: Objective To produce and purify a sample of 2-chloro-2-methylpropane Safety Wear goggles and gloves. 2-methylpropan-2-ol is flammable and harmful. Concentrated

More information

Chromatography: Candy Coating and Marker Colors Student Version

Chromatography: Candy Coating and Marker Colors Student Version Chromatography: Candy Coating and Marker Colors Student Version In this lab you will separate a mixture of unknown composition using several common household items. You will then perform a more specific

More information

Chem 2115 Experiment #10. Acids, Bases, Salts, and Buffers

Chem 2115 Experiment #10. Acids, Bases, Salts, and Buffers Chem 2115 Experiment #10 Acids, Bases, Salts, and Buffers OBJECTIVE: The goal of this series of experiments is to investigate the characteristics of acidic and basic solutions. We will explore the neutralization

More information

Experiment #5. Empirical Formula

Experiment #5. Empirical Formula Experiment #5. Empirical Formula Goal To experimentally determine the empirical formula of magnesium oxide based on reaction stoichiometry. Introduction The molecular formula (usually shortened to simply

More information