Electrolysis of pure water in a thin layer cell

Size: px
Start display at page:

Download "Electrolysis of pure water in a thin layer cell"

Transcription

1 Electrolysis of pure water in a thin layer cell Koichi Jeremiah Aoki*, Chunyan Li, Toyohiko Nishiumi, Jingyuan Chen Department of Applied Physics, University of Fukui, Bunkyo, Fukui, Japan Key words: dissociation kinetics of water; resistivity of water; electrolysis of pure water in thin layer cell; Nernst-Planck equation * Ph one , Fax , kaoki@u-fukui.ac.jp (k.j. Aoki) 1

2 1. Introduction Micro-reactors have been employed for synthesizing small amounts of unstable chemicals for immediate use [1,2]. They are suitable for reactions under conditions of uncommonly high temperature, high concentration and high purity. In addition, they can control such accurate reaction parameters as to achieve subtle mixing and localized concentration [3]. These advantages can be realized in electrochemical micro-reactors, which facilitate ionic transport due to local electric fields, interaction of products at an anode and a cathode, and occurrence of unexpected reactions with salts [4,5]. Several examples can be cited briefly in the following. Micro-electrolysis can be performed at low concentration of supporting electrolyte because of low solution resistance in a small cell [6-9]. The flow cell with a narrow electrode separation has allowed electrochemical treatments of water without supporting electrolytes [ 10 ]. Mass transport of electrochemical products to a counter electrode has been discussed in the light of optimization of cell structures [11]. Electrolysis voltage at segmented electrodes has been controlled locally to a diffusion limited value [12]. Although reaction potential cannot be poorly controlled in conventional, synthetic cells, micro-reactors have made it possible to obtain cyclic voltammograms [13]. Microfluidic channel flow devices have been fabricated for in situ simultaneous hydrodynamic electrochemical ESR, resulting in minimal dielectric loss and a high level of sensitivity [14,15]. Generator-collector experiments in flow cells have been made at a single macroelectrode, and used to detect local ph changes adjacent to the electrode surface [16,17]. Electrochemical coupling between parallel microbands in the linear microchannel is useful for evaluating in situ the average velocity rates of the flow [ 18 ]. Recent work on electrochemical micro-reactors has been reviewed and a number of examples can be seen [19]. Conductivity of solution at low concentration of supporting electrolyte varies with an advance of reactions because reaction products have electric charge different from 2

3

4

5 Voltammetry was made in nitrogen atmosphere covered with a plastic bag under the nitrogen gas pressure slightly larger than the atmospheric pressure at room temperature (24 ± 2 C). The water in the cell was quiescent. Voltammograms for decomposition of water without solution resistance were obtained in 0.1 mol dm^-3 NaClO_4 aqueous solution at film-coated platinum rods. Reproducibility of the voltammograms was confirmed by overlap of three times voltammograms. 3. Results and Discussion 3.1 Computation of concentration profiles At parallel electrodes with a very narrow inter-electrode distance, w, the product H^+ at the anode reacts with the product OH^- at the cathode to reach the equilibrium. Then the redox cycle occurs to enhance the current. Conditions of causing the redox cycle may depend not only on w and k_r but also on fluxes of the ions by diffusion and electric migration. Therefore we formulate here the mass transport. The concentrations of H^+ and OH^-, denoted by c_+ and c_- respectively, are satisfied with the continuum and kinetic equation for fluxes J_+ of H^+ and J_ of OH^- 5

6 where D is the diffusion coefficient common to both ions. Although the diffusion coefficient of H^+ is four times larger than that of OH^-, we use this assumption in order to know approximately potential and concentration distributions in the cell rather than to fit experimental data. Elimination of J± from eq. (2) and (3) yields In contrast, the potential distribution is determined by Poisson's equation: 6

7

8 The finite difference form of Eq. (5) is Boundary conditions (6) and (7) converted for Eq. (8) and (9) are given by 8

9 We express the dimensionless current density in terms of the thickness of the reaction layer [41], (D/k_d)^1/2, in order to discuss a relatioship between j and w. Then it is rewritten as

10 3.2 Voltammetry of pure water

11 11

12 4. Conclusions 12

13 value of the diffusion coefficients and to use of the Dirichlet boundary conditions. Therefore they are not suitable for curve fitting to the experimental data. Acknowledgement This work was financially supported by Grants-in-Aid for Scientific Research (Grants ) from the Ministry of Education in Japan and a research fund by Permelec Electrode LTD. 13

14 Figure Captions Figure 2. Illustration of the thin layer cell and two platinum rod electrodes 2.0 mm in diameter used for the experiment. 14

15 Figure 10. Dependence of the resistivity obtained from the slopes in Fig. 9 on w. The dashed line is the resistivity determined by the conductometry. 15

16 16

17 17

18 18

19 19

20 20

21 References [1] W. Ehrfeld, V. Hessel, H. Lowe, Microreactors, First edition, Wiley-VCH, Weinheim (2000). [2] C. Wille, R. Pfirmann, Chemistry Today (2004) 20 [3] V. Hessel, H. Lowe, Chem. Ingenieur Tech. 74 (2002) 17. [4] H. Lowe, W. Ehrfeld, Electrochim. Acta 44 (1999) [5] P. Watts, S. J. Haswell, E. Pombo-Villar, Chem. Eng. J. 101 (2004) 23. [6] O. Scialdone, A. Galia, C. Guarisco, S.L. Mantia, Chem. Eng. J (2012) 229. [7] C.A. Paddon, G.J. Pritchard, T. Thiemann, F. Marken, Electrochem. Commun. 4 (2002)

22 [8] A. Attour, S. Rode, A. Ziogas, M. Matlosz, F. Lapicque, J. Appl. Electrochem. 38 (2008) 339. [9] A. Attour, S. Rode, F. Lapicque, A. Ziogas, M. Matlosz, J. Electrochem. Soc. 155 (2008) E201. [10] O. Scialdone, C. Guarisco, A. Galia, G. Filardo, G. Silvestri, C. Amatore, C. Sella, L. Thouin, J. Electroanal. Chem. 638 (2010) 293. [11] C. Belmont, H.H. Girault, Electrochim. Acta, 40 (1995) [12] S. Rode, S. Altmeyer, M. Matlosz, J. Appl. Electrochem. 34 (2004) 671. [13] M. Sakairi, M. Yamada, T. Kikuchi, H. Takahashi, Electrochim. Acta 52 (2007) [14] A.J. Wain, R.G. Compton, R.L. Roux, S. Matthews, K. Yunus, A.C. Fisher, J. Phys. Chem. B 110 (2006) [15] A.J. Wain, R.G. Compton, J. Electroanal. Chem. 587 (2006) 203. [16] M.C. Henstridge, G.G. Wildgoose, R.G. Compton, Langmuir 26 (2010) [17] M.C. Henstridge, G.G. Wildgoose, R.G. Compton, J. Phys. Chem. C 113 (2009) [18] C. Amatore, M. Belotti, Y. Chen, E. Roy, C. Sella, L. Thouin, J. Electroanal. Chem. 573 (2004)333. [19] K. Bouzek, V. Jiricny, R. Kodym, J. Kristal, T. Bystron, Electrochim. Acta 55 (2010) [20] D.B. Baker, M.W. Verbrugge, J. Newman, J. Electroanal. Chem. 314 (1991) 23. [21] K.B. Oldham, J. Electroanal. Chem. 337 (1992) 91. [22] A. Amatore, B. Fosset, J. Bartelt, M.R. Deakin, R.M. Wightman, J. Electroanal. Chem. 256 (1988) 255. [23] K.B. Oldham, T.J. Cardwell, J.H. Santos, A.M. Bond, J. Electroanal. Chem. 430 (1997) 25. [24] A.M. Bond, M. Fleischmann, J. Robinson, J. Electroanal. Chem. 168 (1984)

23 [25] I. Montenegro, M.A. Queiros, J.L. Daschbach (Eds.), Microelectrodes: Theory and Applications, Kluwer, Dordrecht, [26] C. Lee, F. C. Anson, J. Electroanal. Chem. 323 (1992) 381. [27] K. Aoki, Electroanalysis, 5 (1993) 627. [28] J.C. Myland, K.B. Oldham, J. Electroanal. Chem., 347 (1993) 49. [29] M. Ciszkowska, Z. Stojek, J. Electroanal. Chem. 466 (1999) 129. [30] A. Jaworski, Z. Stojek, J.G. Osteryoung, J. Electroanal. Chem. 558 (2003) 141. [31] K. Aoki, A. Tokida, Electrochim. Acta, 45 (2000) [32] C.A. Paddon, M. Atobe, T. Fuchigami, P. He, P. Watts, S.J. Haswell, G.J. Pritchard, S.D. Bull, F. Marken, J. Appl. Electrochem. 36 (2006) 617. [33] K. Aoki, M. Morita, 0. Niwa, H. Tabei, J. Electroanal. Chem. 256 (1988) 269. [34] O. Niwa, M. Morita, H. Tabei, Anal. Chem. 62 (1990) 447. [35] V. A.T. Dam, W. Olthuis, A. van den Berg, Analyst, 132 (2007) 365. [36] S. Bose, T. Kuila, T.X.H. Nguyen, N.H. Kim, K.-t. Lau, J.H. Lee, Prog. Polym. Sci. 36 (2011) 813. [37] A. Goni-Urtiaga, D. Presvytes, K. Scott, Intern. J. Hydrog. Engy. 37 (2012) [38] J. Lu, D.-J. Li, L.-L. Zhang, Y.-X. Wang, Electrochim. Acta 53 (2007) 768. [39] D. Baker, M.W. Verbrugge, J. Newman, J. Electroanal. Chem. 314 (1991) 23. [40] B. Pillay, J. Newman, J. Electrochem. Soc. 140 (1993) 414. [41] P. Delahay, New Instrumental Methods in Electrochemistry, Interscience, New York, 1954, p

Supplementary Material. Improving cycling performance of LiMn 2 O 4 battery by. adding an ester functionalized ionic liquid to electrolyte

Supplementary Material. Improving cycling performance of LiMn 2 O 4 battery by. adding an ester functionalized ionic liquid to electrolyte 10.1071/CH15154_AC CSIRO 2015 Australian Journal of Chemistry 2015, 68 (12), 1911-1917 Supplementary Material Improving cycling performance of LiMn 2 O 4 battery by adding an ester functionalized ionic

More information

The fast dropping oil water electrode

The fast dropping oil water electrode Journal of Electroanalytical Chemistry 464 (1999) 128 132 Short Communication The fast dropping oil water electrode Antonie Baars 1, Koichi Aoki *, Jun Watanabe Department of Applied Physics, Fukui Uni

More information

Christian Amatore, Nicolas Da Mota, Célia Lemmer, Cécile Pebay, Catherine Sella, Laurent Thouin. To cite this version:

Christian Amatore, Nicolas Da Mota, Célia Lemmer, Cécile Pebay, Catherine Sella, Laurent Thouin. To cite this version: Theory and Experiments of Transport at Channel Microband Electrodes under Laminar Flows. 2. Electrochemical Regimes at Double Microband Assemblies under Steady State Christian Amatore, Nicolas Da Mota,

More information

arxiv: v1 [physics.chem-ph] 21 May 2013

arxiv: v1 [physics.chem-ph] 21 May 2013 Double Potential Step Chronoamperometry at a Microband Electrode: Theory and Experiment Edward O. Barnes, Linhongjia Xiong, Kristopher R. Ward and arxiv:1305.4773v1 [physics.chem-ph] 21 May 2013 Richard

More information

Influence of temperature on the reduction kinetics of Bi(III) ion in the presence of cystine in chlorate (VII) solutions of decreased water activity

Influence of temperature on the reduction kinetics of Bi(III) ion in the presence of cystine in chlorate (VII) solutions of decreased water activity Cent. Eur. J. Chem. 12(2) 214 213-219 DOI: 1.2478/s11532-13-376-3 Central European Journal of Chemistry Influence of temperature on the reduction kinetics of Bi(III) ion in the presence of cystine in chlorate

More information

Preparation of carbon xerogels coated with poly(p-fluorophenylthiophene) and their properties for electrochemical capacitor

Preparation of carbon xerogels coated with poly(p-fluorophenylthiophene) and their properties for electrochemical capacitor Preparation of carbon xerogels coated with poly(p-fluorophenylthiophene) and their properties for electrochemical capacitor J. Yamashitaa,*, M. Shioyab, Y. Soneda,a M. Kodamaa, H. Hatoria aenergy Storage

More information

Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale

Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale NANO LETTERS 2006 Vol. 6, No. 11 2531-2535 Diego Krapf, Bernadette M. Quinn, Meng-Yue Wu, Henny W. Zandbergen, Cees Dekker,

More information

The Apparent Constant-Phase-Element Behavior of a Disk Electrode with Faradaic Reactions

The Apparent Constant-Phase-Element Behavior of a Disk Electrode with Faradaic Reactions Journal of The Electrochemical Society, 154 2 C99-C107 2007 0013-4651/2006/1542/C99/9/$20.00 The Electrochemical Society The Apparent Constant-Phase-Element Behavior of a Disk Electrode with Faradaic Reactions

More information

Self-dispersion of mercury metal into aqueous solutions

Self-dispersion of mercury metal into aqueous solutions Self-dispersion of mercury metal into aqueous solutions Koichi Aoki *, Chunyan Li, Toyohiko Nishiumi, Jingyuan Chen Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-0017 Japan

More information

Table S1. Electrocatalyst plating conditions Metal Anode (foil) Plating Potential (V versus Ag/AgCl) Rh Pt 1 M HCl/HPLC.

Table S1. Electrocatalyst plating conditions Metal Anode (foil) Plating Potential (V versus Ag/AgCl) Rh Pt 1 M HCl/HPLC. 1 Materials and Methods Electrode Preparation All chemicals and supplies were high purity (> 999%) and supplied from Alfa Aesar or Fisher Scientific For anodic catalyst selection, 5 cm 2 titanium foil

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e1501038/dc1 Supplementary Materials for Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life Xiaoli Dong,

More information

Fundamental molecular electrochemistry - potential sweep voltammetry

Fundamental molecular electrochemistry - potential sweep voltammetry Fundamental molecular electrochemistry - potential sweep voltammetry Potential (aka voltammetric) sweep methods are the most common electrochemical methods in use by chemists today They provide an efficient

More information

Cyclic voltammetry at a regular microdisc electrode array

Cyclic voltammetry at a regular microdisc electrode array Journal of Electroanalytical Chemistry 502 (2001) 138 145 www.elsevier.nl/locate/jelechem Cyclic voltammetry at a regular microdisc electrode array Hye Jin Lee, Carine Beriet, Rosaria Ferrigno, Hubert

More information

Cyclic Voltametric Studies on the Interaction of Adrenaline With Formic Acid and Acetic Acid

Cyclic Voltametric Studies on the Interaction of Adrenaline With Formic Acid and Acetic Acid Int. J. Electrochem. Sci., 6 (2011) 6662-6669 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Cyclic Voltametric Studies on the Interaction of Adrenaline With Formic Acid and Acetic

More information

Polymer electrolytes from plasticized polymobs and their gel forms

Polymer electrolytes from plasticized polymobs and their gel forms Electrochimica Acta 48 (2003) 2029/2035 www.elsevier.com/locate/electacta Polymer electrolytes from plasticized polymobs and their gel forms Wu Xu, C. Austen Angell * Department of Chemistry and Biochemistry,

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 Photoinduced Biphasic Hydrogen Evolution: Decamethylosmocene as a Light-Driven Electron Donor Peiyu Ge, [a] Astrid

More information

CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY

CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY Page No. 175-187 5.1 Introduction 5.2 Theoretical 5.3 Experimental 5.4 References 5. 1 Introduction Electrochemical

More information

Low temperature anodically grown silicon dioxide films for solar cell. Nicholas E. Grant

Low temperature anodically grown silicon dioxide films for solar cell. Nicholas E. Grant Low temperature anodically grown silicon dioxide films for solar cell applications Nicholas E. Grant Outline 1. Electrochemical cell design and properties. 2. Direct-current current anodic oxidations-part

More information

Principles and Applications of Electrochemistry

Principles and Applications of Electrochemistry Principles and Applications of Electrochemistry Fourth edition D. R. CROW Professor of Electrochemistry and Dean of Research University of Wolverhampton BLACKIE ACADEMIC & PROFESSIONAL An Imprint of Chapman

More information

Voltammetry. Voltammetry and Polarograph. Chapter 23. Polarographic curves -- Voltammograms

Voltammetry. Voltammetry and Polarograph. Chapter 23. Polarographic curves -- Voltammograms Chapter 23 Voltammetry Voltammetry and Polarograph Electrochemistry techniques based on current (i) measurement as function of voltage (E appl ) Voltammetry Usually when the working electrode is solid,

More information

DETERMINING THE OPERATING CONDITIONS OF ALL-VANADIUM REDOX FLOW BATTERY

DETERMINING THE OPERATING CONDITIONS OF ALL-VANADIUM REDOX FLOW BATTERY Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00650 DETERMINING THE OPERATING CONDITIONS OF ALL-VANADIUM REDOX FLOW BATTERY Jungmyoung

More information

Unit - 3 ELECTROCHEMISTRY VSA QUESTIONS (1 - MARK QUESTIONS) 3. Mention the purpose of salt-bridge placed between two half-cells of a galvanic cell?

Unit - 3 ELECTROCHEMISTRY VSA QUESTIONS (1 - MARK QUESTIONS) 3. Mention the purpose of salt-bridge placed between two half-cells of a galvanic cell? Unit - 3 ELECTROCHEMISTRY 1. What is a galvanic cell? VSA QUESTIONS (1 - MARK QUESTIONS) 2. Give the cell representation for Daniell Cell. 3. Mention the purpose of salt-bridge placed between two half-cells

More information

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electronic Supplementary Information Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electrolytes Wen Lu, * Adam Goering, Liangti Qu, and Liming Dai * 1. Synthesis of

More information

Comparison of Admittance Plots for Glass Carbon (GC) and Edge Plane Pyrolytie Graphite (EPPG) Electrodes in Three Typical Kinds of Electrolytes

Comparison of Admittance Plots for Glass Carbon (GC) and Edge Plane Pyrolytie Graphite (EPPG) Electrodes in Three Typical Kinds of Electrolytes Portugaliae Electrochimica Acta 25 (2007) 401-407 PORTUGALIAE ELECTROCHIMICA ACTA Comparison of Admittance Plots for Glass Carbon (GC) and Edge Plane Pyrolytie Graphite (EPPG) Electrodes in Three Typical

More information

Title. Author(s)Sakairi, Masatoshi; Yamada, Masashi; Kikuchi, Tastuy. CitationElectrochimica Acta, 52(21): Issue Date

Title. Author(s)Sakairi, Masatoshi; Yamada, Masashi; Kikuchi, Tastuy. CitationElectrochimica Acta, 52(21): Issue Date Title Development of three-electrode type micro-electroche electrochemistry Author(s)Sakairi, Masatoshi; Yamada, Masashi; Kikuchi, Tastuy CitationElectrochimica Acta, 52(21): 6268-6274 Issue Date 2007-06-20

More information

Q1. Why does the conductivity of a solution decrease with dilution?

Q1. Why does the conductivity of a solution decrease with dilution? Q1. Why does the conductivity of a solution decrease with dilution? A1. Conductivity of a solution is the conductance of ions present in a unit volume of the solution. On dilution the number of ions per

More information

In all electrochemical methods, the rate of oxidation & reduction depend on: 1) rate & means by which soluble species reach electrode surface (mass

In all electrochemical methods, the rate of oxidation & reduction depend on: 1) rate & means by which soluble species reach electrode surface (mass Voltammetry Methods based on an electrolytic cell Apply potential or current to electrochemical cell & concentrations change at electrode surface due to oxidation & reduction reactions Can have 2 or 3

More information

NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT

NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT NUMERICAL ANALYSIS ON 36cm 2 PEM FUEL CELL FOR PERFORMANCE ENHANCEMENT Lakshminarayanan V 1, Karthikeyan P 2, D. S. Kiran Kumar 1 and SMK Dhilip Kumar 1 1 Department of Mechanical Engineering, KGiSL Institute

More information

Electrolysis of pure water in a thin layer cell

Electrolysis of pure water in a thin layer cell Electrolyss of pure water n a thn layer cell Koch Jeremah Aok *, Chunyan L, Toyohko Nshum, Jngyuan Chen Department of Appled Physcs, Unversty of Fuku, 3-9-1 Bunkyo, Fuku, 91-17 Japan Abstract Current-voltage

More information

CHEM J-12 June 2013

CHEM J-12 June 2013 CHEM1101 2013-J-12 June 2013 In concentration cells no net chemical conversion occurs, however a measurable voltage is present between the two half-cells. Explain how the voltage is produced. 2 In concentration

More information

Influence of Self-Assembling Redox Mediators on Charge Transfer at Hydrophobic Electrodes

Influence of Self-Assembling Redox Mediators on Charge Transfer at Hydrophobic Electrodes Supporting Information Influence of Self-Assembling Redox Mediators on Charge Transfer at Hydrophobic Electrodes Timothy J. Smith, Chenxuan Wang, and Nicholas L. Abbott* Department of Chemical and Biological

More information

Track-Etched Microporous Membrane Electrodes and Its Applications in Flow Analysis

Track-Etched Microporous Membrane Electrodes and Its Applications in Flow Analysis J. Flow Injection Anal., Vol. 31, o. 1 (214) 19-25 Track-Etched Microporous Membrane Electrodes and Its Applications in Flow Analysis Hitoshi Mizuguchi Graduate School of Science and Engineering, Yamagata

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

Dual-Plate Gold-Gold Microtrench Electrodes for Generator- Collector Voltammetry without Supporting Electrolyte

Dual-Plate Gold-Gold Microtrench Electrodes for Generator- Collector Voltammetry without Supporting Electrolyte REVISION 10 th November 2016 Dual-Plate Gold-Gold Microtrench Electrodes for Generator- Collector Voltammetry without Supporting Electrolyte Miguel A. Montiel 1, Jesus Iniesta 1*, Andrew J. Gross 2, Frank

More information

A Study of Effect of Electrolytes on the Capacitive Properties of Mustard Soot Containing Multiwalled Carbon Nanotubes

A Study of Effect of Electrolytes on the Capacitive Properties of Mustard Soot Containing Multiwalled Carbon Nanotubes A Study of Effect of Electrolytes on the Capacitive Properties of Mustard Soot Containing Multiwalled Carbon Nanotubes Abstract Saha Mitali*, Das Soma and Debbarma Monica Department of Chemistry, National

More information

Short Communication Electrochemical Polymerization of Methylene Blue on Glassy Carbon Electrode

Short Communication Electrochemical Polymerization of Methylene Blue on Glassy Carbon Electrode Int. J. Electrochem. Sci., 12 (2017) 9907 9913, doi: 10.20964/2017.10.49 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Short Communication Electrochemical Polymerization of Methylene

More information

Subject: A Review of Techniques for Electrochemical Analysis

Subject: A Review of Techniques for Electrochemical Analysis Application Note E-4 Subject: A Review of Techniques for Electrochemical Analysis INTRODUCTION Electrochemistry is the study of the chemical response of a system to an electrical stimulation. The scientist

More information

Adaptive Finite Element Methods in Electrochemistry

Adaptive Finite Element Methods in Electrochemistry 10666 Langmuir 2006, 22, 10666-10682 Adaptive Finite Element Methods in Electrochemistry David J. Gavaghan,* Kathryn Gillow, and Endre Süli Oxford UniVersity Computing Laboratory, Wolfson Building, Parks

More information

Contents. Publisher s Foreword. Glossary of Symbols and Abbreviations

Contents. Publisher s Foreword. Glossary of Symbols and Abbreviations Publisher s Foreword Glossary of Symbols and Abbreviations v xiii 1 Equilibrium Electrochemistry and the Nernst Equation 1 1.1 Cell Thermodynamics....................... 1 1.2 The Nernst Equation........................

More information

Quinone electrochemistry in acidic and alkaline solutions & its application in large scale energy storage

Quinone electrochemistry in acidic and alkaline solutions & its application in large scale energy storage Quinone electrochemistry in acidic and alkaline solutions & its application in large scale energy storage Michael R. Gerhardt 1, Kaixiang Lin 2, Qing Chen 1, Michael P. Marshak 1,3, Liuchuan Tong 2, Roy

More information

Guide to Chapter 18. Electrochemistry

Guide to Chapter 18. Electrochemistry Guide to Chapter 18. Electrochemistry We will spend three lecture days on this chapter. During the first class meeting we will review oxidation and reduction. We will introduce balancing redox equations

More information

AP* Electrochemistry Free Response Questions page 1

AP* Electrochemistry Free Response Questions page 1 Galvanic (Voltaic) Cells 1988 Average score = 5.02 a) two points Sn ---> Sn 2+ + 2e Ag + + e ---> Ag AP* Electrochemistry Free Response Questions page 1 b) two points 2 Ag + + Sn ---> 2 Ag + Sn 2+ E =

More information

Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes

Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes Presented at the COMSOL Conference 2010 China Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes Zhang Qianfan, Liu Yuwen, Chen Shengli * College of Chemistry and Molecular Science,

More information

Observable Electric Potential and Electrostatic Potential in Electrochemical Systems

Observable Electric Potential and Electrostatic Potential in Electrochemical Systems 658 J. Phys. Chem. B 2000, 104, 658-662 Observable Electric Potential and Electrostatic Potential in Electrochemical Systems Javier Garrido* and José A. Manzanares Departamento de Termodinámica, UniVersitat

More information

Bruno Bastos Sales, Joost Helsen and Arne Verliefde

Bruno Bastos Sales, Joost Helsen and Arne Verliefde FEM modeling of capacitive deionization for complex streams Dennis Cardoen Bruno Bastos Sales, Joost Helsen and Arne Verliefde International Conference on Numerical and Mathematical ing of Flow and Transport

More information

Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure

Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure Supporting Information Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure Tina D. Dolidze, Dimitri E. Khoshtariya,* Peter Illner and Rudi van Eldik* a)

More information

Journal of Chemical and Pharmaceutical Research, 2012, 4(3): Research Article

Journal of Chemical and Pharmaceutical Research, 2012, 4(3): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2012, 4(3):1619-1624 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Studies on ion association and solvation of multi-charged

More information

Modeling the next battery generation: Lithium-sulfur and lithium-air cells

Modeling the next battery generation: Lithium-sulfur and lithium-air cells Modeling the next battery generation: Lithium-sulfur and lithium-air cells D. N. Fronczek, T. Danner, B. Horstmann, Wolfgang G. Bessler German Aerospace Center (DLR) University Stuttgart (ITW) Helmholtz

More information

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam 10.626 Electrochemical Energy Systems, Spring 2014, M. Z. Bazant Final Exam Instructions. This is a three-hour closed book exam. You are allowed to have five doublesided pages of personal notes during

More information

Ionic Liquids and Ion Gels -A New Class of Liquids and Polymer Gels-

Ionic Liquids and Ion Gels -A New Class of Liquids and Polymer Gels- Ionic Liquids and Ion Gels -A New Class of Liquids and Polymer Gels- Masayoshi Watanabe Department of Chemistry & Biotechnology, Yokohama National University, and CREST, JST 79-5 Tokoiwadai, Hodogaya-ku,

More information

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image

Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image Supplementary Figure S1. AFM image and height profile of GO. (a) AFM image and (b) height profile of GO obtained by spin-coating on silicon wafer, showing a typical thickness of ~1 nm. 1 Supplementary

More information

Oxygen Reduction Reaction

Oxygen Reduction Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Oxygen Reduction Reaction Oxygen is the most common oxidant for most fuel cell cathodes simply

More information

ELECTROCHEMICAL CELLS NAME ROW PD

ELECTROCHEMICAL CELLS NAME ROW PD 4-26-12 NAME ROW PD (1) Which statement describes the redox reaction that occurs when an object is electroplated? The diagram below shows the electrolysis of fused KCl. A) It is spontaneous and requires

More information

Joshua Whittam, 1 Andrew L. Hector, 1 * Christopher Kavanagh, 2 John R. Owen 1 and Gillian Reid 1

Joshua Whittam, 1 Andrew L. Hector, 1 * Christopher Kavanagh, 2 John R. Owen 1 and Gillian Reid 1 Supporting Information: Combination of Solid State and Electrochemical Impedance Spectroscopy to Explore Effects of Porosity in Sol-Gel Derived BaTiO3 Thin Films Joshua Whittam, 1 Andrew L. Hector, 1 *

More information

Lecture 12: Electroanalytical Chemistry (I)

Lecture 12: Electroanalytical Chemistry (I) Lecture 12: Electroanalytical Chemistry (I) 1 Electrochemistry Electrochemical processes are oxidation-reduction reactions in which: Chemical energy of a spontaneous reaction is converted to electricity

More information

The Study of Multiple Electron Transfer Reactions by Cyclic Voltammetry

The Study of Multiple Electron Transfer Reactions by Cyclic Voltammetry The Study of ultiple Electron Transfer Reactions by Cyclic Voltammetry Adrian W. Bott, Ph.D. Bioanalytical Systems West Lafayette, IN 47906-1382 Phone: 765-463-4527 FAX: 765-497-1102 E-ail: awb@bioanalytical.com

More information

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802

Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park, PA, 16802 Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells using Fluent Ugur Pasaogullari, Chao-Yang Wang Electrochemical Engine Center The Pennsylvania State University University Park,

More information

V. Electrostatics. MIT Student

V. Electrostatics. MIT Student V. Electrostatics Lecture 26: Compact Part of the Double Layer MIT Student 1 Double-layer Capacitance 1.1 Stern Layer As was discussed in the previous lecture, the Gouy-Chapman model predicts unphysically

More information

Chapter 20. Electrochemistry

Chapter 20. Electrochemistry Chapter 20. Electrochemistry Sample Exercise 20.1 (p. 845) The nickelcadmium (nicad) battery, a rechargeable dry cell used in batteryoperated devices, uses the following redox reaction to generate electricity:

More information

Theory of Square-Wave Voltammetry for a Dissolved Redox Couple

Theory of Square-Wave Voltammetry for a Dissolved Redox Couple Advances in Analytical Chemistry 2013, 3(3A): 9-13 DOI: 10.5923/s.aac.201307.02 Theory of Square-Wave Voltammetry for a Dissolved Redox Couple Šebojka Komorsky-Lovrić, Milivoj Lovrić * Department of Marine

More information

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions).

Electrochemistry. Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Electrochemistry Oxidation-Reduction: Review oxidation reactions and how to assign oxidation numbers (Ch 4 Chemical Reactions). Half Reactions Method for Balancing Redox Equations: Acidic solutions: 1.

More information

Modeling the Effects of Ion Association on Direct-Current Polarization of Solid Polymer Electrolytes

Modeling the Effects of Ion Association on Direct-Current Polarization of Solid Polymer Electrolytes 936 Journal of The Electrochemical Society, 147 (3) 936-944 (2000) Modeling the Effects of Ion Association on Direct-Current Polarization of Solid Polymer Electrolytes Changqing Lin, Ralph E. White,* and

More information

Hydrogen Evolution on InSb Semiconductor in Liquid Ammonia (223 K)

Hydrogen Evolution on InSb Semiconductor in Liquid Ammonia (223 K) Portugaliae Electrochimica Acta 20 (2002) 199-205 PORTUGALIAE ELECTROCHIMICA ACTA Hydrogen Evolution on InSb Semiconductor in Liquid Ammonia (223 K) C. Mathieu, O. Seitz, A.-M Gonçalves *, M. Herlem, A.

More information

Supporting Information

Supporting Information Redox-Induced Ion Pairing of Anionic Surfactants with Ferrocene-Terminated Self-Assembled Monolayers: Faradaic Electrochemistry and Surfactant Aggregation at the Monolayer/Liquid Interface Eric R. Dionne,

More information

Unit 2 B Voltammetry and Polarography

Unit 2 B Voltammetry and Polarography Unit 2 B Voltammetry and Polarography Voltammetric methods of Analysis What is Voltammetry? A time-dependent potential is applied to an electrochemical cell, and the current flowing through the cell is

More information

239 Lecture #4 of 18

239 Lecture #4 of 18 Lecture #4 of 18 239 240 Q: What s in this set of lectures? A: Introduction, Review, and B&F Chapter 1, 15 & 4 main concepts: Section 1.1: Redox reactions Chapter 15: Electrochemical instrumentation Section

More information

Demystifying Transmission Lines: What are They? Why are They Useful?

Demystifying Transmission Lines: What are They? Why are They Useful? Demystifying Transmission Lines: What are They? Why are They Useful? Purpose of This Note This application note discusses theory and practice of transmission lines. It outlines the necessity of transmission

More information

EMA4303/5305 Electrochemical Engineering Lecture 02 Equilibrium Electrochemistry

EMA4303/5305 Electrochemical Engineering Lecture 02 Equilibrium Electrochemistry EMA4303/5305 Electrochemical Engineering Lecture 02 Equilibrium Electrochemistry Dr. Junheng Xing, Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University 2 Equilibrium Electrochemistry

More information

Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO

Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information for Combined high alkalinity and pressurization enable

More information

Chapter 22. Bulk Electrolysis: Electrogravimetry and Coulometry. Definition. Features of Bulk Electrolysis Cells

Chapter 22. Bulk Electrolysis: Electrogravimetry and Coulometry. Definition. Features of Bulk Electrolysis Cells Chapter 22 Bulk Electrolysis: Electrogravimetry and Coulometry Definition Bulk Electrolysis deals with methods that involve electrolysis producing a quantitative change in oxidation state Example: In a

More information

Command Surface of Self-organizing Structures by Radical Polymers with. Cooperative Redox Reactivity

Command Surface of Self-organizing Structures by Radical Polymers with. Cooperative Redox Reactivity Supporting Information Command Surface of Self-organizing Structures by Radical Polymers with Cooperative Redox Reactivity Kan Sato, Takahiro Mizuma, Hiroyuki Nishide*, and Kenichi Oyaizu* Department of

More information

An approximate closed form solution for pressure and velocity distribution in the cathode chamber of a PEM fuel cell

An approximate closed form solution for pressure and velocity distribution in the cathode chamber of a PEM fuel cell Journal of Power Sources 14 (005 17 178 Short communication An approximate closed form solution for pressure and velocity distribution in the cathode chamber of a PEM fuel cell Vamsi K. Maddirala, Venkat

More information

2. Define what is meant by an oxidizing and reducing agent. Give a good example of each.

2. Define what is meant by an oxidizing and reducing agent. Give a good example of each. In-class Questions Electrochemistry 1. Define what is meant by oxidation and reduction. 2. Define what is meant by an oxidizing and reducing agent. Give a good example of each. 3. Define what is meant

More information

maximal photofluorescence decay time of 6 hours (purchased from Shenzhen HuiDuoSheng

maximal photofluorescence decay time of 6 hours (purchased from Shenzhen HuiDuoSheng Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Experimental section Preparation of m-tio 2 /LPP photoanodes. TiO 2 colloid was synthesized according

More information

sensors ISSN by MDPI

sensors ISSN by MDPI Sensors 003, 3, 3-50 sensors ISSN 1-80 003 by MDPI http://www.mdpi.net/sensors Determination of Dopamine in the Presence of Ascorbic Acid using Poly (Acridine red) Modified Glassy Carbon Electrode Yuzhong

More information

Electrochemistry. Electrochemical Process. The Galvanic Cell or Voltaic Cell

Electrochemistry. Electrochemical Process. The Galvanic Cell or Voltaic Cell Electrochemistry Electrochemical Process The conversion of chemical energy into electrical energy and the conversion of electrical energy into chemical energy are electrochemical process. Recall that an

More information

Experiment 18: Galvanic Cells

Experiment 18: Galvanic Cells Chem 1B Dr. White 131 Experiment 18: Galvanic Cells Objectives Introduction To construct galvanic cells To learn how reduction potentials can be used to predict the relative reactivity of metals In a redox

More information

Templated electrochemical fabrication of hollow. molybdenum sulfide micro and nanostructures. with catalytic properties for hydrogen production

Templated electrochemical fabrication of hollow. molybdenum sulfide micro and nanostructures. with catalytic properties for hydrogen production Supporting Information Templated electrochemical fabrication of hollow molybdenum sulfide micro and nanostructures with catalytic properties for hydrogen production Adriano Ambrosi, Martin Pumera* Division

More information

Mass transfer by migration & diffusion (Ch. 4)

Mass transfer by migration & diffusion (Ch. 4) Mass transfer by migration & diffusion (Ch. 4) Mass transfer equation Migration Mixed migration & diffusion near an electrode Mass transfer during electrolysis Effect of excess electrolyte Diffusion Microscopic

More information

Electrochemistry objectives

Electrochemistry objectives Electrochemistry objectives 1) Understand how a voltaic and electrolytic cell work 2) Be able to tell which substance is being oxidized and reduced and where it is occuring the anode or cathode 3) Students

More information

Chemistry: The Central Science. Chapter 20: Electrochemistry

Chemistry: The Central Science. Chapter 20: Electrochemistry Chemistry: The Central Science Chapter 20: Electrochemistry Redox reaction power batteries Electrochemistry is the study of the relationships between electricity and chemical reactions o It includes the

More information

Basic Concepts in Electrochemistry

Basic Concepts in Electrochemistry Basic Concepts in Electrochemistry 1 Electrochemical Cell Electrons Current + - Voltage Source ANODE Current CATHODE 2 Fuel Cell Electrons (2 e) Current - + Electrical Load ANODE Current CATHODE H 2 2H

More information

Chapter Objectives. Chapter 13 Electrochemistry. Corrosion. Chapter Objectives. Corrosion. Corrosion

Chapter Objectives. Chapter 13 Electrochemistry. Corrosion. Chapter Objectives. Corrosion. Corrosion Chapter Objectives Larry Brown Tom Holme Describe at least three types of corrosion and identify chemical reactions responsible for corrosion. www.cengage.com/chemistry/brown Chapter 13 Electrochemistry

More information

A Study on Brine Resource Utilization in Desalination Plants. Chen-Yu CHANG 1,*, Chiung-Ta WU 2, Yi-Ying LI 2 and Yung-Hsu HSIEH 2

A Study on Brine Resource Utilization in Desalination Plants. Chen-Yu CHANG 1,*, Chiung-Ta WU 2, Yi-Ying LI 2 and Yung-Hsu HSIEH 2 2017 2nd International Conference on Environmental Science and Engineering (ESE 2017) ISBN: 978-1-60595-474-5 A Study on Brine Resource Utilization in Desalination Plants Chen-Yu CHANG 1,*, Chiung-Ta WU

More information

EXCESS HEAT AND UNEXPECTED ELEMENTS FROM AQUEOUS ELECTROLYSIS WITH TITANIUM AND PALLADIUM CATHODES

EXCESS HEAT AND UNEXPECTED ELEMENTS FROM AQUEOUS ELECTROLYSIS WITH TITANIUM AND PALLADIUM CATHODES Published in Proceedings of the 32 nd Intersociety Energy Conversion Engineering Conference, vol. 2, pp. 1350-1355 (1997). EXCESS HEAT AND UNEXPECTED ELEMENTS FROM AQUEOUS ELECTROLYSIS WITH TITANIUM AND

More information

Boron-doped diamond as the new electrode material for determination of heavy metals

Boron-doped diamond as the new electrode material for determination of heavy metals Boron-doped diamond as the new electrode material for determination of heavy metals Zuzana Chomisteková, Jozef Sochr, Jana Svítková, Ľubomír Švorc Institute of Analytical Chemistry, Faculty of Chemical

More information

Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example)

Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example) 3 rd LAMNET Workshop Brazil -4 December 00 3 rd LAMNET Workshop Brazil 00 Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example) Prof. Dr. Wolf Vielstich University of

More information

Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite

Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite electrode; (b) pyrolytic graphite electrode with 100 µl 0.5 mm

More information

PROCESS MONITORING OF PLASMA ELECTROLYTIC OXIDATION J.-W. Liaw, C.-C. Hsiao, Clinton Fong, Y.-L. Tsai, S.-C. Chung, Oleg Demin Materials Research

PROCESS MONITORING OF PLASMA ELECTROLYTIC OXIDATION J.-W. Liaw, C.-C. Hsiao, Clinton Fong, Y.-L. Tsai, S.-C. Chung, Oleg Demin Materials Research PROCESS MONITORING OF PLASMA ELECTROLYTIC OXIDATION J.-W. Liaw, C.-C. Hsiao, Clinton Fong, Y.-L. Tsai, S.-C. Chung, Oleg Demin Materials Research Laboratories, Industrial Technology Research Institute,

More information

Hydrodynamic Electrodes and Microelectrodes

Hydrodynamic Electrodes and Microelectrodes CHEM465/865, 2004-3, Lecture 20, 27 th Sep., 2004 Hydrodynamic Electrodes and Microelectrodes So far we have been considering processes at planar electrodes. We have focused on the interplay of diffusion

More information

FUEL CELLS in energy technology (4)

FUEL CELLS in energy technology (4) Fuel Cells 1 FUEL CELLS in energy technology (4) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU Munich summer term 213 Fuel Cells 2 Nernst equation and its application to fuel

More information

Microreactors in Chemistry! Christina Moberg!

Microreactors in Chemistry! Christina Moberg! Microreactors in Chemistry! Christina Moberg! 19th century equipment for synthesis 20th centrury equipment for synthesis Today: high throughput and downsizing Microreactors! Threedimensional structures

More information

Electrochemistry and Detection of Organic and Biological Molecules Such as Catechol and Ascorbic Acid at Conducting Poly (2,2-bithiophene) Electrode

Electrochemistry and Detection of Organic and Biological Molecules Such as Catechol and Ascorbic Acid at Conducting Poly (2,2-bithiophene) Electrode Electrochemistry and Detection of Organic and Biological Molecules Such as Catechol and Ascorbic Acid at Conducting Poly (2,2-bithiophene) Electrode Suzanne K. Lunsford a*, Jelynn Stinson a, and Justyna

More information

Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic and Reticulated Glassy Carbon Electrodes in Aqueous Medium

Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic and Reticulated Glassy Carbon Electrodes in Aqueous Medium Portugaliae Electrochimica Acta 2010, 28(6), 397-404 DOI: 10.4152/pea.201006397 PORTUGALIAE ELECTROCHIMICA ACTA ISSN 1647-1571 Voltammetric Comparison of the Electrochemical Oxidation of Toluene on Monolithic

More information

Scanning Electrochemical Microscopy. 45. Study of the Kinetics of Oxygen Reduction on Platinum with Potential Programming of the Tip

Scanning Electrochemical Microscopy. 45. Study of the Kinetics of Oxygen Reduction on Platinum with Potential Programming of the Tip J. Phys. Chem. B 2002, 106, 12801-12806 12801 Scanning Electrochemical Microscopy. 45. Study of the Kinetics of Oxygen Reduction on Platinum with Potential Programming of the Tip Biao Liu and Allen J.

More information

8. Draw Lewis structures and determine molecular geometry based on VSEPR Theory

8. Draw Lewis structures and determine molecular geometry based on VSEPR Theory Chemistry Grade 12 Outcomes 1 Quantum Chemistry and Atomic Structure Unit I 1. Perform calculations on wavelength, frequency and energy. 2. Have an understanding of the electromagnetic spectrum. 3. Relate

More information

I. 수퍼캐패시터특성분석을위한 transient 방법 EDLC analysis Pseudocapacitor analysis

I. 수퍼캐패시터특성분석을위한 transient 방법 EDLC analysis Pseudocapacitor analysis Theoretical consideration of electrochemical impedance spectroscopy based on 2-D transmission line model in the porous electrodes and its application into various mesoporous carbon materials 중앙대학교융합공학부나노소재전공윤성훈

More information

18.3 Electrolysis. Dr. Fred Omega Garces. Chemistry 201. Driving a non-spontaneous Oxidation-Reduction Reaction. Miramar College.

18.3 Electrolysis. Dr. Fred Omega Garces. Chemistry 201. Driving a non-spontaneous Oxidation-Reduction Reaction. Miramar College. 18.3 Electrolysis Driving a non-spontaneous Oxidation-Reduction Reaction Dr. Fred Omega Garces Chemistry 201 Miramar College 1 Electrolysis Voltaic Vs. Electrolytic Cells Voltaic Cell Energy is released

More information

IV. Transport Phenomena. Lecture 23: Ion Concentration Polarization

IV. Transport Phenomena. Lecture 23: Ion Concentration Polarization IV. Transport Phenomena Lecture 23: Ion Concentration Polarization MIT Student (and MZB) Ion concentration polarization in electrolytes refers to the additional voltage drop (or internal resistance ) across

More information

EIS and differential capacitance measurements onto single crystal faces in different solutions Part II: Cu(111) and Cu(100) in 0.

EIS and differential capacitance measurements onto single crystal faces in different solutions Part II: Cu(111) and Cu(100) in 0. Journal of Electroanalytical Chemistry 541 (2003) 13/21 www.elsevier.com/locate/jelechem EIS and differential capacitance measurements onto single crystal faces in different solutions Part II: Cu(111)

More information