Alkyne Dicobalt Complexes in Organic Chemistry

Size: px
Start display at page:

Download "Alkyne Dicobalt Complexes in Organic Chemistry"

Transcription

1 Alkyne Dicobalt Complexes in Organic Chemistry Sun Baochuan Supervisors: Prof. Yang Prof. Chen Prof. Tang

2 Cobalt - Co From German word kobald - evil spirits Atomic Number: 27 Group: 9 Period: 4 3d 7 4s 2 Oxidative State: I, II, III Vitamin B 12 Dyes Super Alloys 1

3 Three characteristic reactions of cobalt Characteristic property of cobalt 1. High affinity to C C or C N unsaturated π- bonds 2. High affinity to carbonyl group. 3. Easy to form a square planar bipyramidal six - coordination with four nitrogen atoms or two nitrogen atoms and two oxygen atoms. Reaction type Reactions with unsaturated π- bond Reactions with carbonyl groups Reactions with vitamin B 12 type compounds. Reaction 1. Reactions with a Co 2 (CO) 6 protection group 2. Nicholas reactions 3. Pauson Khand reations 4. [ ] cyclotrimerizations and other cyclizations. 1. Hydroformylations 2. Hydrocarbonylations 3. Amidocarbonylations 4. Hydrosilylcarbonylations 5. Carbonylations of halides 6. Other carbonylations 1. Diels -Alder reactions 2. Cyclopropanations 3. Carbonyl ene reactions 4. Henry reactions 5. Boron hydride reductions, etc. Omae, I. Appl. Organometal. Chem. 2007, 21,

4 Alkyne - dicobalt complexes Typically dark and red liquids or solids Easy to purify by crystallization or chromatography Can be stored in air for long periods of time. Release alkyne Ce(IV) Fe(III) Amine N-oxides Advances in organiometallic chemistry. Volume 41; Stone, F. G., West, R., Eds.; Academic Press: San Diego,

5 4 Alkyne - dicobalt complexes Pauson-Khand reaction Nicholas reaction Protecting group

6 5 Pauson-Khand reaction Formal [2+2+1} cyclization High selectivity for alkyne: R 2 >R 1 Low yield Harsh conditions for alkenes except strained olefins and ethylene Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E.; Foreman, M. I. J. Chem. Soc., Perkin. Trans , 977. Mechanism Stereoselectivity Reactivity Catalytic version

7 Pauson-Khand reaction - Mechanism Magnus, P.; Exon, C.; Robertson, P. A. Tetrahedron. 1985, 41,

8 7 Pauson-Khand reaction - Mechanism Yamanaka, M.; Nakamura, E. J. Am. Chem. Soc. 2001, 123, 1703

9 Pauson-Khand reaction - Mechanism Pericas, M. A.; Balsells, J.; Castro, J.; Marchueta, I.; Riera, A.; Vazquez, J.; Verdaguer, X. Pure Appl. Chem. 2002, 74,

10 Pauson-Khand reaction - Mechanism Banide, E. V.; Muller Bunz, H.; Manning, A. R.; Evans, P.; McGlinchey, M. J. Angew, Chem, Int, Ed. 2007, 46,

11 10 Pauson-Khand reaction - Mechanism Pallerla, M. K.; Yap, G. P. A.; Fox, J. M. J. Org. Chem. 2008, 73, 6137.

12 Pauson-Khand reaction - Reactivity Intramolecular: Traceless tether: Schore, N. E.; Croudace, M. C. J. Org. Chem. 1981, 46, 5436 Reichwein, J. F.; Iacono, S. F.; Pagenkopf, B. L. Tetrahedron. 2002, 58,

13 Pauson-Khand reaction - Reactivity N-oxide: Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Tetrahedron Lett. 1990, 31, 5289 Krafft, M. E.; Scott, I. L.; Romero, R. H.; Feibelmann, S.; Van Pelt, C. E. J. Am. Chem. Soc. 1993, 115,

14 13 Pauson-Khand reaction - Reactivity Lewis base: Sugihara, T.; Yamada, M.; Ban, H.; Yamaguchi, M.; Kaneko, C. Angew, Chem, Int, Ed, Engl. 1997, 36, 24. Sugihara, T.; Yamada, M.; Yamaguchi, M.; Nishizawa, M. Synlett, 1999, 6, 771. Perez del Valle, C.; Milet, A.; Gimbert, Y.; Greene, A. E. Angew. Chem. Int. Ed

15 Pauson-Khand reaction - Reactivity DSAC: dry state adsorption conditions Microwave: Smit, W. A.; Gybin, A. S.; Shashkov, A. S. Tetrahedron Lett. 1986, 27, Fisher, S.; Groth, U.; Jung, M.; Schneider, A. Synlett, 2002, 12,

16 Pauson-Khand reaction - Reactivity Alkene Reactivity : cyclohexene < cyclopentene < norbornene ( 降冰片烯 ) De Bruin, T. J. M.; Milet, A.; Greene, A. E.; Gimbert, Y.; J. Org. Chem. 2004, 69,

17 16 Pauson-Khand reaction - Stereoselctivity Approaches: Chiral precursors Chiral promoters Chiral auxiliaries Chiral ligand Chiral auxiliaries: Fonquerna, S.; Moyano, A.; Pericas, M. A.; Riera, A. J. Am. Chem. Soc. 1997, 119,

18 Pauson-Khand reaction - Stereoselctivity Chiral promoters: Chiral ligand: Kerr, W. J.; Kirk, G. G.; Middlemiss, D. Synlett, 1995, 10, Verdaguer, X.; Moyano, A.; Pericas, M. A.; Riera, A.; Maestro, M. A.; Mahia, J. J. Am. Chem. Soc. 2000, 122,

19 Pauson-Khand reaction - catalytic A straightforward solution: Laschat, S.; Becheanu, A.; Bell, T.; Baro, A. Synlett, 2005, 17, Additives: Bu 3 PS, CyNH 2, etc. 18

20 Pauson-Khand reaction - catalytic Catalytic with other Co source: Cat:(indenyl)Co(COD) Lee, B. Y.; Chuang, Y. K. J. Am. Chem. Soc. 1994, 116, Lee, N. Y.; Chuang, Y. K. Tetrahedron Lett. 1996, 37,

21 20 Pauson-Khand reaction - catalytic Yuefan, W; Lingmin, X; Ruocheng, Y.; Jiahua, C.; Zhen, Y. Chem. Commun. 2012, 48, 8183.

22 Nicholas reaction Stable in dry air, stored indefinitely under N 2 Positive charge highly delocalized Comparable stability with Ar 3 C + Varghese, V.; Saha, M.; Nicholas, K. M. Org. Synth. 1989, 67, 141. Nicholas, K. M.; Acc. Chem. Res. 1987, 20,

23 Nicholas reaction Synthesis of propargylic carbocation: Teobald, B. J.; Tetrahedron. 2002, 58,

24 Nicholas reaction Synthesis propargylic carbocation: Teobald, B. J.; Tetrahedron. 2002, 58,

25 Nicholas reaction React with nucleophiles: Teobald, B. J.; Tetrahedron. 2002, 58,

26 Nicholas reaction React with nucleophiles: Other Nucleophiles: H - :NaBH 4 N:amines S F - etc. Advantage: Teobald, B. J.; Tetrahedron. 2002, 58, Muller, T. J. J. Eur. J. Org. Chem. 2001, 11,

27 Protecting group Protection: Co 2 (CO) 8 CoBr 2, Zn, CO Deprotection: Fe(III) Ce(IV) Amine N-oxides Advances in organometallic chemistry. Volume 41; Stone, F. G., West, R., Eds.; Academic Press: San Diego, 1997 BH 3 - H 2 O 2 /OH - EtMgCl NaBH 4 Metathesis CH 3 COCl AlCl 3 Teobald, B. J.; Tetrahedron. 2002, 58, etc. 26

28 27 Summary Mechanism (decarbonylation / alkene insertion) PKR Reactivity ( additives / modified methods) Stereoselectivity Catalytic Nicholas Reaction Protecting group

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003 Catalytic Asymmetric Pauson-Khand eaction U. Khand; G.. Knox; P. L. Pauson; W. E. Watts J. Chem. Soc. Chem. Commun. 1971, 36 Won-jin Chung 02/25/2003 The General Pattern of the Pauson-Khand eaction Co

More information

CATALYTIC ASYMMETRIC INTRAMOLECULAR PAUSON-KHAND AND PAUSON- KHAND-TYPE REACTIONS

CATALYTIC ASYMMETRIC INTRAMOLECULAR PAUSON-KHAND AND PAUSON- KHAND-TYPE REACTIONS 1981. 4 The original protocol for the PKR required superstoichiometric amounts of a metal complex, CATALYTIC ASYMMETRIC INTRAMOLECULAR PAUSON-KHAND AND PAUSON- KHAND-TYPE REACTIONS Reported by Steven G.

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

Cambrian Explosion, Complex Eukaryotic Organism, Ozonosphere 3

Cambrian Explosion, Complex Eukaryotic Organism, Ozonosphere 3 Reporter: Wang Yuefan Reporter: Wang Yuefan Supervisor: Prof. Yang Zhen Supervisor: Prof. Yang Zhen Prof. Chen Jiahua Prof. Chen Jiahua 1 2011-12-2727 2011-02 2012-03 02-25 03-23 25 Content Preface Nature

More information

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo 2014.1.6 1 Content Introduction Progress of Catellani Reaction o-alkylation and Applications o-arylation and Applications Conclusion and Outlook

More information

Catalytic Asymmetric Intramolecular. Reactions

Catalytic Asymmetric Intramolecular. Reactions Catalytic Asymmetric Intramolecular Pauson-Khand and Pauson-Khand-Type eactions Steven Ballmer CEM 535 Seminar ctober 9, 2008 University of Illinois at Urbana-Champaign pyright 2008 by Steven Ballmer Synthetic

More information

A Simple Introduction of the Mizoroki-Heck Reaction

A Simple Introduction of the Mizoroki-Heck Reaction A Simple Introduction of the Mizoroki-Heck Reaction Reporter: Supervisor: Zhe Niu Prof. Yang Prof. Chen Prof. Tang 2016/2/3 Content Introduction Intermolecular Mizoroki-Heck Reaction Intramolecular Mizoroki-Heck

More information

Review. Recent Developments in Pd-catalyzed Carbonylation Reaction. Li Yuanhe. Supervisors: Prof. Yang Prof. Chen Prof. Tang

Review. Recent Developments in Pd-catalyzed Carbonylation Reaction. Li Yuanhe. Supervisors: Prof. Yang Prof. Chen Prof. Tang Review Recent Developments in Pd-catalyzed Carbonylation Reaction Li Yuanhe Supervisors: Prof. Yang Prof. Chen Prof. Tang History 1962, E. Fischer Z. Nafurforsch. 1962, 17b, 484. 1963, R. Heck J. Org.

More information

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands Organometallic Reaction and Catalysis 14-1 Reactions Involving Gain or Loss of Ligands 14-2 Reactions Involving Modification of Ligands 14-3 Organometallic Catalysts 14-4 Heterogeneous Catalysts Inorganic

More information

ORGANOMETALLICS IN SYNTHESIS: CHROMIUM, IRON & COBALT REAGENTS

ORGANOMETALLICS IN SYNTHESIS: CHROMIUM, IRON & COBALT REAGENTS - 1 - ORGANOMETALLICS IN SYNTHESIS: CHROMIUM, IRON & COBALT REAGENTS Introduction to Metal-Carbon Bonding Organometallic chemistry involves the interaction of an organic compound with a transition metal

More information

Organic Reactions catalyzed by rhenium carbonyl complexes

Organic Reactions catalyzed by rhenium carbonyl complexes Organic Reactions catalyzed by rhenium carbonyl complexes Fanyang Mo Dong group seminar Feb. 26, 2014 Ref: Kuninobu, Y.; Takai, K. Chem Rev. 2011, 111, 1938. 1 Accidentally found by Ogawa in 1908, and

More information

Cobalt Catalysed Organic Reactions

Cobalt Catalysed Organic Reactions Department of Chemistry and Biochemistry, University of Bern Topic review Cobalt Catalysed Organic Reactions Group of Prof. Philippe Renaud Andrey S. Kuzovlev 29.01.2015 ... we invite the attention of

More information

Recent Developments in the Chemistry of Polyvalent Iodine Compounds

Recent Developments in the Chemistry of Polyvalent Iodine Compounds Recent Developments in the Chemistry of Polyvalent Iodine Compounds Jiang Zhongping 2005-9-23 Content I. Introduction II. Iodine(III) Compounds III. Iodine(V) Compounds IV. Conclusions Introduction Why

More information

Titanacyclopropanes as versatile intermediates for carbon carbon bond formation in reactions with unsaturated compounds*

Titanacyclopropanes as versatile intermediates for carbon carbon bond formation in reactions with unsaturated compounds* Pure Appl. Chem., Vol. 72, No. 9, pp. 1715 1719, 2000. 2000 IUPAC Titanacyclopropanes as versatile intermediates for carbon carbon bond formation in reactions with unsaturated compounds* O. G. Kulinkovich

More information

-catalyzed reactions utilizing isocyanides as a C 1

-catalyzed reactions utilizing isocyanides as a C 1 Pure Appl. Chem., Vol. 78, No. 2, pp. 275 280, 2006. doi:10.1351/pac200678020275 2006 IUPAC GaCl 3 -catalyzed reactions utilizing isocyanides as a C 1 source* Mamoru Tobisu, Masayuki Oshita, Sachiko Yoshioka,

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Chromium Arene Complexes

Chromium Arene Complexes Go through Reviews Chem. Reviews Chem. Soc. Reviews Book by Prof. A. J. Elias Chromium Arene Complexes Complexation of Cr(CO) 3 with ARENES Chromium arene complexes Metal complexation is appealing in organic

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

Recent Developments in Alkynylation

Recent Developments in Alkynylation --New approaches to introduce an alkynyl group Reporter: Zhao-feng Wang Supervisor: Yong Huang 2013-03-27 Contents 1. Introduction of Acetylene Chemistry 2. Nucleophilic alkynylation : Classic text book

More information

Phosphine-Catalyzed Formation of Carbon-Sulfur Bonds: Catalytic Asymmetric Synthesis of gamma-thioesters

Phosphine-Catalyzed Formation of Carbon-Sulfur Bonds: Catalytic Asymmetric Synthesis of gamma-thioesters Phosphine-Catalyzed Formation of Carbon-Sulfur Bonds: Catalytic Asymmetric Synthesis of gamma-thioesters The MIT Faculty has made this article openly available. Please share how this access benefits you.

More information

Synthetically useful extrusion reactions in organic chemistry

Synthetically useful extrusion reactions in organic chemistry Synthetically useful extrusion reactions in organic chemistry Reporter: Sun Baochuan Supervisors: Prof. Yang Zhen Prof. Chen Jiahua Extrusion Reactions Extrusion Reaction: An atom or group Y connected

More information

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations

N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations Angew. Chem. Int. Ed. 2017, 10.1002. 1 N-Heterocyclic Carbene Catalysis via Azolium Dienolates: An Efficient Strategy for Enantioselective Remote Functionalizations Reporter: En Li Supervisor: Prof. Yong

More information

Story Behind the Well-Developed Chiral Lewis Acid in Asymmetric Diels-Alder reaction

Story Behind the Well-Developed Chiral Lewis Acid in Asymmetric Diels-Alder reaction Story Behind the Well-Developed Chiral Lewis Acid in Asymmetric Diels-Alder reaction Reporter: Zhang Sulei Supervisors: Prof. Yang Zhen Prof. Chen Jiahua Prof. Tang Yefeng 2015-10-05 1 Contents Background

More information

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 1 sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 2016. 1. 30 1. Introduction 2 About Carbene 3 Brief history of carbene (~2000) Carbene Neutral compounds featuring a divalent carbon atom with only

More information

Control over [2+2+2] and Carbonylative [4+2] Cycloaddition by CO Pressure in Co-Catalyzed Cycloaddition between Internal Diynes and Cyclopentadiene

Control over [2+2+2] and Carbonylative [4+2] Cycloaddition by CO Pressure in Co-Catalyzed Cycloaddition between Internal Diynes and Cyclopentadiene 1224 Bull. Korean Chem. Soc. 2008, Vol. 29, No. 6 Do Han Kim et al. Control over [2+2+2] and Carbonylative [4+2] Cycloaddition by CO Pressure in Co-Catalyzed Cycloaddition between Internal Diynes and Cyclopentadiene

More information

CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS

CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS CHEM2077 HONORS ORGANIC CHEMISTRY SYLLABUS 1. STRUCTURE AND BONDING a] Atomic structure and bonding b] Hybridization and MO Theory c] Drawing chemical structures 2. POLAR COVALENT BONDS: ACIDS AND BASES

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N6 Kashiwa Campus, November 27, 2009 Group VIB: Cr, Mo, W -Oxidation states from -2 to +6 -While +2 and +3 for Cr are quite

More information

Rh(III)-catalyzed C-H Activation and Annulation via Oxidizing Directing Group. Lei Zhang 03/23/2016 Dong Group

Rh(III)-catalyzed C-H Activation and Annulation via Oxidizing Directing Group. Lei Zhang 03/23/2016 Dong Group Rh(III)-catalyzed C-H Activation and Annulation via Oxidizing Directing Group Lei Zhang 03/23/2016 Dong Group Content 1 Alkyne involved Annulation in Hua group 2 3 4 Brief Introduction of Internal Oxidants

More information

Mn Reagent & Organomanganese: Neglected Powerful Tool. Reporter: Li Zhuo Advisor: Prof. Yang Prof. Chen Prof. Tang

Mn Reagent & Organomanganese: Neglected Powerful Tool. Reporter: Li Zhuo Advisor: Prof. Yang Prof. Chen Prof. Tang Mn Reagent & Organomanganese: Neglected Powerful Tool Reporter: Li Zhuo Advisor: Prof. Yang Prof. Chen Prof. Tang 1 Content Introduction Oxidation by Mn(VII) & Mn(IV) Epoxidation & Cyclopropanation Radical

More information

The Chemistry of Organozinc Reagent a long story. Reporter: Han Yixin Adivisors: Prof. Yang Prof. Chen Prof. Tang Prof. Luo Date: Nov. 22 nd.

The Chemistry of Organozinc Reagent a long story. Reporter: Han Yixin Adivisors: Prof. Yang Prof. Chen Prof. Tang Prof. Luo Date: Nov. 22 nd. The Chemistry of Organozinc Reagent a long story Reporter: Han Yixin Adivisors: Prof. Yang Prof. Chen Prof. Tang Prof. Luo Date: Nov. 22 nd. 2013 2 Content Introduction Reactions of Organozinc reagent

More information

Synthesis of Abyssomicin C. Marie-Caroline Cordonnier Litterature Review 23/01/2009

Synthesis of Abyssomicin C. Marie-Caroline Cordonnier Litterature Review 23/01/2009 Synthesis of Abyssomicin C Marie-Caroline Cordonnier Litterature Review 23/01/2009 Isolation Isolated in 2004 from the actinomycete Verrucosispora strain collected from a sediment at a depth of 289m in

More information

Page 1 of 9. Sessional Examination (November 2017) Max Marks: 20 Date: Time: One Hour. Model Answers

Page 1 of 9. Sessional Examination (November 2017) Max Marks: 20 Date: Time: One Hour. Model Answers Page 1 of 9 Sessional Examination (November 2017) Class: B. Pharm-II yr (III sem) Subject: Pharma Org. Chem-II Max Marks: 20 Date: 14.11.2017 Time: One Hour Model Answers Q. 1. Solve the following (ANY

More information

April 2002 CUME Organic Chemistry Department of Chemistry University of Missouri Columbia Saturday, April 6th, 2002 Dr.

April 2002 CUME Organic Chemistry Department of Chemistry University of Missouri Columbia Saturday, April 6th, 2002 Dr. April 2002 CUME Organic Chemistry Department of Chemistry University of Missouri Columbia Saturday, April 6th, 2002 Dr. Rainer Glaser Announced Reading: Prins Cyclization Reactions 1 Question 1. Aldol-Prins

More information

Asymmetric Palladium Catalyzed Cross-Coupling Reactions. Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1

Asymmetric Palladium Catalyzed Cross-Coupling Reactions. Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1 Asymmetric Palladium Catalyzed Cross-Coupling Reactions Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1 Palladium Catalyzed Cross-Coupling Reactions 2 Kumada/Negishi Cross-Coupling Kumada:

More information

Self-stable Electrophilic Reagents for Trifluoromethylthiolation. Reporter: Linrui Zhang Supervisor: Prof. Yong Huang Date:

Self-stable Electrophilic Reagents for Trifluoromethylthiolation. Reporter: Linrui Zhang Supervisor: Prof. Yong Huang Date: Self-stable Electrophilic Reagents for Trifluoromethylthiolation Reporter: Linrui Zhang Supervisor: Prof. Yong Huang Date: 2017-12-25 Content Introduction Trifluoromethanesulfenates: Preparation and reactivity

More information

Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals. Table Of Contents: Foreword

Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals. Table Of Contents: Foreword Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals Table Of Contents: Foreword v Preface vii List of abbreviations ix Chapter 1 Introduction 1 (15) 1.1 What is

More information

Boron containing 1,1-Dimetallicalkane Reagents

Boron containing 1,1-Dimetallicalkane Reagents Boron containing 1,1-Dimetallicalkane Reagents Topic Talk Xun Liu July 25, 2013 Outline 1. 1,1-Borio-lithioalkane reagents 2. 1,1-Boronalkane reagents 3. 1,1-Borio-zincioalkane Reagents and 1,1-Borio-cuprioalkane

More information

The Vinylogous Aldol Reaction

The Vinylogous Aldol Reaction The Vinylogous Aldol Reaction Reporter: Sixuan Meng Supervisor: Prof. Huang 2013-09-09 Zanardi, F. et al. Chem. Rev. 2000, 100, 1929 Zanardi, F. et al.. Chem. Rev. 2011, 111, 3076 Introduction 2 3 Regiochemical

More information

The Synthesis of Molecules Containing Quaternary Stereogenic Centers via the Intramolecular Asymmetric Heck Reaction

The Synthesis of Molecules Containing Quaternary Stereogenic Centers via the Intramolecular Asymmetric Heck Reaction The Synthesis of Molecules Containing Quaternary Stereogenic Centers via the Intramolecular Asymmetric Heck Reaction Reported by Eric P. Gillis April 19, 2007 INTRODUCTION The enantioselective synthesis

More information

Macrocycles: From Molecules to Materials. Outline

Macrocycles: From Molecules to Materials. Outline PKU CCME OPSS Shape-Persistent Macrocycles: From Molecules to Materials Jin-Liang Wang Supervisor: Jian Pei 2005. 12. 9 Outline Introduction Properties of the Shape-Persistent Macrocycles Synthetic Strategies

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

Rising Novel Organic Synthesis

Rising Novel Organic Synthesis Literature report Rising Novel Organic Synthesis Methods Based on the Cleavage of N-N and N-O Bonds Reporter: Zhang-Pei Chen Checker : Mu-Wang Chen Date: 04/03/2014 Kürti, L. et al. Kürti, L. et al. Science

More information

Dual enantioselective control by heterocycles of (S)-indoline derivatives*

Dual enantioselective control by heterocycles of (S)-indoline derivatives* Pure Appl. Chem., Vol. 77, No. 12, pp. 2053 2059, 2005. DOI: 10.1351/pac200577122053 2005 IUPAC Dual enantioselective control by heterocycles of (S)-indoline derivatives* Yong Hae Kim, Doo Young Jung,

More information

Cobalt in Organic Synthesis

Cobalt in Organic Synthesis balt in rganic Synthesis 2 C 2 C C 2 2 C C + C 2 C 2 P Vitamin B 12 Tao Wang MacMillan Lab Group eting ovember 29, 2017 Background Facts about cobalt 27 balt 58.9332 Cl 2 6 2 Electron configuration [Ar]

More information

Additions to the Carbonyl Groups

Additions to the Carbonyl Groups Chapter 18 Additions to the Carbonyl Groups Nucleophilic substitution (S N 2andS N 1) reaction occurs at sp3 hybridized carbons with electronegative leaving groups Why? The carbon is electrophilic! Addition

More information

First Row TM Catalyzed C-H Activation. Zhi Ren 2014/9/10

First Row TM Catalyzed C-H Activation. Zhi Ren 2014/9/10 First Row TM Catalyzed C-H Activation Zhi Ren 2014/9/10 Outline 1. Introduction 2. Sc catalyzed C-H activation 3. Ti catalyzed C-H activation 4. V catalyzed C-H oxidation/fluorination 5. Mn catalyzed C-H

More information

Regioselective Reductive Cross-Coupling Reaction

Regioselective Reductive Cross-Coupling Reaction Lit. Seminar. 2010. 6.16 Shinsuke Mouri (D3) Regioselective Reductive Cross-Coupling Reaction Glenn C. Micalizio obtained a Ph.D. at the University of Michigan in 2001 under the supervision of Professor

More information

One pot cascade reactions of glyoxylate

One pot cascade reactions of glyoxylate Science One pot cascade reactions of glyoxylate By Shyam Sundar Samanta June 12 th 2012 One Pot Synthesis of Non-Proteinogenic Amino Acids and Elaborated Peptides One Pot synthesis. 1) The yield is very

More information

Chemistry 610: Organic Reactions Fall 2017

Chemistry 610: Organic Reactions Fall 2017 Instructor Prof. David Powers Office: Chemistry 320 Phone: 979.862.3089 E-mail: david.powers@chem.tamu.edu Learning Outcomes Chemistry 610: Organic Reactions Fall 2017 Tuesday and Thursday 2:20 3:35 PM

More information

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols B() 2 H H B() 2 H H Hu, X.-D.; Fan, C.-A.; Zhang, F.-M.; Tu, Y.

More information

D) u.ltraviolet light. B) 2,3-pentadiene. B) a 1:l mixture of enantiomeric epoxides. D) a 1:l mixture of enantiomeric diols

D) u.ltraviolet light. B) 2,3-pentadiene. B) a 1:l mixture of enantiomeric epoxides. D) a 1:l mixture of enantiomeric diols 1) In the UV-visible spectrum of (El-1,3,5-hexatriene, the lowest energy absorption corresponds to: A) a o to n transition. B) a o to n* transition. C) a rc to o* transition. D) a o to a* transition. E)

More information

Dr. P. Wipf Chem /26/2007

Dr. P. Wipf Chem /26/2007 I. Basic Principles I-L. Radicals & Carbenes Features of Radical Reactions Review: Curran, D. P. In Comprehensive Organic Synthesis; B. M. Trost and I. Fleming, Ed.; Pergamon Press: Oxford, 1991; Vol.

More information

New cyclizations via catalytic ruthenium vinylidenes*

New cyclizations via catalytic ruthenium vinylidenes* Pure Appl. Chem., Vol. 80, No. 5, pp. 1167 1177, 2008. doi:10.1351/pac200880051167 2008 IUPAC New cyclizations via catalytic ruthenium vinylidenes* Jesús A. Varela, Carlos González-Rodríguez, Silvia G.

More information

Nitrogen Centered Radical Ligands Nagashima Nozomu

Nitrogen Centered Radical Ligands Nagashima Nozomu 1 Nitrogen Centered Radical Ligands 2015. 7. 4. Nagashima Nozomu 1. Introduction 2 3 Aminyl radical 1) D. E. Wiliams, JACS, 1966, 88, 5665 2) Y. Teki et al. JOC, 2000, 65, 7889 Sterically protected aminyl

More information

Hydrogen-Mediated C-C Bond Formation

Hydrogen-Mediated C-C Bond Formation EPFL - ISIC - LSPN Hydrogen-Mediated C-C Bond Formation History and selected examples The Research of Prof. Michael Krische (University of Texas at Austin) LSPN Group Seminar Mathias Mamboury Table of

More information

Low Valent, Low Coordinate Complexes Using Bulky Ligands

Low Valent, Low Coordinate Complexes Using Bulky Ligands Low Valent, Low Coordinate Complexes Using Bulky Ligands 01/14/2015 Presented By Michael C. Young Topics Two and three coordinate low valent complexes of Ni Work by the Hillhouse Group Bulky m-terphenyl

More information

Chapter 15 Dienes, Resonance, and Aromaticity

Chapter 15 Dienes, Resonance, and Aromaticity Instructor Supplemental Solutions to Problems 2010 Roberts and Company Publishers Chapter 15 Dienes, Resonance, and Aromaticity Solutions to In-Text Problems 15.2 The delocalization energy is the energy

More information

Total Synthesis of ( )-Nakadomarin A

Total Synthesis of ( )-Nakadomarin A Total Synthesis of ( )-Nakadomarin A Pavol Jakubec, Dane M. Cockfield, and Darren J. Dixon University of Oxford and University of Manchester, UK J. Am. Chem. Soc. 2009, ASAP DOI: 10.1021/ja908399s Marie-Céline

More information

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS Second Edition ROBERT H. CRABTREE Yale University New Haven, Connecticut A Wiley-Interscience Publication JOHN WILEY & SONS New York / Chichester /

More information

Three Type Of Carbene Complexes

Three Type Of Carbene Complexes Three Type f arbene omplexes arbene complexes have formal metal-to-carbon double bonds. Several types are known. The reactivity of the carbene and how it contributes to the overall electron counting is

More information

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Shiqing Xu, Akimichi Oda, Thomas Bobinski, Haijun Li, Yohei Matsueda, and Ei-ichi Negishi Angew. Chem. Int. Ed. 2015,

More information

Exam 1 (Monday, July 6, 2015)

Exam 1 (Monday, July 6, 2015) Chem 231 Summer 2015 Assigned Homework Problems Last updated: Friday, July 24, 2015 Problems Assigned from Essential Organic Chemistry, 2 nd Edition, Paula Yurkanis Bruice, Prentice Hall, New York, NY,

More information

Ruthenium-Catalyzed Concurrent Tandem Reactions. Greg Boyce University of North Carolina February 8 th 2008

Ruthenium-Catalyzed Concurrent Tandem Reactions. Greg Boyce University of North Carolina February 8 th 2008 Ruthenium-Catalyzed Concurrent Tandem Reactions Greg Boyce University of North Carolina February 8 th 2008 Outline I. Introduction II. Metathesis/Metathesis I. Ring Rearrangement Metathesis II. Enyne Cascades

More information

Strained Alkenes in Natural Product Synthesis. 15 October 2013 Denmark Group MeeAng Hyung Min Chi

Strained Alkenes in Natural Product Synthesis. 15 October 2013 Denmark Group MeeAng Hyung Min Chi Strained Alkenes in Natural Product Synthesis 15 October 2013 Denmark Group MeeAng Hyung Min Chi Overview Types of strains in alkene system PreparaAon of strained alkenes Strained alkenes used in natural

More information

Cascade Reactions Involving Pauson Khand and Related Processes

Cascade Reactions Involving Pauson Khand and Related Processes Top Organomet Chem (2006) 19: 207 257 DOI 10.1007/3418_008 Springer-Verlag Berlin Heidelberg 2006 Published online: 12 April 2006 Cascade Reactions Involving Pauson Khand and Related Processes Javier Pérez-Castells

More information

Operating mechanisms: Useful articles:

Operating mechanisms: Useful articles: Useful articles: Fairlamb, ACIEE, 2004, 1048. Aubert et al., Chem. Rev., 2002, 813. Fletcher et al., J. Chem. Soc., Perkin 1, 2000, 1657. Fürstner et al., Chem. Eur. J., 2004, 4556. Kozmin et al. Adv.

More information

Ethers can be symmetrical or not:

Ethers can be symmetrical or not: Chapter 14: Ethers, Epoxides, and Sulfides 175 Physical Properties Ethers can be symmetrical or not: linear or cyclic. Ethers are inert and make excellent solvents for organic reactions. Epoxides are very

More information

Chiral Supramolecular Catalyst for Asymmetric Reaction

Chiral Supramolecular Catalyst for Asymmetric Reaction Chiral Supramolecular Catalyst for Asymmetric Reaction 2017/1/21 (Sat.) Literature Seminar Taiki Fujita (B4) 1 Introduction Rational design of chiral ligands remains very difficult. Conventional chiral

More information

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol Chapter 10: Structure and Synthesis of Alcohols 100 Physical Properties Alcohols can be: CH 3 CH 3 CH CH 2 OH * Primary alcohol CH 3 OH CH * CH 2 CH 3 Secondary alcohol CH 3 CH 3 * C OH CH 3 Tertiary alcohol

More information

Transition-metal-catalyzed multicomponent coupling reactions with imines and carbon monoxide*

Transition-metal-catalyzed multicomponent coupling reactions with imines and carbon monoxide* Pure Appl. Chem., Vol. 85, No. 2, pp. 377 384, 2013. http://dx.doi.org/10.1351/pac-con-12-10-15 2013 IUPAC, Publication date (Web): 21 January 2013 Transition-metal-catalyzed multicomponent coupling reactions

More information

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry

Chapter 25: The Chemistry of Life: Organic and Biological Chemistry Chemistry: The Central Science Chapter 25: The Chemistry of Life: Organic and Biological Chemistry The study of carbon compounds constitutes a separate branch of chemistry known as organic chemistry The

More information

VI. Metal alkyls from oxidative addition / insertion

VI. Metal alkyls from oxidative addition / insertion V. Metal alkyls from oxidative addition / insertion A. Carbonylation - C insertion very facile, metal acyls easily cleaved, all substrates which undergo oxidative addition can in principle be carbonylated.

More information

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition 1. Radical Substitution on Alkanes Only Cl and Br are useful at the laboratory level. Alkane reactivity: tertiary > secondary > primary > methyl Numbers below products give their relative yield. Relative

More information

Chemistry of Propargyldicobalt Cations: The Nicholas Reaction

Chemistry of Propargyldicobalt Cations: The Nicholas Reaction Chemistry of Propargyldicobalt Cations: The Nicholas Reaction R(OC)3CoCo(CO)3R2OR1+ orlewis AcidR(OC)3CoCo(CO)3R2Nu-R(OC)3CoCo(CO)3R2NuROR1R2Co2(CO)8 William Collins Group Meeting, September 28 th 2004

More information

CONTENTS PART I STRUCTURES OF THE TRANSITION-METAL COMPLEXES

CONTENTS PART I STRUCTURES OF THE TRANSITION-METAL COMPLEXES CONTENTS Introduction... 1 1. Organization of the text... 1 2. Frontiers of organometallic chemistry... 2 3. Situation of the book with respect to teaching... 2 4. Reference books and other selected references...

More information

Modern Organic Synthesis an Introduction

Modern Organic Synthesis an Introduction Modern Organic Synthesis an Introduction G. S. Zweifel M. H. Nantz W.H. Freeman and Company Chapter 1 Synthetic Design 1 What is an ideal or viable synthesis, and how does one approach a synthetic project?

More information

Synthesis of Resorcinylic Macrolides

Synthesis of Resorcinylic Macrolides Synthesis of Resorcinylic Macrolides X H H H H Cl X= Radicicol (1) X= CH2 Cycloproparadicicol (2) Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, ASAP Danishefsky, S. J. rg. Lett. 2004, 6, 413-416 Danishefsky,

More information

Metalloporphyrin. ~as efficient Lewis acid catalysts with a unique reaction-field~ and. ~Synthetic study toward complex metalloporphyrins~

Metalloporphyrin. ~as efficient Lewis acid catalysts with a unique reaction-field~ and. ~Synthetic study toward complex metalloporphyrins~ Metalloporphyrin ~as efficient Lewis acid catalysts with a unique reaction-field~ and ~Synthetic study toward complex metalloporphyrins~ Literature Seminar Kenta Saito (D1) 1 Topics Chapter 1 ~as efficient

More information

Transition Metal Chemistry

Transition Metal Chemistry Transition Metal Chemistry 2 2011.12.2 Ⅰ Fundamental Organometallic Reactions Following four reactions are important formal reaction patterns in organotransition metal complexes, which would conveniently

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information

Suggested solutions for Chapter 40

Suggested solutions for Chapter 40 s for Chapter 40 40 PBLEM 1 Suggest mechanisms for these reactions, explaining the role of palladium in the first step. Ac Et Et BS () 4 2 1. 2. K 2 C 3 evision of enol ethers and bromination, the Wittig

More information

Chapter 2 The Elementary Steps in TM Catalysis

Chapter 2 The Elementary Steps in TM Catalysis hapter 2 The Elementary Steps in TM atalysis + + ligand exchange A oxidative addition > n + A B n+2 reductive elimination < B n n+2 oxidative coupling + M' + M' transmetallation migratory insertion > (carbo-,

More information

ST. JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) ST. JOSEPH S COLLEGE ROAD, CUDDALORE CH101T ORGANIC CHEMISTRY I (SEMESTER-I)

ST. JOSEPH S COLLEGE OF ARTS & SCIENCE (AUTONOMOUS) ST. JOSEPH S COLLEGE ROAD, CUDDALORE CH101T ORGANIC CHEMISTRY I (SEMESTER-I) UNIT I 1. The hybridization involved in the formation of acetylene is a) sp b) sp 2 c) sp 3 d) sp 3 d 2. The IUPAC name of is 1. 3-hexene b) 4-hexene c) 3-hexyne d) 4-hexyne 3. -------- is the type of

More information

PHOTOCATALYSIS: FORMATIONS OF RINGS

PHOTOCATALYSIS: FORMATIONS OF RINGS PHOTOCATALYSIS: FORMATIONS OF RINGS Zachery Matesich 15 April 2014 Roadmap 2 Photoredox Catalysis Cyclizations Reductive Oxidative Redox-neutral Electron Transfer Conclusion http://www.meta-synthesis.com/webbook/11_five/five.html

More information

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo C H activation of aliphatic amines without unnecessary mask 2017.11.25 M2 Takaya Togo 1 Outline 1.Introduction 2.Free amines as DG Discovery of new activation mode Mechanistic studies Application of the

More information

Synthesis of coumarins by ring-closing metathesis*

Synthesis of coumarins by ring-closing metathesis* Pure Appl. Chem., Vol. 75, No. 4, pp. 421 425, 2003. 2003 IUPAC Synthesis of coumarins by ring-closing metathesis* Arnab K. Chatterjee, F. Dean Toste, Steven D. Goldberg, and Robert H. Grubbs Arnold and

More information

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Rhodium Catalyzed Alkyl C-H Insertion Reactions Rhodium Catalyzed Alkyl C-H Insertion Reactions Rh Rh Jeff Kallemeyn 5/17/05 1. Cyclopropanation The Versatile and Reactive Rhodium Carbene R + Et Rh 2 (Ac) 4 R C 2 Et N 2 2. [2,3] sigmatropic rearrangement

More information

Oxidative couplings of two nucleophiles

Oxidative couplings of two nucleophiles Oxidative Couplings of Hydrocarbons Oxidative couplings of two nucleophiles Oxidants involved: O 2 H 2 O 2 high h valent metals(copper salts) halides(iodine(Ⅲ) oxidants) Lei, A. W. Chem. Rev., 2011, 111,

More information

Answers To Chapter 7 Problems.

Answers To Chapter 7 Problems. Answers To Chapter Problems.. Most of the Chapter problems appear as end-of-chapter problems in later chapters.. The first reaction is an ene reaction. When light shines on in the presence of light and

More information

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity

Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity Planar-Chiral Phosphine-Olefin Ligands Exploiting a (Cyclopentadienyl)manganese(I) Scaffold to Achieve High Robustness and High Enantioselectivity Reporter: Cong Liu Checker: Hong-Qiang Shen Date: 2017/02/27

More information

The Legends of the Star Tetrodotoxin

The Legends of the Star Tetrodotoxin The Legends of the Star Tetrodotoxin Advisors: Prof. YANG Prof. CHEN Prof. TANG Reporter: Haixin YU History Puffer Fish Delicious food in Japan fugu Poisonous For Japanese and Egyptians Millennia For Europeans

More information

Organometallic Study Meeting Chapter 17. Catalytic Carbonylation

Organometallic Study Meeting Chapter 17. Catalytic Carbonylation rganometallic Study Meeting Chapter 17. Catalytic Carbonylation 17.1 verview C or 3 3 C 3 C C 3 horrcat. Ar-X or alkene ' d cat. 2011/10/6 K.isaki or ' or N n 2 1 alkene, 2 Coorhcat. d cat. alkene C carbon

More information

Anti-Markovnikov Olefin Functionalization

Anti-Markovnikov Olefin Functionalization Anti-Markovnikov Olefin Functionalization ~Prof. Robert H. Grubbs Work~ 4 th Literature Seminar July 5, 2014 Soichi Ito (D1) Contents 1. Introduction Flow of Prof. Grubbs Research Markovnikov s Rule Wacker

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes Additions to Alkenes Chapter 8 Alkenes and Alkynes II: Addition Reactions Generally the reaction is exothermic because one p and one s bond are converted to two s bonds Alkenes are electron rich The carbocation

More information

The Mechanism of Rhenium Catalyzed Olefination of Aldehydes. Nathan Werner Denmark Group Meeting July 22 nd, 2008

The Mechanism of Rhenium Catalyzed Olefination of Aldehydes. Nathan Werner Denmark Group Meeting July 22 nd, 2008 The Mechanism of Rhenium Catalyzed Olefination of Aldehydes Nathan Werner Denmark Group Meeting July 22 nd, 2008 Introduction First Use of Phosphanes to Olefinate Carbonyls: oxaphosphetane Advantages:

More information

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010 Enantioselective Borylations David Kornfilt Denmark Group Meeting Sept. 14 th 2010 30.000-foot View Enantioenriched Organoboranes What to do with them Crudden C. M. et. al., Eur. J. Org. Chem. 2003, 46

More information

Nucleophilic Fluorination. Souvik Rakshit Burke group Literature Seminar July 13, 2013

Nucleophilic Fluorination. Souvik Rakshit Burke group Literature Seminar July 13, 2013 Nucleophilic Fluorination Souvik Rakshit Burke group Literature Seminar July 13, 2013 Relevance 20% of pharmaceuticals contain fluorine 5-fluorouracil Antineoplastic agent, 1957 Lipitor (Atorvastatin)

More information

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation M.C. White, Chem 153 verview -282- Week of ovember 11, 2002 Functionalization of terminal olefins via migratory insertion /reductive elimination sequence ydrogenation ML n E ydrosilylation Si 3 Si 3 ML

More information

Use of Cp 2 TiCl in Synthesis

Use of Cp 2 TiCl in Synthesis Use of 2 TiCl in Synthesis eagent Control of adical eactions Jeff Kallemeyn May 21, 2002 eactions of 2 TiCl 1. Pinacol Coupling H H H 2. Epoxide pening H H E H Chemoselectivity Activated aldehydes (aromatic,

More information

C H Activated Trifluoromethylation

C H Activated Trifluoromethylation Literature report C H Activated Trifluoromethylation Reporter:Yan Fang Superior:Prof. Yong Huang Jun. 17 th 2013 Contents Background Trifluoromethylation of sp-hybridized C-H Bonds Trifluoromethylation

More information