CReactants -;.. Products) or CReactants ~ Products) I Reactants form Products I Products form Reactants

Size: px
Start display at page:

Download "CReactants -;.. Products) or CReactants ~ Products) I Reactants form Products I Products form Reactants"

Transcription

1 Chern 12 Notes II. 1 and Dynamic Equilibrium Goals: Realize that reactions can go both in forward and in reverse. Define equilibrium. Understand the concept of dynamic equilibrium. State the characteristics of a system at equilibrium We know that many reactions are REVERSIBLE! CReactants -;.. Products) or CReactants ~ Products) I Reactants form Products I Products form Reactants A system is said to be at IIEquilibrium lj when the ov vj C\("t\ (")(. r Cl \<...; EQUALSthe (LVt'f':::l{ '('1= ra1l! use, ~, If o(" 1::.;..--->,-\-O ShGMJ \ lv204 ~ 2 J.V02 \ Ex: Consider the reaction below in a CLOSEDsystem: CO\CUI(\ S\ b... 0v0Y\ )~ > 9a~,,3 Cl~. collide '-IHh each other, the bonds between the ;'N"s break 1Meach molecule splits up into h/o molecules of NOZ 1

2 - Imagine we are watching this reaction in the lab. We are measuring the rate of the forward reaction by measuring the il[reactant]. 11 c: N 2-0 lot1 At the beginning of the reaction (t= 0), there is a h~h [N ] fj i,.,'~e, A graph of the forward reaction would.io?k like this:. '. _. '\ 5k~p.s\~ ( hljh C ~te'-l~'j... h \9h {C\t<- ) 0.6 [ J ~-~) (} B 9 11} TIME (min) - As the reaction starts, the reactant is consumed so [N ] de.lvzotu.s and the rate ~oes clo\.,0r\ (fewer reactant molecules, fewer collisions). - As slope of the line of the graph will get more gradual (less steep) Let's stop here and consider the REVERSEreaction! ~..-1Q\ ~ 2 molecules of N02 collide vitothe proper N'Ierg'J ~nd cotttsten geometry and form a molecule of N

3 If we graphed the rate of the reverse reaction, it would look like this: 0,6., , At t= 0, there is no N0 2 NO,l. \nq~ \\ \:MI' \,t \.Ilf' II. 0~.1 SO,S ra\z h'j\'\ fe.\{.e.v~ 0, ,2 ~ RA.TE (reverse) o TIME (minl 9 10 As N0 2 accumulates, those molecules can collide and form N Around t= 3, the rate begins to slow Let's compare the forward and reverse reaction rate graphs: ~ RA.TE (forward) 0, R.=nE (reverse) : TIME (mill) At t = 4 min, the rates are E.QU \ L Rate of forward reaction = rate of reverse reaction This system is at r.\\.i Y'\ C\ VY\ \ G equilibrium! ~[1 N02 is being used up at the SAME rate as it is being formed Ii -\-\{y,-l N204 is being formed at the SAME rate as it is being consumed 'o-e.c~u.~g 1V204 3 ~ "" 2 J.V02 C N 'J-0ltj'":: LenS \-UI\-tc:. NO..l. z. Lo" S-\"c;\.nI

4 Things you need to know about DYNAMIC EQUILIBRIUM:. \ ( t:\j-t n-yhou.j h S\Dpe = 0) The reaction has not.s+0 ppe.a Forward and reverse reaction continue at ~q.:\a C\ \ (" Q+e..s:. Changes are microscopic. No m C\ ( \f O~ Wp\ C changes occur (no visible, large scale changes so it appears as if nothing is happening). All observable properties are LJJ("lStCi(\\ (temp, [react], [prod], pressure, colour),\ " A system at equilibrium is a C, L...-OS ED II system. If we changed the temp, it would affect the equilibrium. -\-{.\'Y,p,S tch"\6tc\(\-t- 4 Characteristics ora SYstem at Equilibrium 1. The rate of the forward reaction = The rate of the reverse reaction 2. Microscopic processes. No macroscopic changes 3. The system is closed and the temperature is constant and uniform throughout. 4. The equilibrium can be approached from the left (starting with reactants) or from the right (starting with products). If sufficient Ea is available, systems not at equilibrium will tend to move towards equilibrium. STATIC EQUILIBRIUM: is the opposite of dynamic equilibrium. It will not move at all unless it is "pushed" in some way. Essentially, nothing is happening (system is balanced but particles are at rest).,~~rb\{s S1Ctt\Ofla~ rngt(b\q~ (O\'3-X- LASUC\.\\'1 ~ S L-U. So vel -"-""~-7- /) V '. (' L..J Ii'::. - ". D r nv\ S 0») i L52. o ~ 0 J 4 ~ \-:J LS,. I <) '. \.l 0 )1 ~ SfA-l \L: ZI s» rv'a M\.L.

5 At equilibrium... [reactants] -::/=- [products] (not equal in general) Analogy: if you have coins in your pockets (3 twoonies, 20 loonies) ~ -\-""<'1 CD\J\ \ 6\ b.u SOn'l0 CAS-e..S. *~b\;\ e XCh a"j0 1-T ~( 9.. L. * -~h-({\ '10lA e..)(cy\{l.('jl.+\t\-( O\-h-e.\{ uj Cl~ ~L~1-'T A mou(\-\-d~ Ch C\,Y'"\9 e. \ n -e,«c,\'"'\ POL"-e -\- \.s Uy\L\l C\V"j-{ J. bv\:\- C\.-M DV\ n t 0r ~ c.ctv'\ ~\ ~r. - Overtime, the back and forth rate is the same. The amount of money is each pocket has not changed. But the amount of money in each pocket is different! [two~nies] doesn't equal [loonies]. \~S. f0hr Ex: A < ---- > B (See page 40, Q 6), po (J(-er [J Rate forward = kforward[reactants] ~ 0,60 See the table of data. a) Plot the values of [A] vs time, and [B] vs time: \ \L \:D O:1J o Jo 0.'-\ O 'L 0 \ Rate reverse = kreverse [Products] '-V--,-l O~\ 0 C 5'1 : [3\,\:\I~ l.(f() J o 'L ~ '4 Co "1 ~ q \D +l (Y\ ~ l\'y\ ~(\ )

6 b) When are th,e RATESequal? (look at d~ta) ') '0 m \" ('00 \-\-\ ra-\-(.~ -:. D.. \ 00 What does this look like on the graph? Are the concentrations the 1) m;{\.}bd~r, \ '\("\-{S CAr c "\..e v.e.\' '. L A~ ~ Lt>,(, &\ C\ (\-t ) C \SJ e; co (\&-\ C4(y\=. _ c) When does [A] = [B]? o.-\- \ m,' (\ L AJ =F C Bj Isthe systems at equilibrium when [A] = [B]7_N 0. f G\ k.s oj e nd-t ecr-lata \ d) When is the forwa rd rate the greatest? ~. G\ I{\j in (~ (h;,,bh C (-\-'J ) e) What is the numerical value of the ratio [products]/ [reactants] at equilibrium? \' 000-0,.2-00 Ex 2) Hz + Brz < ---- > 2 HBr Will the ratio of [HBr]/ [H 2 ] be 2/ 1 \~ \}'0 O\i- ec\v\~v, [?m ~1 [ \{ ec\ l\j. N t n-l.(( e~~c\(\'~ (or 2:1) at equilibrium? \...-:.-:...::O~ ---"? 'D-e..~--tY\6's 0'(\ -\-\1\ L\-\B'f] O\~C\ [\-\;=J ~"'(\D\ \-\ 1- \Xt) c\ U (p~ ~ rrxo \ f'(\o \ \-\ 6y f etactl' 03. _ ('(\0 '\ \-\'- «fl.ct ch (1j \4Br.~ - \ But it is true to say that ratio of moles of HBr reacting to moles of H2 reacting is 2: 1 Do Questions p. 43 #8-13 in Hebden 6

Le Chatelier's Principle. 2. How changes in each factor affect equilibrium (Le Chatelier's Principle)

Le Chatelier's Principle. 2. How changes in each factor affect equilibrium (Le Chatelier's Principle) Chern 12 Notes 11.4 - Le Chatelier's Principle Goals are to learn: 1. The factors that can cause changes in a system at equilibrium 2. How changes in each factor affect equilibrium (Le Chatelier's Principle)

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS.

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS. !! www.clutchprep.com CONCEPT: RATES OF CHEMICAL REACTIONS is the study of reaction rates, and tells us the change in concentrations of reactants or products over a period of time. Although a chemical

More information

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place.

Kinetics - Chapter 14. reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. The study of. Kinetics - Chapter 14 reactions are reactions that will happen - but we can t tell how fast. - the steps by which a reaction takes place. Factors that Affect Rx Rates 1. The more readily

More information

Rates, Temperature and Potential Energy Diagrams Worksheet

Rates, Temperature and Potential Energy Diagrams Worksheet SCH4U1 ER10 Name: Date: Rates, Temperature and Potential Energy Diagrams Worksheet Part 1: 1. Use the potential energy diagram shown to the right to answer the following: a. Label the axis. y axis is potential

More information

Unit 13: Rates and Equilibrium- Guided Notes

Unit 13: Rates and Equilibrium- Guided Notes Name: Period: What is a Chemical Reaction and how do they occur? Unit 13: Rates and Equilibrium- Guided Notes A chemical reaction is a process that involves of atoms Law of Conservation of : Mass is neither

More information

1.6 -ENTHALPY CHANGES (~Hl. H2.. Let's consider a simple reaction (decomposition of ~ gas): To break the bond between the 2 H atoms, CYle~

1.6 -ENTHALPY CHANGES (~Hl. H2.. Let's consider a simple reaction (decomposition of ~ gas): To break the bond between the 2 H atoms, CYle~ Unit 1 1.6 -ENTHALPY CHANGES (~Hl Bond Energies H2.. Let's consider a simple reaction (decomposition of ~ gas): To break the bond between the 2 H atoms, CYle~ must be C\ d c\ ~ ct to the molecule. Th t-

More information

Unit I: Reaction Kinetics Introduction:

Unit I: Reaction Kinetics Introduction: Chemistry 12 Unit I: Reaction Kinetics Introduction: Kinetics Definition: All reactions occur at different rates Examples: Slow Reactions Fast Reactions Chemists need to understand kinetics because sometimes

More information

Collision Geometry (comparing alignment)

Collision Geometry (comparing alignment) Collision Geometry (comparing alignment) Hebden # 29-32 consider the rxn: 2 + B 2 2B: E.g. 1) + B B NO RXN E.g. 1collision has alignment (need E for collision to be effective) E.g. 2) B B B + + B B B Reactant

More information

Today. Review Transition State Theory Arrhenius Theory

Today. Review Transition State Theory Arrhenius Theory Today Review Transition State Theory Arrhenius Theory Kinetic Mechanisms Why does a reaciton follow a particular rate law? What is actually happening in the reaction? Arrhenius Law The rate constant k

More information

In a forward reaction, the reactants collide to produce products and it goes from left to

In a forward reaction, the reactants collide to produce products and it goes from left to Worksheet #1 Approaching Equilibrium Read unit II your textbook. Answer all of the questions. Do not start the questions until you have completed the reading. Be prepared to discuss your answers next period.

More information

N Goalby chemrevise.org

N Goalby chemrevise.org 4.6 Rate and Extent of Chemical Change Rates of Reaction The rate of a chemical reaction can be found by measuring the amount of a reactant used or the amount of product formed over time: Rate of reaction

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa.

A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa. Chemistry 12 Unit II Dynamic Equilibrium Notes II.1 The Concept of Dynamic Equilibrium A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa. A reversible

More information

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc.

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc. #73 Notes Unit 9: Kinetics and Equilibrium Ch. Kinetics and Equilibriums I. Reaction Rates NO 2(g) + CO (g) NO (g) + CO 2(g) Rate is defined in terms of the rate of disappearance of one of the reactants,

More information

a) Write the equation for the overall reaction. (Using steps 1 and 2)

a) Write the equation for the overall reaction. (Using steps 1 and 2) Chemistry 12 Reaction Mechanisms Worksheet Name: Date: Block: 1. It is known that compounds called chlorofluorocarbons (C.F.C.s) (eg. CFCl3) will break up in the presence of ultraviolet radiation, such

More information

Take home Exam due Wednesday, Aug 26. In class Exam will be the that morning class multiple choice questions.

Take home Exam due Wednesday, Aug 26. In class Exam will be the that morning class multiple choice questions. Announcements Take home Exam due Wednesday, Aug 26. In class Exam will be the that morning class. 15-20 multiple choice questions. Updated projects Aug 28: answer what lab chemistry needs to get done to

More information

UNIT I PPT #2 Collision Theory KEY.notebook. September 28, 2010 UNIT I COLLISION THEORY COLLISION THEORY COLLISION THEORY.

UNIT I PPT #2 Collision Theory KEY.notebook. September 28, 2010 UNIT I COLLISION THEORY COLLISION THEORY COLLISION THEORY. UNIT I Collision Theory COLLISION THEORY explains rates on the molecular level Basic Premise: before molecules can react, they must collide http://www.chem.iastate.edu/group/greenbowe/section s/projectfolder/animations/no+o3singlerxn.html

More information

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate.

Chapter 16. Rate Laws. The rate law describes the way in which reactant concentration affects reaction rate. Rate Laws The rate law describes the way in which reactant concentration affects reaction rate. A rate law is the expression that shows how the rate of formation of product depends on the concentration

More information

In order for two molecules to react, they must with each other. When they collide they transfer among themselves.

In order for two molecules to react, they must with each other. When they collide they transfer among themselves. Chemistry 12 Reaction Kinetics II Name: Date: Block: 1. Collision Theory 2. Activation Energy 3. Potential Energy Diagrams Collision Theory (Kinetic Molecular Theory) In order for two molecules to react,

More information

ALE 1. Chemical Kinetics: Rates of Chemical Reactions

ALE 1. Chemical Kinetics: Rates of Chemical Reactions Name Chem 163 Section: Team Number: ALE 1. Chemical Kinetics: Rates of Chemical Reactions (Reference: Sections 16.1 16.2 + parts of 16.5 16.6 Silberberg 5 th edition) How do the surface area, concentration

More information

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T.

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T. Chemical Kinetics Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light on the reaction mechanism (exactly

More information

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions UNIT 16: Chemical Equilibrium collision theory activation energy activated complex reaction rate reversible reaction chemical equilibrium law of chemical equilibrium equilibrium constant homogeneous equilibrium

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Ch 13 Rates of Reaction (Chemical Kinetics)

Ch 13 Rates of Reaction (Chemical Kinetics) Ch 13 Rates of Reaction (Chemical Kinetics) Reaction Rates and Kinetics - The reaction rate is how fast reactants are converted to products. - Chemical kinetics is the study of reaction rates. Kinetics

More information

Limiting Reactants. In other words once the reactant that is present in the smallest amount is completely consumed the reaction will stop.

Limiting Reactants. In other words once the reactant that is present in the smallest amount is completely consumed the reaction will stop. In any type of chemical reaction, the amount of product that can be produced is determined by the reactant which is in the smallest amount. In any type of chemical reaction, the amount of product that

More information

Reaction Kinetics Multiple Choice

Reaction Kinetics Multiple Choice Reaction Kinetics Multiple Choice January 1999 1. Consider the reaction: Ca (s) + 2H 2 O (l) Ca(OH) 2 (aq) + H 2 (g) At a certain temperature, 2.50 g Ca reacts completely in 30.0 seconds. The rate of consumption

More information

Since reactions want to minimize energy you would think that the reaction would be spontaneous like a ball rolling down a hill

Since reactions want to minimize energy you would think that the reaction would be spontaneous like a ball rolling down a hill Notes 1.1 Exothermic reactions give off heat 120 100 80 60 40 20 0 0 2 4 6 Heat Content Since reactions want to minimize energy you would think that the reaction would be spontaneous like a ball rolling

More information

3.2.2 Kinetics. Effect of Concentration. 135 minutes. 134 marks. Page 1 of 13

3.2.2 Kinetics. Effect of Concentration. 135 minutes. 134 marks. Page 1 of 13 3.. Kinetics Effect of Concentration 35 minutes 34 marks Page of 3 M. (a) Activation energy;- The minimum energy needed for a reaction to occur / start () Catalyst effect:- Alternative route (or more molecules

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium Chapter 10 Earlier we looked at chemical reactions and determined the amounts of substances that react and the products that form. Now we are interested in how fast

More information

and Chemical Equilibrium Reaction Rates

and Chemical Equilibrium Reaction Rates Reaction Rates and Chemical Equilibrium Chapter 10 If we know how fast a medication acts on the body, we can adjust the time over which the medication is taken. In construction, substances are added to

More information

Reaction Rates and Chemical Equilibrium. Chapter 10

Reaction Rates and Chemical Equilibrium. Chapter 10 Reaction Rates and Chemical Equilibrium Chapter 10 Earlier we looked at chemical reactions and determined the amounts of substances that react and the products that form. Now we are interested in how fast

More information

N H 2 2 NH 3 and 2 NH 3 N H 2

N H 2 2 NH 3 and 2 NH 3 N H 2 Chemical Equilibrium Notes (Chapter 18) So far, we ve talked about all chemical reactions as if they go only in one direction. However, as with many things in life, chemical reactions can go both in the

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Factors that Affect Reaction rates Reaction Rates Concentration and Rate The Change of Concentration with Time Temperature and Rate Reactions Mechanisms Catalysis Chemical

More information

Physical Equilibria. Outcome: Relate the concept of equilibrium to physical and chemical systems. Include conditions necessary for equilibrium.

Physical Equilibria. Outcome: Relate the concept of equilibrium to physical and chemical systems. Include conditions necessary for equilibrium. Physical Equilibria Outcome: Relate the concept of equilibrium to physical and chemical systems. Include conditions necessary for equilibrium. Recall From Chem 30S: 1. Evaporation: Some molecules on the

More information

Chemistry 12 Worksheet Reaction Mechanisms

Chemistry 12 Worksheet Reaction Mechanisms Chemistry 12 Worksheet 1-3 - Reaction Mechanisms 1. It is known that compounds called chlorofluorocarbons (C.F.C.s) (eg. CFCl 3 ) will break up in the presence of ultraviolet radiation, such as found in

More information

CHEM Chemical Kinetics. & Transition State Theory

CHEM Chemical Kinetics. & Transition State Theory Chemical Kinetics Collision Theory Collision Theory & Transition State Theory The rate of reaction is markedly affected by temperature. k versus T Ae E a k RT Two theories were developed to explain the

More information

Last 4 Digits of USC ID:

Last 4 Digits of USC ID: Chemistry 05 B Practice Exam Dr. Jessica Parr First Letter of last Name PLEASE PRINT YOUR NAME IN BLOCK LETTERS Name: Last 4 Digits of USC ID: Lab TA s Name: Question Points Score Grader 8 2 4 3 9 4 0

More information

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction?

Reaction Rates & Equilibrium. What determines how fast a reaction takes place? What determines the extent of a reaction? Reaction Rates & Equilibrium What determines how fast a reaction takes place? What determines the extent of a reaction? Reactants Products 1 Reaction Rates Vary TNT exploding. A car rusting. Dead plants

More information

Thermochemistry, Reaction Rates, & Equillibrium

Thermochemistry, Reaction Rates, & Equillibrium Thermochemistry, Reaction Rates, & Equillibrium Reaction Rates The rate at which chemical reactions occur Reaction Rates RXN rate = rate at which reactants change into products over time. This tells you

More information

Collision Theory. Reaction Rates A little review from our thermodynamics unit. 2. Collision with Incorrect Orientation. 1. Reactants Must Collide

Collision Theory. Reaction Rates A little review from our thermodynamics unit. 2. Collision with Incorrect Orientation. 1. Reactants Must Collide Reaction Rates A little review from our thermodynamics unit Collision Theory Higher Temp. Higher Speeds More high-energy collisions More collisions that break bonds Faster Reaction In order for a reaction

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Equilibrium To be in equilibrium is to be in a state of balance: Chapter 15 Chemical Equilibrium - Static Equilibrium (nothing happens; e.g. a tug of war). - Dynamic Equilibrium (lots of things happen,

More information

AP Chemistry 12 Reaction Kinetics III. Name: Date: Block: 1. Catalysts 2. Mechanisms. Catalysts

AP Chemistry 12 Reaction Kinetics III. Name: Date: Block: 1. Catalysts 2. Mechanisms. Catalysts AP Chemistry 12 Reaction Kinetics III Name: Date: Block: 1. Catalysts 2. Mechanisms Catalysts Catalysts provide an alternate reaction pathway in which a different, activated complex can form. Catalysts

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

Chemistry 12 Review Sheet on Unit 1 -Reaction Kinetics

Chemistry 12 Review Sheet on Unit 1 -Reaction Kinetics Chemistry 12 Review Sheet on Unit 1 -Reaction Kinetics 1. Looking at the expressions for reaction rate on page 1 SW, write similar expressions with which you could express rates for the following reactions.

More information

10 Reaction rates and equilibrium Answers to practice questions. OCR Chemistry A. number 1 (a) 1: The enthalpy change, H;

10 Reaction rates and equilibrium Answers to practice questions. OCR Chemistry A. number 1 (a) 1: The enthalpy change, H; 1 (a) 1: The enthalpy change, H; 2: The activation energy, E a 1 (b) H is unaffected as it is the difference between the reactants and products E a decreases as a catalyst allows an alternative route of

More information

Test Review Unit 3_2 Chemical reactions. Fundamentals Identify the letter of the choice that best completes the statement or answers the question.

Test Review Unit 3_2 Chemical reactions. Fundamentals Identify the letter of the choice that best completes the statement or answers the question. Test Review Unit 3_2 Chemical reactions. Fundamentals Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following are chemical changes: a) Sugar

More information

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 14 John D. Bookstaver St. Charles Community College Cottleville, MO In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at

More information

Lecture Presentation. Chapter 14. James F. Kirby Quinnipiac University Hamden, CT. Chemical Kinetics Pearson Education, Inc.

Lecture Presentation. Chapter 14. James F. Kirby Quinnipiac University Hamden, CT. Chemical Kinetics Pearson Education, Inc. Lecture Presentation Chapter 14 James F. Kirby Quinnipiac University Hamden, CT In chemical kinetics we study the rate (or speed) at which a chemical process occurs. Besides information about the speed

More information

6.4 and 6.5 FACTORS AFFECTING REACTION RATES. Factors Affecting the Rate of a Homogenous or Heterogeneous Reaction:

6.4 and 6.5 FACTORS AFFECTING REACTION RATES. Factors Affecting the Rate of a Homogenous or Heterogeneous Reaction: 6.4 and 6.5 FACTORS AFFECTING REACTION RATES Homogeneous reactions Heterogeneous reactions Factors Affecting the Rate of a Homogenous or Heterogeneous Reaction: 1. Temperature Maxwell-Boltzmann Distribution

More information

Answers to Unit 4 Review: Reaction Rates

Answers to Unit 4 Review: Reaction Rates Answers to Unit 4 Review: Reaction Rates Answers to Multiple Choice 1. c 13. a 25. a 37. c 49. d 2. d 14. a 26. c 38. c 50. d 3. c 15. d 27. c 39. c 51. b 4. d 16. a 28. b 40. c 52. c 5. c 17. b 29. c

More information

Chapter 17. Equilibrium

Chapter 17. Equilibrium Chapter 17 Equilibrium How Chemical Reactions Occur Chemists believe molecules react by colliding with each other. If a collision is violent enough to break bonds, new bonds can form. Consider the following

More information

Unit 1. Reaction Kinetics

Unit 1. Reaction Kinetics Unit 1. Reaction Kinetics Given: That butane takes less energy input to burn than a nacho chip; draw the graph of the reaction for both items. Reaction kinetics is the study of the rates and the factors,

More information

Chapter 11: CHEMICAL KINETICS

Chapter 11: CHEMICAL KINETICS Chapter : CHEMICAL KINETICS Study of the rate of a chemical reaction. Reaction Rate (fast or slow?) Igniting gasoline? Making of oil? Iron rusting? We know about speed (miles/hr). Speed Rate = changes

More information

Completion Reactions and Reversible Reactions

Completion Reactions and Reversible Reactions Completion Reactions and Reversible Reactions If enough oxygen gas is provided for the following reaction, almost all of the sulfur will react: S 8 (s) + 8O 2 (g) 8SO 2 (g) Reactions such as this one,

More information

Chapter 22. Reaction Rate & Chemical Equilibrium

Chapter 22. Reaction Rate & Chemical Equilibrium Chapter 22 Reaction Rate & Chemical Equilibrium Stability of Compounds! In 2 TiO 2 Ti + O 2 n Overall energy change is (+) w does not spontaneously decompose @ room temp. n Thermodynamically Stable Stability

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

Concentration 0. 5 M solutions 1. 0 M solutions. Rates Fast Slow. Which factor would account for the faster reaction rate in Experiment 1?

Concentration 0. 5 M solutions 1. 0 M solutions. Rates Fast Slow. Which factor would account for the faster reaction rate in Experiment 1? 72. Consider the following experimental results: Experiment 1 Experiment 2 2+ - - 4 2 2 4 aq Reactants Fe ( aq) + MnO4 ( aq) MnO ( aq) + H C O ( ) Temperature 20 C 40 C Concentration 0. 5 M solutions 1.

More information

Chemistry 12 Reaction Kinetics I. Name: Date: Block: 1. Calculating Rates 2. Measuring Rates 3. Factors Affecting Rates

Chemistry 12 Reaction Kinetics I. Name: Date: Block: 1. Calculating Rates 2. Measuring Rates 3. Factors Affecting Rates Chemistry 12 Reaction Kinetics I Name: Date: Block: 1. Calculating Rates 2. Measuring Rates 3. Factors Affecting Rates Monitoring and Calculating Reaction Rates Reaction Rate = Time units: Rate Units:

More information

C6 Quick Revision Questions

C6 Quick Revision Questions C6 Quick Revision Questions H = Higher tier only All questions apply for combined and separate science Question 1... of 50 List 3 ways the time of a reaction can be measured. Answer 1... of 50 Loss of

More information

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature Chapter 13 - Chemical Kinetics II Integrated Rate Laws Reaction Rates and Temperature Reaction Order - Graphical Picture A ->Products Integrated Rate Laws Zero Order Reactions Rate = k[a] 0 = k (constant

More information

CHEMISTRY. Chapter 14 Chemical Kinetics

CHEMISTRY. Chapter 14 Chemical Kinetics CHEMISTRY The Central Science 8 th Edition Chapter 14 Kozet YAPSAKLI kinetics is the study of how rapidly chemical reactions occur. rate at which a chemical process occurs. Reaction rates depends on The

More information

3. Increased surface area (1) more collisions (1) 2

3. Increased surface area (1) more collisions (1) 2 3. Increased surface area (1) more collisions (1) 2 Mill Hill High School 1 [9] (c) (i) 2H 2 O 2 2H 2 O + O 2 1 (ii) Speeds up (alters the rate of) a chemical reaction 1 Remains unchanged (or not used

More information

Chem 12 Equilibrium, Enthalpy and Entropy Name:

Chem 12 Equilibrium, Enthalpy and Entropy Name: Chem 12 Equilibrium, Enthalpy and Entropy Name: 1. What do people mean when they say that a reaction is reversible? 2. Give four things which are true about a system at equilibrium: 1. _ 2. _ 3. _ 4. _

More information

first later later still successful collision ( reaction ) low conc. both high conc. blue high conc. both low conc. red

first later later still successful collision ( reaction ) low conc. both high conc. blue high conc. both low conc. red Collision theory Basic idea (basic premise) http://www.chem.iastate.edu/group/greenbowe/sections/projectfolder/animations/no+o3singlerxn.html - before molecules can react, they must collide. H 2 + I 2

More information

Chemical Kinetics and Equilibrium

Chemical Kinetics and Equilibrium Chemical Kinetics and Equilibrium Part 1: Kinetics David A. Katz Department of Chemistry Pima Community College Tucson, AZ USA Chemical Kinetics The study of the rates of chemical reactions and how they

More information

Chapter 14. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 14. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 14 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Chemical Reac+ons and Enzymes. Lesson Overview. Lesson Overview. 2.4 Chemical Reactions and Enzymes

Chemical Reac+ons and Enzymes. Lesson Overview. Lesson Overview. 2.4 Chemical Reactions and Enzymes Lesson Overview Chemical Reac+ons and Enzymes Lesson Overview 2.4 Chemical Reactions and Enzymes THINK ABOUT IT Living things are made up of chemical compounds, but chemistry isn t just what life is made

More information

MCAT General Chemistry Discrete Question Set 20: Kinetics & Equilibrium

MCAT General Chemistry Discrete Question Set 20: Kinetics & Equilibrium MCAT General Chemistry Discrete Question Set 0: Kinetics & Equilibrium Question No. 1 of 10 Instruction: (1) Read the problem statement and answer choices carefully () Work the problems on paper as needed

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics How fast do chemical processes occur? There is an enormous range of time scales. Chapter 14 Chemical Kinetics Kinetics also sheds light on the reaction mechanism (exactly how the reaction occurs). Why

More information

Date: SCH 4U Name: ENTHALPY CHANGES

Date: SCH 4U Name: ENTHALPY CHANGES Date: SCH 4U Name: ENTHALPY CHANGES Enthalpy (H) = heat content of system (heat, latent heat) Enthalpy = total energy of system + pressure volume H = E + PV H = E + (PV) = final conditions initial conditions

More information

Chemical Kinetics -- Chapter 14

Chemical Kinetics -- Chapter 14 Chemical Kinetics -- Chapter 14 1. Factors that Affect Reaction Rate (a) Nature of the reactants: molecular structure, bond polarity, physical state, etc. heterogeneous reaction: homogeneous reaction:

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Learning goals and key skills: Understand the factors that affect the rate of chemical reactions Determine the rate of reaction given time and concentration Relate the rate

More information

Sect 7.1 Chemical Systems in Balance HMWK: Read pages

Sect 7.1 Chemical Systems in Balance HMWK: Read pages SCH 4UI Unit 4 Chemical Systems and Equilibrium Chapter 7 Chemical Equilibrium Sect 7.1 Chemical Systems in Balance HMWK: Read pages 420-424 *Some reactions are reversible, ie not all reactions are as

More information

Gases have important properties that distinguish them from solids and liquids:

Gases have important properties that distinguish them from solids and liquids: Kinetic molecular theory Gases have important properties that distinguish them from solids and liquids: Gases diffuse to occupy available space. For example, the molecules responsible for the scent of

More information

Forces & Newton s Laws. Honors Physics

Forces & Newton s Laws. Honors Physics Forces & Newton s Laws Honors Physics Newton s 1 st Law An object in motion stays in motion, and an object at rest stays at rest, unless an unbalanced force acts on it. An object will maintain a constant

More information

Learning Guide for Chapter 7 - Organic Reactions I

Learning Guide for Chapter 7 - Organic Reactions I Learning Guide for Chapter 7 - rganic Reactions I I. Introduction to Reactions II. Principles of Kinetics III. Principles of Thermodynamics IV. cleophiles and Electrophiles V. Acids and Bases What a chemical

More information

7.1 Describing Reactions

7.1 Describing Reactions Chapter 7 Chemical Reactions 7.1 Describing Reactions Chemical Equations Equation states what a reaction starts with, and what it ends with. Reactants the starting materials that undergo change. (On the

More information

Dynamic Equilibrium. going back and forth at the same rate

Dynamic Equilibrium. going back and forth at the same rate Dynamic Equilibrium going back and forth at the same time at the same rate LeChatelier s Principle If a system at equilibrium is disturbed it will respond in the direction that counteracts the disturbance

More information

CHEM 102 Winter 10 Exam 2(a)

CHEM 102 Winter 10 Exam 2(a) CHEM 102 Winter 10 Exam 2(a) On the answer sheet (scantron) write your Name, Student ID Number, and Recitation Section Number. Choose the best (most correct) answer for each question AND ENTER IT ON YOUR

More information

a) Write the equation for the overall reaction. (Using steps 1 and 2)

a) Write the equation for the overall reaction. (Using steps 1 and 2) Chemistry 1 Reaction Mechanisms Worksheet Name: Date: Block: 1. It is known that compounds called chlorofluorocarbons (C.F.C.s) (eg. CFCl3) will break up in the presence of ultraviolet radiation, such

More information

Unit A: Equilibrium General Outcomes:

Unit A: Equilibrium General Outcomes: Unit A: Equilibrium General Outcomes: Explain that there is a balance of opposing reactions in chemical equilibrium systems. Determine quantitative relationships in simple equilibrium systems. 2 Read p.

More information

Lesson Ten. What role does energy play in chemical reactions? Grade 8. Science. 90 minutes ENGLISH LANGUAGE ARTS

Lesson Ten. What role does energy play in chemical reactions? Grade 8. Science. 90 minutes ENGLISH LANGUAGE ARTS Lesson Ten What role does energy play in chemical reactions? Science Asking Questions, Developing Models, Investigating, Analyzing Data and Obtaining, Evaluating, and Communicating Information ENGLISH

More information

How fast or slow will a reaction be? How can the reaction rate may be changed?

How fast or slow will a reaction be? How can the reaction rate may be changed? Part I. 1.1 Introduction to Chemical Kinetics How fast or slow will a reaction be? How can the reaction rate may be changed? *In order to understand how these factors affect reaction rates, you will also

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

Equilibrium. Chapter How Reactions Occur How Reactions Occur

Equilibrium. Chapter How Reactions Occur How Reactions Occur Copyright 2004 by Houghton Mifflin Company. Equilibrium Chapter 16 ll rights reserved. 1 16.1 How Reactions Occur Kinetics: the study of the factors that effect speed of a rxn mechanism by which a rxn

More information

It must be determined from experimental data, which is presented in table form.

It must be determined from experimental data, which is presented in table form. Unit 10 Kinetics The rate law for a reaction describes the dependence of the initial rate of a reaction on the concentrations of its reactants. It includes the Arrhenius constant, k, which takes into account

More information

Assessment Schedule 2016 Chemistry: Demonstrate understanding of chemical reactivity (91166)

Assessment Schedule 2016 Chemistry: Demonstrate understanding of chemical reactivity (91166) NCEA Level 2 Chemistry (91166) 2016 page 1 of 6 Assessment Schedule 2016 Chemistry: Demonstrate understanding of chemical reactivity (91166) Evidence Statement Q Evidence Achievement Merit Excellence ONE

More information

Review Sheet 6 Math and Chemistry

Review Sheet 6 Math and Chemistry Review Sheet 6 Math and Chemistry The following are some points of interest in Math and Chemistry. Use this sheet when answering these questions. Molecular Mass- to find the molecular mass, you must add

More information

CFC: chlorofluorocarbons

CFC: chlorofluorocarbons The rate of reaction is markedly affected by temperature. Chemical Kinetics & k versus T Two theories were developed to explain the temperature effects. 1. 2. 2 UV radiation strikes a CFC molecule causing

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

Kinetics Practice Test 2017 Name: date: 1. Use the data provided the answer the question.

Kinetics Practice Test 2017 Name: date: 1. Use the data provided the answer the question. Kinetics Practice Test 2017 Name: date: 1. Use the data provided the answer the question. The data above was obtained for a reaction in which X + Y Z. Which of the following is the rate law for the reaction?

More information

There is not enough activation energy for the reaction to occur. (Bonds are pretty stable already!)

There is not enough activation energy for the reaction to occur. (Bonds are pretty stable already!) Study Guide Chemical Kinetics (Chapter 12) AP Chemistry 4 points DUE AT QUIZ (Wednesday., 2/14/18) Topics to be covered on the quiz: chemical kinetics reaction rate instantaneous rate average rate initial

More information

Le Chatelier's principle

Le Chatelier's principle Le Chatelier's principle Any factor that can affect the rate of either the forward or reverse reaction relative to the other can potentially affect the equilibrium position. The following factors can change

More information

CHEMISTRY 12 EQUILIBRIUM PROPERTIES & ENTROPY AND ENTHALPY WORKSHEET CHEMISTRY 12 EQUILIBRIUM PROPERTIES WORKSHEET

CHEMISTRY 12 EQUILIBRIUM PROPERTIES & ENTROPY AND ENTHALPY WORKSHEET CHEMISTRY 12 EQUILIBRIUM PROPERTIES WORKSHEET CHEMISTRY 12 EQUILIBRIUM PROPERTIES & ENTROPY AND ENTHALPY WORKSHEET CHEMISTRY 12 EQUILIBRIUM PROPERTIES WORKSHEET 1) Write six statements that apply to all chemical equilibrium systems. (2 marks) System

More information

N Goalby chemrevise.org

N Goalby chemrevise.org 4.6 Rate and Extent of Chemical Change Rates of Reaction The rate of a chemical reaction can be found by measuring the amount of a reactant used or the amount of product formed over time: Rate of reaction

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium 1 Equilibrium We ve already used the phrase equilibrium when talking about reactions. In principle, every chemical reaction is reversible... capable of moving in the forward or backward

More information

Chapter 14 Homework Answers

Chapter 14 Homework Answers Chapter 14 Homework Answers 14.47 The slope of the tangent to the curve at each time is the negative of the rate at each time: Rate 60 = 8.5 10 4 mol L 1 s 1 Rate 120 = 4.0 10 4 mol L 1 s 1 14.49 From

More information

Chapter 12. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Chemical. Kinetics

Chapter 12. Kinetics. Factors That Affect Reaction Rates. Factors That Affect Reaction Rates. Chemical. Kinetics PowerPoint to accompany Kinetics Chapter 12 Chemical Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information