From Borapyramidane to Borole Dianion

Size: px
Start display at page:

Download "From Borapyramidane to Borole Dianion"

Transcription

1 SUPPORTING INFORMATION From Borapyramidane to Borole Dianion Vladimir Ya. Lee, 1 * Haruka Sugasawa, 1 Olga A. Gapurenko, 2 Ruslan M. Minyaev, 2 Vladimir I. Minkin, 2 Heinz Gornitzka, 3 and Akira Sekiguchi 1 * 1 Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki , Japan 2 Institute of Physical and Organic Chemistry, Southern Federal University, Rostov on Don, , Russian Federation 3 LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France *To whom correspondence should be addressed. leevya@chem.tsukuba.ac.jp (V. Ya. L.), sekiguch@chem.tsukuba.ac.jp (A. S.) Contents of the Supporting Information: 1. Experimenal Section: general procedures, synthetic procedures, spectroscopic and crystallographic data for chloroborapyramidane 2 and borole dianion derivative {3 2 [Li(thf) + ] 2 }, details of the X-ray crystallographic analysis for 2 and {3 2 [Li(thf) + ] 2 } [Figures S1 S11 (NMR spectral charts, ORTEP drawings) and Tables S1 S12 (tables of the crystallographic data including atomic positional and thermal parameters)] S2 S34 2. Computational details: description of the programs, theoretical methods and basis sets used; optimized geometries; AIM results S35 S36 3. References: S37 S38

2 1. Experimental Section. General procedures. All experimental manipulations were performed using high-vacuum line techniques, or in an argon atmosphere of MBRAUN MB 150B-G glove box. All solvents were predried by conventional methods and finally dried and degassed over a potassium mirror in vacuum immediately prior to use. NMR spectra were recorded on Bruker AV-400FT ( 1 H NMR at MHz; 13 C NMR at MHz; 29 Si NMR at 79.5 MHz; 7 Li NMR at MHz; 11 B NMR at MHz) NMR spectrometer. Starting tetrakis(trimethylsilyl)cyclobutadiene dianion dilithium salt 1 2 [Li(thf) + ] 2 was prepared according to a published procedure. 1 (a) Experimental procedure, spectroscopic and crystallographic data for chloro(borapyramidane) 2. BCl 3 (0.415 ml of 1 M solution in heptane, mmol) was added under argon atmosphere to the hexane solution of dilithium salt of the tetrakis(trimethylsilyl)cyclobutadiene dianion 1 2 [Li(thf) + ] 2 (103.2 mg, mmol) in a Schlenk tube equipped with a magnetic stirring bar. After stirring for 10 minutes at room temperature, the solution color changed to orange and white soild percipitated. This solid was filtered off, solvents were evaporated, and the residue was recrystallized from dry hexane to give 2 as pale-yellow (almost colorless) crystals (40.7 mg, 51%). Mp C. 1 H NMR (C 6 D 6, δ, ppm) 0.27 (s, 36 H, 12 Me); 13 C NMR (C 6 D 6, δ, ppm) 0.86 (Me), (skeletal C); 29 Si NMR (C 6 D 6, δ, ppm) (Si substituents); 11 B NMR (C 6 D 6, δ, ppm) 38.55; Anal. Calcd. for C 16 H 36 BClSi 4 : C, 49.65; H, Found: C, 49.60; H, The single crystals of 2 for X-ray diffraction analysis were grown from a hexane solution. Diffraction data were collected at 100 K on a Bruker AXS APEX II CCD X-ray diffractometer (Mo-Kα radiation, λ = Å, 50 kv/30 ma). The structure was solved by the direct method with the SHELXS-97 program 2 and refined by the full-matrix least-squares method with the SHELXL-97 program 3. Crystal data for 2: MF = C 16 H 36 BClSi 4, MW = , orthorhombic, P n m a, a = (7), b = (10), c = (7) Å, V = (2) Å 3, Z = 4, D calcd = g cm 3. The final R factor was for 2425 reflections with I o > 2σ(I o ) (R w = for all data), GOF = The X-ray crystallographic data for 2 have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition no. CCDC These data can be obtained free of charge from the CCDC ( S2

3 (b) Experimental procedure, spectroscopic and crystallographic data for the Chloroborole Dianion Dilithium salt {3 2 [Li(thf) + ] 2 } Chloro(borapyramidane) 2 (60.2 mg, mmol) and Li powder (10.7 mg, 1.54 mmol) were placed in a glass reaction tube with a magnetic stirring bar. Then dry oxygen-free THF (1.5 ml) was introduced into this reaction tube, and the reaction mixture was stirred at room temperature. The solution color gradually changed from pale-yellow to orange. After stirring for 1 day, remaining Li powder was removed by filtration. Then the solvent was removed under vacuum, and the residue was washed by hexane (0.5 ml 3 times). Finally, inorganic salt was removed by extraction of product with toluene, and toluene was then evaporated under vacuum to give {3 2 [Li(thf) + ] 2 } as pale-yellow crystals (almost colorless) (52.4 mg, 62%). Mp C. 1 H NMR (C 7 D 8, δ, ppm) 0.60 (s, 18 H, α-sime 3 ), 0.71 (s, 18 H, β-sime 3 ); 13 C NMR (C 7 D 8, δ, ppm) 5.69 (α-sime 3 ), 6.86 (β-sime 3 ), (br, skeletal C α ), (skeletal C β ); 29 Si NMR (C 7 D 8, δ, ppm) 13.15, 11.53; 7 Li NMR (C 7 D 8, δ, ppm) 6.73; 11 B NMR (C 7 D 8, δ, ppm) 36.31; Anal. Calcd. for C 24 H 52 BClLi 2 O 2 Si 4 : C, 52.88; H, Found: C, 52.03; H, The single crystals of {3 2 [Li(thf) + ] 2 } for X-ray diffraction analysis were grown from a toluene solution. Diffraction data were collected at 100 K on a Bruker AXS APEX II CCD X-ray diffractometer (Mo-Kα radiation, λ = Å, 50 kv/30 ma). The structure was solved by the direct method with the SHELXS-97 program 2 and refined by the full-matrix least-squares method with the SHELXL-2014 program 4. Crystal data for {3 2 [Li(thf) + ] 2 }: MF = C 24 H 52 BClLi 2 O 2 Si 4, MW = , monoclinic, P2 1 /c, a = 9.220(2), b = (3), c = (3) Å, β = (2), V = (10) Å 3, Z = 4, D calcd = g cm 3. The final R factor was for 4934 reflections with I o > 2σ(I o ) (R w = for all data), GOF = The X-ray crystallographic data for {3 2 [Li(thf) + ] 2 } have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition no. CCDC These data can be obtained free of charge from the CCDC ( S3

4 Figure S1. 1 H NMR spectrum of the chloroborapyramidane 2 (C 6 D 6 ). Figure S2. 13 C NMR spectrum of the chloroborapyramidane 2 (C 6 D 6 ). S4

5 impurity Figure S3. 29Si NMR spectrum of the the chloroborapyramidane 2 (C6D6). Figure S4. 11B NMR spectrum of the chloroborapyramidane 2 (C6D6). S5

6 (c) X-ray crystallography of 2. Table S1. Crystallographic data for chloroborapyramidane 2. Identification code BPyr Empirical formula C 16 H 36 BClSi 4 Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions 100 K Å Orthorhombic P n m a a = (7) Å b = (10) Å c = (7) Å Volume (2) Å 3 Z 4 Density (calculated) g/cm 3 Absorption coefficient mm -1 F(000) 840 Crystal size 0.20 x 0.24 x 0.31 mm 3 Theta range for data collection 2.12 to Index ranges -14<=h<=14, -21<=k<=21, -14<=l<=14 Reflections collected Independent reflections 2513 [R(int) = ] Completeness to theta = % Absorption correction multi-scan Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 2513 / 0 / 119 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = S6

7 Figure S5. Crystal structure of the chloroborapyramidane 2 (ORTEP view with the thermal ellipsoids drawn at the 40% probability level), hydrogen atoms are not shown. S7

8 Table S2. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for 2. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) B (14) (15) (3) C (8) (6) (9) (2) C (12) (13) (3) C (12) (12) (3) C (11) (8) (11) (3) C (11) (7) (10) (3) C (11) (7) (12) (3) C (10) (7) (11) (3) C (15) (15) (4) C (13) (8) (11) (3) C (16) (17) (5) Cl (3) (3) (12) Si (3) (17) (3) (10) Si (3) (3) (11) Si (4) (3) (11) S8

9 Table S3. Bond lengths [Å] for 2. B1-C (2) B1-C1# (16) B1-C (16) B1-C (2) B1-Cl (17) C1-C (14) C1-C (14) C1-Si (11) C2-C1# (14) C2-Si (15) C3-C1# (14) C3-Si (15) C4-Si (13) C4-H4A 0.98 C4-H4B 0.98 C4-H4C 0.98 C5-Si (12) C5-H5A 0.98 C5-H5B 0.98 C5-H5C 0.98 C6-Si (13) C6-H6A 0.98 C6-H6B 0.98 C6-H6C 0.98 C7-Si (12) C7-H7A 0.98 C7-H7B 0.98 C7-H7C 0.98 C8-Si (18) C8-H8A 0.98 C8-H8B 0.98 C8-H8C 0.98 C9-Si (13) C9-H9A 0.98 C9-H9B 0.98 C9-H9C 0.98 C10-Si (19) C10-H10A 0.98 C10-H10B 0.98 C10-H10C 0.98 Si2-C7# (12) Si3-C9# (13) Symmetry transformations used to generate equivalent atoms: #1 x, -y+1/2, z Table S4. Bond angles [ ] for 2. C2-B1-C1# (7) C2-B1-C (7) C1#1-B1-C (11) C2-B1-C (10) C1#1-B1-C (7) C1-B1-C (7) C2-B1-Cl (12) C1#1-B1-Cl (5) C1-B1-Cl (5) C3-B1-Cl (12) C3-C1-C (8) C3-C1-B (8) C2-C1-B (8) C3-C1-Si (8) S9

10 C2-C1-Si (8) B1-C1-Si (7) C1#1-C2-C (11) C1#1-C2-B (7) C1-C2-B (7) C1#1-C2-Si (6) C1-C2-Si (6) B1-C2-Si (11) C1#1-C3-C (11) C1#1-C3-B (7) C1-C3-B (7) C1#1-C3-Si (6) C1-C3-Si (6) B1-C3-Si (10) Si1-C4-H4A Si1-C4-H4B H4A-C4-H4B Si1-C4-H4C H4A-C4-H4C H4B-C4-H4C Si1-C5-H5A Si1-C5-H5B H5A-C5-H5B Si1-C5-H5C H5A-C5-H5C H5B-C5-H5C Si1-C6-H6A Si1-C6-H6B H6A-C6-H6B Si1-C6-H6C H6A-C6-H6C H6B-C6-H6C Si2-C7-H7A Si2-C7-H7B H7A-C7-H7B Si2-C7-H7C H7A-C7-H7C H7B-C7-H7C Si2-C8-H8A Si2-C8-H8B H8A-C8-H8B Si2-C8-H8C H8A-C8-H8C H8B-C8-H8C Si3-C9-H9A Si3-C9-H9B H9A-C9-H9B Si3-C9-H9C H9A-C9-H9C H9B-C9-H9C Si3-C10-H10A Si3-C10-H10B H10A-C10-H10B Si3-C10-H10C H10A-C10-H10C H10B-C10-H10C C6-Si1-C (5) C6-Si1-C (6) C1-Si1-C (5) C6-Si1-C (6) C1-Si1-C (5) C4-Si1-C (6) C8-Si2-C7# (5) C8-Si2-C (5) C7#1-Si2-C (8) C8-Si2-C (7) C7#1-Si2-C (5) C7-Si2-C (5) C10-Si3-C9# (6) C10-Si3-C (6) C9#1-Si3-C (9) C10-Si3-C (8) C9#1-Si3-C (5) C9-Si3-C (5) S10

11 Symmetry transformations used to generate equivalent atoms: #1 x, -y+1/2, z Table S5. Anisotropic atomic displacement parameters (Å 2 ) for 2. The anisotropic atomic displacement factor exponent takes the form: -2π 2 [ h 2 a *2 U h k a * b * U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 B (7) (8) (8) (6) 0 C (4) (5) (5) (4) (4) (4) C (6) (7) (7) (5) 0 C (7) (7) (7) (5) 0 C (7) (7) (7) (5) (5) (5) C (6) (6) (6) (5) (5) (5) C (6) (6) (7) (5) (5) (5) C (6) (6) (6) (5) (5) (5) C (8) (13) (8) (6) 0 C (9) (6) (6) (5) (6) (6) C (9) (15) (9) (7) 0 Cl (19) (2) (2) (14) 0 Si (17) (17) (17) (11) (11) (11) Si (2) (2) (2) (15) 0 Si (2) (2) (2) (15) 0 S11

12 Table S6. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for 2. x/a y/b z/c U(eq) H4A H4B H4C H5A H5B H5C H6A H6B H6C H7A H7B H7C H8A H8B H8C H9A H9B H9C H10A H10B H10C S12

13 Figure S6. 1 H NMR spectrum of the chloroborole dianionic derivative {3 2 [Li(thf) + ] 2 } (thf-d 8 ). Figure S7. 13 C NMR spectrum of the chloroborole dianionic derivative {3 2 [Li(thf) + ] 2 } (thf-d 8 ). S13

14 impurity Figure S8. 29 Si NMR spectrum of the chloroborole dianionic derivative {3 2 [Li(thf) + ] 2 } (thf-d 8 ). Figure S9. 11 B NMR spectrum of the chloroborole dianionic derivative {3 2 [Li(thf) + ] 2 } (thf-d 8 ). S14

15 Figure S10. 7 Li NMR spectrum of the chloroborole dianionic derivative {3 2 [Li(thf) + ] 2 } (thf-d 8 ). S15

16 (d) X-ray crystallography of {3 2 [Li(thf) + ] 2 }. Table S7. Crystallographic data for chloroborole dianionic derivative {3 2 [Li(thf) + ] 2 }. Identification code Diborole_0m Empirical formula C 24 H 52 BClLi 2 O 2 Si 4 Formula weight Temperature Wavelength Crystal system 100 K Å Monoclinic Space group P2 1 /c Unit cell dimensions a = (15) Å b = (3) Å β = (2) c = (3) Å Volume (10) Å 3 Z 4 Density (calculated) g/cm 3 Absorption coefficient mm -1 F(000) 1184 Crystal size x x mm Theta range for data collection to Index ranges -11<=h<=11, -25<=k<=25, -22<=l<=22 Reflections collected Independent reflections 6272 [R(int) = ] Completeness to theta = % Absorption correction empirical Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 6272 / 206 / 365 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = S16

17 Figure S11. Crystal structure of the chloroborole dianion derivative {3 2 [Li(thf) + ] 2 } (ORTEP view with the thermal ellipsoids drawn at the 30% probability level), hydrogen atoms are not shown. THF molecule coordinated to the Li2 atom is disordered, and only major occupancy (59%) is shown here. S17

18 Table S8. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å 2 ) for {3 2 [Li(thf) + ] 2 }. U(eq) is defined as one third of the trace of the orthogonalized U ij tensor. x y z U(eq) B(1) 8031(3) 9135(1) 7024(2) 22(1) C(1) 7736(3) 9614(1) 7612(1) 19(1) C(2) 6617(3) 9291(1) 7945(1) 17(1) C(3) 6169(3) 8664(1) 7570(1) 17(1) C(4) 7044(3) 8534(1) 7009(1) 19(1) C(5) 8213(4) 10854(1) 6750(2) 39(1) C(6) 7591(3) 11087(1) 8222(2) 32(1) C(7) 10548(3) 10465(1) 8140(2) 40(1) C(8) 4851(3) 10151(1) 8904(2) 31(1) C(9) 8139(3) 9806(1) 9509(2) 31(1) C(10) 5990(4) 8766(1) 9443(2) 34(1) C(11) 4600(3) 7426(1) 8118(2) 32(1) C(12) 3381(3) 8068(1) 6569(2) 30(1) C(13) 2982(3) 8742(2) 7903(2) 39(1) C(14) 6366(3) 6995(1) 6645(2) 34(1) C(15) 9216(3) 7562(1) 6563(2) 38(1) C(16) 6473(4) 7991(1) 5404(2) 38(1) Cl(1) 9368(1) 9265(1) 6432(1) 35(1) Li(1) 8483(5) 8639(2) 8151(2) 26(1) Li(2) 5650(5) 9445(2) 6765(3) 29(1) O(1) 9678(2) 8144(1) 8930(1) 33(1) C(17) 10954(3) 8360(2) 9495(2) 43(1) C(18) 11916(4) 7758(2) 9674(2) 58(1) C(19) 10774(4) 7211(2) 9630(2) 53(1) C(20) 9509(4) 7435(1) 8998(2) 49(1) O(2) 4369(11) 9981(5) 6107(5) 38(2) C(21) 3606(12) 10526(5) 6364(6) 62(3) C(22) 2022(14) 10490(8) 5882(8) 53(4) S18

19 C(23) 1946(10) 9864(5) 5422(5) 51(3) C(24) 3539(9) 9766(5) 5366(4) 41(2) O(2') 3971(8) 9963(4) 6288(4) 38(2) C(21') 3510(9) 10448(4) 6762(4) 60(2) C(22') 2426(7) 10878(3) 6283(4) 51(2) C(23') 1725(10) 10448(5) 5624(5) 36(2) C(24') 2971(9) 9990(4) 5551(4) 54(2) Si(1) 8501(1) 10468(1) 7708(1) 23(1) Si(2) 6324(1) 9517(1) 8895(1) 21(1) Si(3) 4386(1) 8221(1) 7573(1) 22(1) Si(4) 7205(1) 7797(1) 6426(1) 23(1) Table S9. Bond lengths [Å] for {3 2 [Li(thf) + ] 2 }. B(1)-C(4) 1.513(4) B(1)-C(1) 1.514(4) B(1)-Cl(1) 1.840(3) B(1)-Li(2) 2.224(6) B(1)-Li(1) 2.235(5) C(1)-C(2) 1.467(3) C(1)-Si(1) 1.856(2) C(1)-Li(2) 2.193(5) C(1)-Li(1) 2.234(5) C(2)-C(3) 1.452(3) C(2)-Si(2) 1.872(2) C(2)-Li(1) 2.128(5) C(2)-Li(2) 2.152(5) C(3)-C(4) 1.468(3) C(3)-Si(3) 1.872(2) C(3)-Li(2) 2.131(5) C(3)-Li(1) 2.149(5) S19

20 C(4)-Si(4) 1.854(2) C(4)-Li(1) 2.202(5) C(4)-Li(2) 2.227(5) C(5)-Si(1) 1.875(3) C(5)-H(5A) C(5)-H(5B) C(5)-H(5C) C(6)-Si(1) 1.875(3) C(6)-H(6A) C(6)-H(6B) C(6)-H(6C) C(7)-Si(1) 1.867(3) C(7)-H(7A) C(7)-H(7B) C(7)-H(7C) C(8)-Si(2) 1.869(3) C(8)-H(8A) C(8)-H(8B) C(8)-H(8C) C(9)-Si(2) 1.876(3) C(9)-H(9A) C(9)-H(9B) C(9)-H(9C) C(10)-Si(2) 1.879(3) C(10)-H(10A) C(10)-H(10B) C(10)-H(10C) C(11)-Si(3) 1.872(3) C(11)-H(11A) C(11)-H(11B) C(11)-H(11C) C(12)-Si(3) 1.874(3) C(12)-H(12A) S20

21 C(12)-H(12B) C(12)-H(12C) C(13)-Si(3) 1.873(3) C(13)-H(13A) C(13)-H(13B) C(13)-H(13C) C(14)-Si(4) 1.876(3) C(14)-H(14A) C(14)-H(14B) C(14)-H(14C) C(15)-Si(4) 1.873(3) C(15)-H(15A) C(15)-H(15B) C(15)-H(15C) C(16)-Si(4) 1.871(3) C(16)-H(16A) C(16)-H(16B) C(16)-H(16C) Li(1)-O(1) 1.871(5) Li(2)-O(2) 1.828(11) Li(2)-O(2') 1.902(8) O(1)-C(17) 1.438(3) O(1)-C(20) 1.447(3) C(17)-C(18) 1.495(4) C(17)-H(17A) C(17)-H(17B) C(18)-C(19) 1.513(5) C(18)-H(18A) C(18)-H(18B) C(19)-C(20) 1.504(5) C(19)-H(19A) C(19)-H(19B) C(20)-H(20A) S21

22 C(20)-H(20B) O(2)-C(21) 1.442(10) O(2)-C(24) 1.455(10) C(21)-C(22) 1.519(13) C(21)-H(21A) C(21)-H(21B) C(22)-C(23) 1.510(14) C(22)-H(22A) C(22)-H(22B) C(23)-C(24) 1.508(11) C(23)-H(23A) C(23)-H(23B) C(24)-H(24A) C(24)-H(24B) O(2')-C(21') 1.434(7) O(2')-C(24') 1.441(8) C(21')-C(22') 1.451(8) C(21')-H(21C) C(21')-H(21D) C(22')-C(23') 1.501(9) C(22')-H(22C) C(22')-H(22D) C(23')-C(24') 1.504(10) C(23')-H(23C) C(23')-H(23D) C(24')-H(24C) C(24')-H(24D) S22

23 Table S10. Bond angles [ ] for {3 2 [Li(thf) + ] 2 }. C(4)-B(1)-C(1) 108.5(2) C(4)-B(1)-Cl(1) 125.9(2) C(1)-B(1)-Cl(1) (19) C(4)-B(1)-Li(2) 70.24(18) C(1)-B(1)-Li(2) 68.86(18) Cl(1)-B(1)-Li(2) (19) C(4)-B(1)-Li(1) 68.90(18) C(1)-B(1)-Li(1) 70.16(17) Cl(1)-B(1)-Li(1) (19) Li(2)-B(1)-Li(1) 106.5(2) C(2)-C(1)-B(1) 105.7(2) C(2)-C(1)-Si(1) (17) B(1)-C(1)-Si(1) (18) C(2)-C(1)-Li(2) 68.75(18) B(1)-C(1)-Li(2) 71.06(19) Si(1)-C(1)-Li(2) (16) C(2)-C(1)-Li(1) 66.49(17) B(1)-C(1)-Li(1) 70.24(18) Si(1)-C(1)-Li(1) (18) Li(2)-C(1)-Li(1) (19) C(3)-C(2)-C(1) 110.0(2) C(3)-C(2)-Si(2) (17) C(1)-C(2)-Si(2) (17) C(3)-C(2)-Li(1) 70.95(18) C(1)-C(2)-Li(1) 74.30(18) Si(2)-C(2)-Li(1) (16) C(3)-C(2)-Li(2) 69.40(17) C(1)-C(2)-Li(2) 71.79(18) Si(2)-C(2)-Li(2) (17) Li(1)-C(2)-Li(2) 113.2(2) C(2)-C(3)-C(4) 110.0(2) S23

24 C(2)-C(3)-Si(3) (18) C(4)-C(3)-Si(3) (17) C(2)-C(3)-Li(2) 70.97(18) C(4)-C(3)-Li(2) 73.90(18) Si(3)-C(3)-Li(2) (17) C(2)-C(3)-Li(1) 69.37(17) C(4)-C(3)-Li(1) 72.24(18) Si(3)-C(3)-Li(1) (17) Li(2)-C(3)-Li(1) 113.2(2) C(3)-C(4)-B(1) 105.7(2) C(3)-C(4)-Si(4) (17) B(1)-C(4)-Si(4) (18) C(3)-C(4)-Li(1) 68.35(18) B(1)-C(4)-Li(1) 71.24(19) Si(4)-C(4)-Li(1) (16) C(3)-C(4)-Li(2) 66.81(17) B(1)-C(4)-Li(2) 70.02(19) Si(4)-C(4)-Li(2) (17) Li(1)-C(4)-Li(2) (18) Si(1)-C(5)-H(5A) Si(1)-C(5)-H(5B) H(5A)-C(5)-H(5B) Si(1)-C(5)-H(5C) H(5A)-C(5)-H(5C) H(5B)-C(5)-H(5C) Si(1)-C(6)-H(6A) Si(1)-C(6)-H(6B) H(6A)-C(6)-H(6B) Si(1)-C(6)-H(6C) H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C) Si(1)-C(7)-H(7A) Si(1)-C(7)-H(7B) S24

25 H(7A)-C(7)-H(7B) Si(1)-C(7)-H(7C) H(7A)-C(7)-H(7C) H(7B)-C(7)-H(7C) Si(2)-C(8)-H(8A) Si(2)-C(8)-H(8B) H(8A)-C(8)-H(8B) Si(2)-C(8)-H(8C) H(8A)-C(8)-H(8C) H(8B)-C(8)-H(8C) Si(2)-C(9)-H(9A) Si(2)-C(9)-H(9B) H(9A)-C(9)-H(9B) Si(2)-C(9)-H(9C) H(9A)-C(9)-H(9C) H(9B)-C(9)-H(9C) Si(2)-C(10)-H(10A) Si(2)-C(10)-H(10B) H(10A)-C(10)-H(10B) Si(2)-C(10)-H(10C) H(10A)-C(10)-H(10C) H(10B)-C(10)-H(10C) Si(3)-C(11)-H(11A) Si(3)-C(11)-H(11B) H(11A)-C(11)-H(11B) Si(3)-C(11)-H(11C) H(11A)-C(11)-H(11C) H(11B)-C(11)-H(11C) Si(3)-C(12)-H(12A) Si(3)-C(12)-H(12B) H(12A)-C(12)-H(12B) Si(3)-C(12)-H(12C) H(12A)-C(12)-H(12C) S25

26 H(12B)-C(12)-H(12C) Si(3)-C(13)-H(13A) Si(3)-C(13)-H(13B) H(13A)-C(13)-H(13B) Si(3)-C(13)-H(13C) H(13A)-C(13)-H(13C) H(13B)-C(13)-H(13C) Si(4)-C(14)-H(14A) Si(4)-C(14)-H(14B) H(14A)-C(14)-H(14B) Si(4)-C(14)-H(14C) H(14A)-C(14)-H(14C) H(14B)-C(14)-H(14C) Si(4)-C(15)-H(15A) Si(4)-C(15)-H(15B) H(15A)-C(15)-H(15B) Si(4)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15B)-C(15)-H(15C) Si(4)-C(16)-H(16A) Si(4)-C(16)-H(16B) H(16A)-C(16)-H(16B) Si(4)-C(16)-H(16C) H(16A)-C(16)-H(16C) H(16B)-C(16)-H(16C) O(1)-Li(1)-C(2) 140.5(3) O(1)-Li(1)-C(3) 136.6(3) C(2)-Li(1)-C(3) 39.68(12) O(1)-Li(1)-C(4) 141.6(2) C(2)-Li(1)-C(4) 67.04(15) C(3)-Li(1)-C(4) 39.41(12) O(1)-Li(1)-C(1) 150.6(2) C(2)-Li(1)-C(1) 39.21(11) S26

27 C(3)-Li(1)-C(1) 66.07(15) C(4)-Li(1)-C(1) 67.25(15) O(1)-Li(1)-B(1) 152.6(3) C(2)-Li(1)-B(1) 65.95(16) C(3)-Li(1)-B(1) 65.58(16) C(4)-Li(1)-B(1) 39.86(12) C(1)-Li(1)-B(1) 39.60(12) O(2)-Li(2)-C(3) 153.7(4) O(2')-Li(2)-C(3) 138.5(4) O(2)-Li(2)-C(2) 142.6(4) O(2')-Li(2)-C(2) 129.7(3) C(3)-Li(2)-C(2) 39.63(12) O(2)-Li(2)-C(1) 134.0(4) O(2')-Li(2)-C(1) 136.2(3) C(3)-Li(2)-C(1) 67.11(16) C(2)-Li(2)-C(1) 39.45(12) O(2)-Li(2)-B(1) 139.4(4) O(2')-Li(2)-B(1) 155.4(4) C(3)-Li(2)-B(1) 66.08(16) C(2)-Li(2)-B(1) 65.76(16) C(1)-Li(2)-B(1) 40.07(13) O(2)-Li(2)-C(4) 150.9(4) O(2')-Li(2)-C(4) 156.3(3) C(3)-Li(2)-C(4) 39.29(11) C(2)-Li(2)-C(4) 66.19(15) C(1)-Li(2)-C(4) 67.52(16) B(1)-Li(2)-C(4) 39.74(12) C(17)-O(1)-C(20) 109.0(2) C(17)-O(1)-Li(1) 128.3(2) C(20)-O(1)-Li(1) 122.5(2) O(1)-C(17)-C(18) 104.7(3) O(1)-C(17)-H(17A) C(18)-C(17)-H(17A) S27

28 O(1)-C(17)-H(17B) C(18)-C(17)-H(17B) H(17A)-C(17)-H(17B) C(17)-C(18)-C(19) 102.2(3) C(17)-C(18)-H(18A) C(19)-C(18)-H(18A) C(17)-C(18)-H(18B) C(19)-C(18)-H(18B) H(18A)-C(18)-H(18B) C(20)-C(19)-C(18) 103.1(3) C(20)-C(19)-H(19A) C(18)-C(19)-H(19A) C(20)-C(19)-H(19B) C(18)-C(19)-H(19B) H(19A)-C(19)-H(19B) O(1)-C(20)-C(19) 106.4(3) O(1)-C(20)-H(20A) C(19)-C(20)-H(20A) O(1)-C(20)-H(20B) C(19)-C(20)-H(20B) H(20A)-C(20)-H(20B) C(21)-O(2)-C(24) 109.8(8) C(21)-O(2)-Li(2) 121.8(7) C(24)-O(2)-Li(2) 123.5(7) O(2)-C(21)-C(22) 104.6(9) O(2)-C(21)-H(21A) C(22)-C(21)-H(21A) O(2)-C(21)-H(21B) C(22)-C(21)-H(21B) H(21A)-C(21)-H(21B) C(23)-C(22)-C(21) 106.0(9) C(23)-C(22)-H(22A) C(21)-C(22)-H(22A) S28

29 C(23)-C(22)-H(22B) C(21)-C(22)-H(22B) H(22A)-C(22)-H(22B) C(24)-C(23)-C(22) 103.2(9) C(24)-C(23)-H(23A) C(22)-C(23)-H(23A) C(24)-C(23)-H(23B) C(22)-C(23)-H(23B) H(23A)-C(23)-H(23B) O(2)-C(24)-C(23) 101.9(7) O(2)-C(24)-H(24A) C(23)-C(24)-H(24A) O(2)-C(24)-H(24B) C(23)-C(24)-H(24B) H(24A)-C(24)-H(24B) C(21')-O(2')-C(24') 108.8(6) C(21')-O(2')-Li(2) 115.1(5) C(24')-O(2')-Li(2) 136.1(5) O(2')-C(21')-C(22') 107.7(6) O(2')-C(21')-H(21C) C(22')-C(21')-H(21C) O(2')-C(21')-H(21D) C(22')-C(21')-H(21D) H(21C)-C(21')-H(21D) C(21')-C(22')-C(23') 104.1(6) C(21')-C(22')-H(22C) C(23')-C(22')-H(22C) C(21')-C(22')-H(22D) C(23')-C(22')-H(22D) H(22C)-C(22')-H(22D) C(22')-C(23')-C(24') 103.4(6) C(22')-C(23')-H(23C) C(24')-C(23')-H(23C) S29

30 C(22')-C(23')-H(23D) C(24')-C(23')-H(23D) H(23C)-C(23')-H(23D) O(2')-C(24')-C(23') 106.0(6) O(2')-C(24')-H(24C) C(23')-C(24')-H(24C) O(2')-C(24')-H(24D) C(23')-C(24')-H(24D) H(24C)-C(24')-H(24D) C(1)-Si(1)-C(7) (12) C(1)-Si(1)-C(5) (12) C(7)-Si(1)-C(5) (15) C(1)-Si(1)-C(6) (12) C(7)-Si(1)-C(6) (14) C(5)-Si(1)-C(6) (13) C(8)-Si(2)-C(2) (12) C(8)-Si(2)-C(9) (13) C(2)-Si(2)-C(9) (12) C(8)-Si(2)-C(10) (13) C(2)-Si(2)-C(10) (11) C(9)-Si(2)-C(10) 99.65(13) C(3)-Si(3)-C(11) (12) C(3)-Si(3)-C(13) (12) C(11)-Si(3)-C(13) (14) C(3)-Si(3)-C(12) (12) C(11)-Si(3)-C(12) (12) C(13)-Si(3)-C(12) (14) C(4)-Si(4)-C(16) (12) C(4)-Si(4)-C(15) (12) C(16)-Si(4)-C(15) (15) C(4)-Si(4)-C(14) (12) C(16)-Si(4)-C(14) (14) C(15)-Si(4)-C(14) (13) S30

31 Table S11. Anisotropic atomic displacement parameters (Å 2 ) for {3 2 [Li(thf) + ] 2 }. The anisotropic atomic displacement factor exponent takes the form: -2π 2 [ h 2 a *2 U h k a * b * U 12 ] U 11 U 22 U 33 U 23 U 13 U 12 B(1) 28(2) 15(1) 25(2) 1(1) 11(1) -1(1) C(1) 24(1) 10(1) 24(1) -1(1) 6(1) -1(1) C(2) 22(1) 9(1) 20(1) 0(1) 4(1) 4(1) C(3) 23(1) 10(1) 18(1) 1(1) 4(1) 1(1) C(4) 24(1) 10(1) 22(1) -1(1) 6(1) 1(1) C(5) 63(2) 15(1) 44(2) 5(1) 24(2) 0(1) C(6) 43(2) 12(1) 44(2) -3(1) 15(1) 0(1) C(7) 31(2) 24(2) 65(2) -6(1) 10(2) -6(1) C(8) 40(2) 22(1) 35(2) -5(1) 16(1) 5(1) C(9) 41(2) 24(1) 24(1) -4(1) -2(1) 2(1) C(10) 60(2) 19(1) 27(2) 1(1) 16(1) 1(1) C(11) 45(2) 19(1) 34(2) -1(1) 13(1) -10(1) C(12) 29(2) 22(1) 36(2) -3(1) 2(1) -4(1) C(13) 30(2) 34(2) 55(2) -13(1) 17(2) -3(1) C(14) 48(2) 12(1) 48(2) -4(1) 21(2) -3(1) C(15) 43(2) 21(1) 56(2) -7(1) 23(2) 4(1) C(16) 63(2) 25(1) 29(2) -8(1) 14(2) -5(1) Cl(1) 49(1) 21(1) 44(1) -4(1) 30(1) -7(1) Li(1) 28(2) 19(2) 30(2) -2(2) 3(2) 4(2) Li(2) 38(3) 19(2) 27(2) 1(2) 3(2) 2(2) O(1) 38(1) 20(1) 36(1) 3(1) -1(1) 6(1) C(17) 40(2) 42(2) 40(2) 3(1) -4(1) 4(2) C(18) 49(2) 75(3) 48(2) 22(2) 6(2) 29(2) C(19) 86(3) 38(2) 39(2) 13(2) 19(2) 29(2) C(20) 71(3) 22(2) 53(2) 5(1) 13(2) 7(2) O(2) 44(5) 26(3) 39(5) 5(3) -3(3) 7(3) C(21) 82(6) 51(6) 46(6) 8(5) 1(5) 37(5) S31

32 C(22) 43(6) 53(7) 66(10) 19(6) 23(5) 13(6) C(23) 39(5) 70(7) 45(5) 19(4) 13(4) 5(5) C(24) 37(5) 55(6) 30(4) 13(4) 3(3) 8(4) O(2') 41(4) 37(3) 31(3) -5(2) -4(2) 15(3) C(21') 80(5) 51(4) 42(4) -8(3) -1(4) 37(3) C(22') 47(4) 45(4) 56(4) -8(3) 1(3) 15(3) C(23') 26(3) 32(4) 45(5) 12(3) -4(3) -2(3) C(24') 57(5) 61(4) 34(3) -7(3) -7(3) 21(4) Si(1) 28(1) 9(1) 33(1) -2(1) 9(1) -2(1) Si(2) 31(1) 11(1) 21(1) -2(1) 7(1) 2(1) Si(3) 25(1) 14(1) 28(1) -3(1) 9(1) -3(1) Si(4) 33(1) 11(1) 26(1) -5(1) 12(1) -2(1) S32

33 Table S12. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å 2 ) for {3 2 [Li(thf) + ] 2 }. x y z U(eq) H(5A) H(5B) H(5C) H(6A) H(6B) H(6C) H(7A) H(7B) H(7C) H(8A) H(8B) H(8C) H(9A) H(9B) H(9C) H(10A) H(10B) H(10C) H(11A) H(11B) H(11C) H(12A) H(12B) H(12C) H(13A) H(13B) H(13C) H(14A) S33

34 H(14B) H(14C) H(15A) H(15B) H(15C) H(16A) H(16B) H(16C) H(17A) H(17B) H(18A) H(18B) H(19A) H(19B) H(20A) H(20B) H(21A) H(21B) H(22A) H(22B) H(23A) H(23B) H(24A) H(24B) H(21C) H(21D) H(22C) H(22D) H(23C) H(23D) H(24C) H(24D) S34

35 2. Computations. Geometry optimization, frequency analysis, wave function stability and all related calculations were performed using the Gaussian 09 program.5 After testing some computational levels (B3LYP,6 TPSSh,7 M068 functionals and G**,9 Def2TZVP,10 Def2TZVPP10 basis sets), we chose B3LYP/Def2TZVP (DFT1) and TPSSh/Def2TZVP (DFT2) levels which provide the best agreement of their optimized geometries (Figure S12) with the X-Ray data. The NBO11 and NRT12 analyses were performed using the NBO6.0 program.13 The AIM analysis14 was carried out using the program AIMAll.15 The views of the optimized geometries and molecular orbitals were generated using Chemcraft 1.8 program.16 Isomer relative energies are given with zero-point correction. 2 (C2) [32 (Li+)2] (C2) A (C2) C (C1) Figure S12. Optimized geometries (bond lengths, in Å) at DFT1 (DFT2) levels for 2, [32 (Li+)2] and isomers A and C. Hydrogens atoms are omitted. S35

36 AIM Results. For the model compound 2ʹ, the type of its apex-to-base bonding interactions is difficult to define from the values of their electron density ρ(r) and the Laplacian 2 ρ(r) (Table S13 and Figure S13), and therefore it is better to define it based on the values of the electronic energy density h e (r). 14b,17 Negative values of h e (r) provide evidence for the covalent bonding character and describe the pyramidal bonds as the polar covalent. The same holds true for the B Cl bond in 2ʹ. Electronic energy density is defined by the equation: h e (r) = v(r) + g(r), where v(r) and g(r) are the local potential and kinetic energy densities, respectively. For the covalent bonding, h e (r) < 0. On the other hand, the basal C C bonds in 2ʹ are purely covalent: they have large ρ(r) and negative values of the Laplacian 2 ρ(r). Table S13. Topological analysis of AIM theory (DFT1) for the model compound 2ʹ: ρ(r) electron density at the bond critical point (e/au 3 ); 2 ρ(r) Laplacian of the electron density (e/au 5 ); h e (r) local electron energy (H/au 3 ); BT bond type; I.I. intermediate interaction; C covalent. Pyramidane Pyramidal B C bonds Cl B bond Basal C C bonds ρ(r) 2 ρ(r) h e (r) BT ρ(r) 2 ρ(r) h e (r) BT ρ(r) 2 ρ(r) h e (r) BT 2ʹ ClB[C 4 H 4 ] I.I I.I C 2ʹ Figure S13. Molecular graph of the H-substituted model 2ʹ: bond critical points are shown in red, ring critical points in yellow. S36

37 References: 1. Sekiguchi, A.; Matsuo, T.; Watanabe, H. J. Am. Chem. Soc. 2000, 122, (a) Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467. (b) Sheldrick, G. M. Acta Crystallogr. 2008, A64, Sheldrick, G. M. SHELXL-97: Program for Crystal Structure Refinement (University of Göttingen, 1997). 4. Sheldrick, G. M. Acta Crystallogr. 2015, C71, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision E.01; Gaussian Inc., Wallingford CT, (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098; (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785; (c) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, (a) Tao, J. M.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett.2003, 91, ; (b) Staroverov, V. N.; Scuseria, G. E.; Tao, J. M.; Perdew, J. P. J. Chem. Phys., 2003, 119, Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc., 2008, 120, R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, (a) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297; (b) Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, Foster, J. P., Weinhold, F. J. Am. Chem. Soc. 1980, 102, S37

38 12. (a) Glendening, E. D.; Weinhold, F. J. Comput. Chem. 1998, 19, 593; (b) Glendening, E. D.; Weinhold, F. J. Comput. Chem. 1998, 19, 610; (c) Glendening, E. D.; Badenhoop, J. K.; Weinhold, F. J. Comput. Chem. 1998, 19, Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. NBO 6.0; Theoretical Chemistry Institute, University of Wisconsin, Madison, (a) Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, U.K., 1990; (b) Bader, R. F. W. J. Phys. Chem. A 1998, 102, Keith, T. A. AIMAll (version ); TK Gristmill Software, Overland Park KS, USA, Zhurko, G. A. ChemCraft software, (a) Cremer, D.; Kraka, E. Angew. Chem. Int. Ed. Engl. 1984, 23, 627; (b) Cremer, D.; Kraka, E. Croat. Chem. Acta, 1984, 57, S38

Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies

Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies Part A: NMR Studies ESI 1 11 B NMR spectrum of the 2:1 reaction of i Pr 2 NHBH 3 with Al(NMe 2 ) 3 in d 6 -benzene 24 h later 11 B NMR ESI 2 11 B NMR spectrum of the reaction of t BuNH 2 BH 3 with Al(NMe

More information

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates Supporting Information For Peroxide as switch of dialkyl H-phosphonate: two mild and metal-free methods for preparation of 2-acylbenzothiazoles and dialkyl benzothiazole-2-yl phosphonates Xiao-Lan Chen,*,

More information

Electronic Supplementary Information (ESI) for Chem. Commun.

Electronic Supplementary Information (ESI) for Chem. Commun. page S1 Electronic Supplementary Information (ESI) for Chem. Commun. Nitric oxide coupling mediated by iron porphyrins: the N-N bond formation step is facilitated by electrons and a proton Jun Yi, Brian

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Novel B(Ar') 2 (Ar'') hetero-tri(aryl)boranes: a systematic study of Lewis acidity Robin

More information

Supporting Information

Supporting Information Rich coordination chemistry of π-acceptor dibenzoarsole ligands Arvind Kumar Gupta, 1 Sunisa Akkarasamiyo, 2 Andreas Orthaber*,1 1 Molecular Inorganic Chemistry, Department of Chemistry, Ångström Laboratories,

More information

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer S 1 SUPPORTING INFORMATION Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer from the Substrate to the Catalyst Miguel A. Esteruelas,*

More information

Metal-Free Hydrogenation Catalysis of Polycyclic Aromatic Hydrocarbons

Metal-Free Hydrogenation Catalysis of Polycyclic Aromatic Hydrocarbons Supplementary Data for: Metal-Free Hydrogenation Catalysis of Polycyclic Aromatic Hydrocarbons Yasutomo Segawa b and Douglas W. Stephan* a a Department of Chemistry, University of Toronto, 80 St. George

More information

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene Supporting Information for 4-Pyridylnitrene and 2-pyrazinylcarbene Curt Wentrup*, Ales Reisinger and David Kvaskoff Address: School of Chemistry and Molecular Biosciences, The University of Queensland,

More information

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supporting Information {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in

More information

A Computational Model for the Dimerization of Allene: Supporting Information

A Computational Model for the Dimerization of Allene: Supporting Information A Computational Model for the Dimerization of Allene: Supporting Information Sarah L. Skraba and Richard P. Johnson* Department of Chemistry University of New Hampshire Durham, NH 03824 Corresponding Author:

More information

A Key n π* Interaction in N-Acyl Homoserine Lactones

A Key n π* Interaction in N-Acyl Homoserine Lactones A Key n π* Interaction in N-Acyl Homoserine Lactones Robert W. Newberry and Ronald T. Raines* Page Contents S1 Table of Contents S2 Experimental Procedures S3 Computational Procedures S4 Figure S1. 1 H

More information

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene Supplementary Information Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene Jia-Jia Zheng, 1,2 Xiang Zhao, 1* Yuliang Zhao, 2 and Xingfa Gao

More information

Ring expansion reactions of electron-rich boron-containing heterocycles. Supporting Information Contents

Ring expansion reactions of electron-rich boron-containing heterocycles. Supporting Information Contents Ring expansion reactions of electron-rich boron-containing heterocycles Juan. F. Araneda, Warren E. Piers,* Michael J. Sgro and Masood Parvez Department of Chemistry, University of Calgary, 2500 University

More information

Out-Basicity of 1,8-bis(dimethylamino)naphthalene: The experimental and theoretical challenge

Out-Basicity of 1,8-bis(dimethylamino)naphthalene: The experimental and theoretical challenge S1 Supplementary information for Out-Basicity of 1,8-bis(dimethylamino)naphthalene: The experimental and theoretical challenge Valery A. Ozeryanskii, a Alexander F. Pozharskii,,a Alexander S. Antonov a

More information

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase Supporting Information for Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase Andy Dang, Huong T. H. Nguyen, Heather Ruiz, Elettra Piacentino,Victor Ryzhov *, František Tureček

More information

Supporting Information

Supporting Information Theoretical examination of competitive -radical-induced cleavages of N-C and C -C bonds of peptides Wai-Kit Tang, Chun-Ping Leong, Qiang Hao, Chi-Kit Siu* Department of Biology and Chemistry, City University

More information

Supplementary Information:

Supplementary Information: Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supplementary Information: Coordination and Insertion of Alkenes and Alkynes in Au III

More information

CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal

CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal Evidence for the Interactions Occurring between Ionic Liquids and Tetraethylene Glycol in Binary Mixtures and Aqueous Biphasic Systems Luciana I. N. Tomé, Jorge F. B. Pereira,, Robin D. Rogers, Mara G.

More information

Supporting Information. Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane

Supporting Information. Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane Supporting Information Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane Kiyomi Ueba-Ohshima, Takeaki Iwamoto,*,# Mitsuo Kira*, #Research and Analytical Center for

More information

Supplementary Information. Institut für Anorganische Chemie, Julius-Maximilians Universität Würzburg, Am Hubland, D Würzburg, Germany.

Supplementary Information. Institut für Anorganische Chemie, Julius-Maximilians Universität Würzburg, Am Hubland, D Würzburg, Germany. Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Synthesis and Characterization of a Mercury-Containing Trimetalloboride Supplementary Information

More information

Supporting Information

Supporting Information Quantum Chemistry Study of U(VI), Np(V) and Pu(IV,VI) Complexes with Preorganized Tetradentate Phenanthroline Amide Ligands Cheng-Liang Xiao, Qun-Yan Wu, Cong-Zhi Wang, Yu-Liang Zhao, Zhi-Fang Chai, *

More information

Supplementary Information

Supplementary Information Supplementary Information Enhancing the Double Exchange Interaction in Mixed Valence {V III -V II } Pair: A Theoretical Perspective Soumen Ghosh, Saurabh Kumar Singh and Gopalan Rajaraman* a Computational

More information

Electronic Supporting Information

Electronic Supporting Information Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2015 Electronic Supporting Information Materials and methods 1,2-Bis[2,5-dimethyl(3-thienyl)]ethane-1,2-dione

More information

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis Supporting Information -Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis Toby Turney, Qingfeng Pan, Luke Sernau, Ian Carmichael, Wenhui

More information

Supporting Information Computational Part

Supporting Information Computational Part Supporting Information Computational Part The Cinchona Primary Amine-Catalyzed Asymmetric Epoxidation and Hydroperoxidation of, -Unsaturated Carbonyl Compounds with Hydrogen Peroxide Olga Lifchits, Manuel

More information

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation Mattia Riccardo Monaco, Daniele Fazzi, Nobuya Tsuji, Markus Leutzsch,

More information

Department of Chemistry, School of life Science and Technology, Jinan University, Guangzhou , China b

Department of Chemistry, School of life Science and Technology, Jinan University, Guangzhou , China b Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information for A Br substituted phenanthroimidazole derivative with aggregation

More information

Highly sensitive detection of low-level water contents in. organic solvents and cyanide in aqueous media using novel. solvatochromic AIEE fluorophores

Highly sensitive detection of low-level water contents in. organic solvents and cyanide in aqueous media using novel. solvatochromic AIEE fluorophores Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) Highly sensitive detection of low-level water contents

More information

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Non-Radiative Decay Paths in Rhodamines: New Theoretical Insights Marika Savarese,

More information

Ionic liquid electrolytes for reversible magnesium electrochemistry

Ionic liquid electrolytes for reversible magnesium electrochemistry Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 SUPPORTING INFORMATION Ionic liquid electrolytes for reversible magnesium electrochemistry Mega

More information

Ni II Tetrahydronorcorroles: Antiaromatic Porphyrinoids with Saturated Pyrrole Units

Ni II Tetrahydronorcorroles: Antiaromatic Porphyrinoids with Saturated Pyrrole Units Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 206 Supporting Information Ni II Tetrahydronorcorroles: Antiaromatic Porphyrinoids with Saturated Pyrrole

More information

Elucidating the structure of light absorbing styrene. carbocation species formed within zeolites SUPPORTING INFORMATION

Elucidating the structure of light absorbing styrene. carbocation species formed within zeolites SUPPORTING INFORMATION Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Elucidating the structure of light absorbing styrene carbocation species formed

More information

SUPPORTING INFORMATION. In Search of Redox Noninnocence between a Tetrazine Pincer Ligand and Monovalent Copper

SUPPORTING INFORMATION. In Search of Redox Noninnocence between a Tetrazine Pincer Ligand and Monovalent Copper Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 SUPPORTING INFORMATION In Search of Redox Noninnocence between a Tetrazine Pincer Ligand

More information

Magnesium-mediated Nucleophilic Borylation of Carbonyl Electrophiles

Magnesium-mediated Nucleophilic Borylation of Carbonyl Electrophiles Supplementary Information for Magnesium-mediated Nucleophilic Borylation of Carbonyl Electrophiles Anne-Frédérique Pécharman, Michael S. Hill,* Claire L. McMullin* and Mary F. Mahon Department of Chemistry,

More information

Scalable synthesis of quaterrylene: solution-phase

Scalable synthesis of quaterrylene: solution-phase PT2 PT2 P 2PT......... Electronic Supplementary Information For Scalable synthesis of quaterrylene: solution-phase 1 PH NMR spectroscopy of its oxidative dication Rajesh Thamatam, Sarah L. Skraba and Richard

More information

Cationic Polycyclization of Ynamides: Building up Molecular Complexity

Cationic Polycyclization of Ynamides: Building up Molecular Complexity Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Cationic Polycyclization of Ynamides: Building up

More information

Synthesis, Characterization and Simulations of Mixed-Metal Cluster Containing Pt-Ag 2 Cyclometalpropane. Supporting Information

Synthesis, Characterization and Simulations of Mixed-Metal Cluster Containing Pt-Ag 2 Cyclometalpropane. Supporting Information Synthesis, Characterization and Simulations of Mixed-Metal Cluster Containing Pt-Ag 2 Cyclometalpropane Xiaofei Zhang, a Bei Cao, a Edward J. Valente, b T. Keith Hollis,* a a Department of Chemistry and

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Revisiting the long-range Perlin effect in a conformationally constrained Oxocane Kahlil S. Salome and Cláudio F. Tormena* Institute of Chemistry, University of Campinas - UNICAMP

More information

ELECTRONIC SUPPLEMENTARY INFORMATION

ELECTRONIC SUPPLEMENTARY INFORMATION Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 S-1 ELECTRONIC SUPPLEMENTARY INFORMATION OCT. 1, 2017 Combined Quantum Mechanical

More information

BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection

BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2019 BINOPtimal: A Web Tool for Optimal Chiral Phosphoric Acid Catalyst Selection Jolene P. Reid, Kristaps

More information

Electronic relaxation dynamics of PCDA PDA studied by transient absorption spectroscopy

Electronic relaxation dynamics of PCDA PDA studied by transient absorption spectroscopy Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. his journal is the Owner Societies 06 Electronic Supplementary Information for Electronic relaxation dynamics of PCDA PDA

More information

Motooka, Nishi, Fukuoka , Japan.

Motooka, Nishi, Fukuoka , Japan. Electronic Supplementary Information A highly luminescent spiro-anthracenone-based organic light-emitting diode through thermally activated delayed fluorescence Keiro Nasu, a Tetsuya Nakagawa, a Hiroko

More information

Electronic Supplementary Information for:

Electronic Supplementary Information for: Electronic Supplementary Information for: The Potential of a cyclo-as 5 Ligand Complex in Coordination Chemistry H. Krauss, a G. Balazs, a M. Bodensteiner, a and M. Scheer* a a Institute of Inorganic Chemistry,

More information

Supporting Information for: Unusual para-substituent effects on the intramolecular hydrogen-bond in hydrazone-based switches

Supporting Information for: Unusual para-substituent effects on the intramolecular hydrogen-bond in hydrazone-based switches Supporting Information for: Unusual para-substituent effects on the intramolecular hydrogen-bond in hydrazone-based switches Xin Su a, Märt Lõkov b, Agnes Kütt b, Ivo Leito b and Ivan Aprahamian a a Department

More information

Crystal structure landscape in conformationally flexible organo-fluorine compounds

Crystal structure landscape in conformationally flexible organo-fluorine compounds Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Crystal structure landscape in conformationally flexible organo-fluorine

More information

Supporting Information

Supporting Information Supporting Information Z-Selective Ethenolysis With a Ruthenium Metathesis Catalyst: Experiment and Theory Hiroshi Miyazaki,, Myles B. Herbert,, Peng Liu, Xiaofei Dong, Xiufang Xu,,# Benjamin K. Keitz,

More information

Supporting information

Supporting information Supporting information Metal free Markovnikov type alkyne hydration under mild conditions Wenbo Liu, Haining Wang and Chao-Jun Li * Department of Chemistry and FQRNT Center for Green Chemistry and Catalysis,

More information

Detailed Syntheses. K 5H[Co II W 12O 40] 15H 2O (1). The synthesis was adapted from published methods. [1] Sodium tungstate

Detailed Syntheses. K 5H[Co II W 12O 40] 15H 2O (1). The synthesis was adapted from published methods. [1] Sodium tungstate Detailed Syntheses K 5H[Co II W 12O 40] 15H 2O (1). The synthesis was adapted from published methods. [1] Sodium tungstate dihydrate (19.8 g, 60 mmol) was dissolved with stirring in 40 ml of deionized

More information

Supporting Information. Detection of Leucine Aminopeptidase Activity in Serum Using. Surface-Enhanced Raman Spectroscopy

Supporting Information. Detection of Leucine Aminopeptidase Activity in Serum Using. Surface-Enhanced Raman Spectroscopy Electronic Supplementary Material (ESI) for Analyst. This journal is The Royal Society of Chemistry 2018 Supporting Information Detection of Leucine Aminopeptidase Activity in Serum Using Surface-Enhanced

More information

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study

Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water Reduction: A DFT Study Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Supporting Information to Mechanism of Hydrogen Evolution in Cu(bztpen)-Catalysed Water

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ew Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre ational de la Recherche Scientifique 2018 Supporting Information A new

More information

Supporting Information. Synthesis, resolution and absolute configuration of chiral 4,4 -bipyridines

Supporting Information. Synthesis, resolution and absolute configuration of chiral 4,4 -bipyridines Supporting Information Synthesis, resolution and absolute configuration of chiral 4,4 -bipyridines Victor Mamane,* a Emmanuel Aubert, b Paola Peluso, c and Sergio Cossu d a Laboratoire SRSMC UMR CRS 7565,

More information

DFT and TDDFT calculation of lead chalcogenide clusters up to (PbX) 32

DFT and TDDFT calculation of lead chalcogenide clusters up to (PbX) 32 DFT and TDDFT calculation of lead chalcogenide clusters up to (PbX) 32 V. S. Gurin Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya 14, 220006, Minsk, Belarus

More information

Nucleophilicity Evaluation for Primary and Secondary Amines

Nucleophilicity Evaluation for Primary and Secondary Amines Nucleophilicity Evaluation for Primary and Secondary Amines MADIAN RAFAILA, MIHAI MEDELEANU*, CORNELIU MIRCEA DAVIDESCU Politehnica University of Timiºoara, Faculty of Industrial Chemistry and Environmental

More information

Supporting Information for

Supporting Information for Supporting Information for Synthesis, Characterization and Reactivity of Formal 20 Electron Zirconocene-Pentafulvene Complexes Florian Jaroschik, a * Manfred Penkhues, b Bernard Bahlmann, b Emmanuel Nicolas,

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Highly Luminescent Tetradentate Bis-Cyclometalated Platinum Complexes: Design, Synthesis, Structure, Photophysics, and Electroluminescence Application Dileep A. K. Vezzu, Joseph

More information

Supporting Information. for. Silylation of Iron-Bound Carbon Monoxide. Affords a Terminal Fe Carbyne

Supporting Information. for. Silylation of Iron-Bound Carbon Monoxide. Affords a Terminal Fe Carbyne Supporting Information for Silylation of Iron-Bound Carbon Monoxide Affords a Terminal Fe Carbyne Yunho Lee and Jonas C. Peters* Division of Chemistry and Chemical Engineering, California Institute of

More information

Supporting Information. Reactive Simulations-based Model for the Chemistry behind Condensed Phase Ignition in RDX crystals from Hot Spots

Supporting Information. Reactive Simulations-based Model for the Chemistry behind Condensed Phase Ignition in RDX crystals from Hot Spots Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information Reactive Simulations-based Model for the Chemistry behind

More information

3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of

3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of Supporting Information 3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of C α -Si Bond Soumyajit Das, Pradip Kumar Dutta, Snigdha Panda, Sanjio S. Zade*

More information

Supporting Information

Supporting Information Supporting Information Unimolecular Photoconversion of Multicolor Luminescence on Hierarchical Self-Assemblies Liangliang Zhu, Xin Li, Quan Zhang, Xing Ma, # Menghuan Li, # Huacheng Zhang, Zhong Luo, Hans

More information

Effect of Ionic Size on Solvate Stability of Glyme- Based Solvate Ionic Liquids

Effect of Ionic Size on Solvate Stability of Glyme- Based Solvate Ionic Liquids Supporting Information for: Effect of Ionic Size on Solvate Stability of Glyme- Based Solvate Ionic Liquids Toshihiko Mandai,,ǁ Kazuki Yoshida, Seiji Tsuzuki, Risa Nozawa, Hyuma Masu, Kazuhide Ueno, Kaoru

More information

Driving forces for the self-assembly of graphene oxide on organic monolayers

Driving forces for the self-assembly of graphene oxide on organic monolayers Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting Information Driving forces for the self-assembly of graphene oxide on organic monolayers

More information

Table S1: DFT computed energies of high spin (HS) and broken symmetry (BS) state, <S 2 > values for different radical systems. HS BS1 BS2 BS3 < S 2 >

Table S1: DFT computed energies of high spin (HS) and broken symmetry (BS) state, <S 2 > values for different radical systems. HS BS1 BS2 BS3 < S 2 > Computational details: The magnetic exchange interaction between the Gd(III) centers in the non-radical bridged complex has been evaluated using the following Hamiltonian relation, = 2J J represents the

More information

Electronic Supplementary Information. Electron Mobility for All-Polymer Solar Cells

Electronic Supplementary Information. Electron Mobility for All-Polymer Solar Cells Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is the Partner Organisations 2018 Electronic Supplementary Information for Double B N Bridged Bipyridine-Containing

More information

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase Supplementary Information to: A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase Shuo Sun, Ze-Sheng Li,

More information

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 2320-7345 THEORETICAL APPROACH TO THE EVALUATION OF ACTIVATION ENERGIES I. Hammoudan 1, D. Riffi Temsamani 2, 1 Imad_2005_05@hotmail.com

More information

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen*

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen* Supplementary Information: A Disk-Aromatic Bowl Cluster B 30 : Towards Formation of Boron Buckyballs Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen* The file contains

More information

Supplementary Material: 2D-IR Spectroscopy of an AHA Labelled Photoswitchable PDZ2 Domain

Supplementary Material: 2D-IR Spectroscopy of an AHA Labelled Photoswitchable PDZ2 Domain Supplementary Material: 2D-IR Spectroscopy of an AHA Labelled Photoswitchable PDZ2 Domain Brigitte Stucki-Buchli, Philip Johnson, Olga Bozovic, Claudio Zanobini, Klemens Koziol, Peter Hamm Department of

More information

SF 5 -Enolates in Ti(IV)-Mediated Aldol Reactions

SF 5 -Enolates in Ti(IV)-Mediated Aldol Reactions 1 Supporting information S 5 -Enolates in Ti(IV)-Mediated Aldol Reactions Maksym V. Ponomarenko, * Simon Grabowsky, Rumpa Pal, Gerd-Volker Röschenthaler, Andrey A. okin Department of Life Sciences and

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany From the alkyllithium aggregate [(nbuli) 2 PMDTA] 2 to lithiated PMDTA Carsten Strohmann*, Viktoria H. Gessner Institut für Anorganische Chemie,

More information

Supporting Information

Supporting Information Supporting Information Rhodium-Catalyzed Synthesis of Imines and Esters from Benzyl Alcohols and Nitroarenes: Change in Catalyst Reactivity Depending on the Presence or Absence of the Phosphine Ligand

More information

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome s1 Electronic Supplementary Information A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome Byung Jin Byun and Young Kee Kang* Department of Chemistry, Chungbuk

More information

Supplementary information

Supplementary information Supplementary information doi: 10.1038/nchem.287 A Potential Energy Surface Bifurcation in Terpene Biosynthesis Young J. Hong and Dean J. Tantillo* Department of Chemistry, University of California, Davis,

More information

SUPPLEMENTARY MATERIAL. Nitrogen Containing Ionic Liquids: Biodegradation Studies and

SUPPLEMENTARY MATERIAL. Nitrogen Containing Ionic Liquids: Biodegradation Studies and S1 10.1071/CH14499_AC CSIRO 2015 Australian Journal of Chemistry 2015, 68 (6), 849-857 SUPPLEMENTARY MATERIAL Nitrogen Containing Ionic Liquids: Biodegradation Studies and Utility in Base Mediated Reactions

More information

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2010 Supplementary Information Methionine Ligand selectively promotes monofunctional adducts between

More information

Ethynylene-linked Figure-eight. Octaphyrin( ): Synthesis and. Characterization of Its Two Oxidation States

Ethynylene-linked Figure-eight. Octaphyrin( ): Synthesis and. Characterization of Its Two Oxidation States Supporting Information for Ethynylene-linked Figure-eight Octaphyrin(1.2.1.1.1.2.1.1): Synthesis and Characterization of Its Two Oxidation States Krushna Chandra Sahoo, Ϯ Marcin A. Majewski, Marcin Stępień,

More information

Supporting Material Biomimetic zinc chlorin poly(4-vinylpyridine) assemblies: doping level dependent emission-absorption regimes

Supporting Material Biomimetic zinc chlorin poly(4-vinylpyridine) assemblies: doping level dependent emission-absorption regimes Supporting Material Biomimetic zinc chlorin poly(4-vinylpyridine) assemblies: doping level dependent emission-absorption regimes Ville Pale, a, Taru Nikkonen, b, Jaana Vapaavuori, c Mauri Kostiainen, c

More information

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals Supporting Information to the manuscript Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals P. Jost and C. van Wüllen Contents Computational Details...

More information

Metal-free Synthesis of 3-Arylquinolin-2-ones from Acrylic. Experimental and Computational Study

Metal-free Synthesis of 3-Arylquinolin-2-ones from Acrylic. Experimental and Computational Study Metal-free Synthesis of 3-Arylquinolin-2-ones from Acrylic Amides via a Highly Regio-selective 1,2-Aryl Migration: An Experimental and Computational Study Le Liu,,ǁ Tonghuan Zhang,,ǁ Yun-Fang Yang, Daisy

More information

Supporting Information for. Acceptor-Type Hydroxide Graphite Intercalation Compounds. Electrochemically Formed in High Ionic Strength Solutions

Supporting Information for. Acceptor-Type Hydroxide Graphite Intercalation Compounds. Electrochemically Formed in High Ionic Strength Solutions Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information for Acceptor-Type Hydroxide Graphite Intercalation Compounds Electrochemically

More information

Supporting Information

Supporting Information Missing Monometallofullerene with C 80 Cage Hidefumi Nikawa, Tomoya Yamada, Baopeng Cao, Naomi Mizorogi, Slanina Zdenek, Takahiro Tsuchiya, Takeshi Akasaka,* Kenji Yoza, Shigeru Nagase* Center for Tsukuba

More information

Supporting Information

Supporting Information Supporting Information The Contrasting Character of Early and Late Transition Metal Fluorides as Hydrogen Bond Acceptors Dan A. Smith,, Torsten Beweries, Clemens Blasius, Naseralla Jasim, Ruqia Nazir,

More information

Concerted halogen and hydrogen bonding in RuI 2 (H 2 dcbpy)(co) 2 ] I 2 (CH 3 OH) I 2 [RuI 2 (H 2 dcbpy)(co) 2 ]

Concerted halogen and hydrogen bonding in RuI 2 (H 2 dcbpy)(co) 2 ] I 2 (CH 3 OH) I 2 [RuI 2 (H 2 dcbpy)(co) 2 ] Concerted halogen and hydrogen bonding in RuI 2 (H 2 dcbpy)(co) 2 ] I 2 (CH 3 OH) I 2 [RuI 2 (H 2 dcbpy)(co) 2 ] Matti Tuikka a, Mika Niskanen a, Pipsa Hirva a, Kari Rissanen b, Arto Valkonen b, and Matti

More information

Unveiling the role of hot charge-transfer states. in molecular aggregates via nonadiabatic. dynamics

Unveiling the role of hot charge-transfer states. in molecular aggregates via nonadiabatic. dynamics Unveiling the role of hot charge-transfer states in molecular aggregates via nonadiabatic dynamics Daniele Fazzi 1, Mario Barbatti 2, Walter Thiel 1 1 Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Supporting Information A Nanowire Array with Two Types of Bromoplumbate Chains and High

More information

Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION

Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION S1 Decomposition!of!Malonic!Anhydrides Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION Complete Reference 26: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.

More information

Synthesis, electrochemical and theoretical studies of. V-Shaped donor-acceptor hexaazatriphenylene. (HAT) derivatives for second harmonic generation

Synthesis, electrochemical and theoretical studies of. V-Shaped donor-acceptor hexaazatriphenylene. (HAT) derivatives for second harmonic generation Synthesis, electrochemical and theoretical studies of V-Shaped donor-acceptor hexaazatriphenylene (HAT) derivatives for second harmonic generation Rafael Juárez a, b, Mar Ramos a, José L. Segura b *, Jesús

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 0 Electronic Supplementary Information (ESI) Solar-energy-derived strained hydrocarbon as energetic

More information

A Fluorescent Heteroditopic Hemicryptophane Cage for the Selective Recognition of Choline Phosphate

A Fluorescent Heteroditopic Hemicryptophane Cage for the Selective Recognition of Choline Phosphate Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 A Fluorescent Heteroditopic Hemicryptophane Cage for the Selective Recognition of Choline Phosphate

More information

Observation of Guanidine-Carbon Dioxide Complexation in Solution and Its Role in Reaction of Carbon Dioxide and Propargylamines

Observation of Guanidine-Carbon Dioxide Complexation in Solution and Its Role in Reaction of Carbon Dioxide and Propargylamines Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2014 Observation of Guanidine-Carbon Dioxide Complexation in Solution and Its

More information

Organic photodiodes constructed from a single radial heterojunction. microwire

Organic photodiodes constructed from a single radial heterojunction. microwire Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2016 Organic photodiodes constructed from a single radial heterojunction microwire

More information

How Large is the Elephant in the Density Functional Theory Room?

How Large is the Elephant in the Density Functional Theory Room? 1 How Large is the Elephant in the Density Functional Theory Room? Frank Jensen Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark A recent paper compares density functional

More information

Supporting Information

Supporting Information Supporting Information The Catalytic Effect of Water, Formic Acid or Sulfuric Acid on the Reaction of Formaldehyde with OH Radicals Weichao Zhang *, Benni Du, Zhenglong Qin College of Chemistry and Chemical

More information

Exploring the Transphobia Effect on. Heteroleptic NHC Cycloplatinated Complexes.

Exploring the Transphobia Effect on. Heteroleptic NHC Cycloplatinated Complexes. Supporting Information Exploring the Transphobia Effect on Heteroleptic NHC Cycloplatinated Complexes. Sara Fuertes a, Andrés J. Chueca a and Violeta Sicilia* b a Instituto de Síntesis Química y Catálisis

More information

Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum

Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum Supporting Information: Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum Yong Pei, Wei An, Keigo Ito, Paul von Ragué Schleyer, Xiao Cheng Zeng * Department of Chemistry and Nebraska Center for

More information

Interfacial Hydration Dynamics in Cationic Micelles Using 2D-IR and NMR

Interfacial Hydration Dynamics in Cationic Micelles Using 2D-IR and NMR Supplementary Information Interfacial Hydration Dynamics in Cationic Micelles Using 2D-IR and NMR Ved Prakash Roy and Kevin J. Kubarych* Department of Chemistry, University of Michigan, 930 N. University

More information

Electronic Supplementary Information for:

Electronic Supplementary Information for: Electronic Supplementary Information for: Manipulating dynamics with chemical structure: Probing vibrationally-enhanced dynamics in photoexcited catechol Adam S. Chatterley, a,b Jamie D. Young, a Dave

More information

Metal hydrides form halogen bonds: measurement of energetics of binding

Metal hydrides form halogen bonds: measurement of energetics of binding Metal hydrides form halogen bonds: measurement of energetics of binding Dan A. Smith, Lee Brammer,*, Christopher A. Hunter*, and Robin N. Perutz*, Department of Chemistry, University of York, Heslington,

More information

Atmospheric syn Vinyl Hydroperoxide Decay Mechanism. Austin Parsons and Liam Peebles (Kuwata; Macalester College)

Atmospheric syn Vinyl Hydroperoxide Decay Mechanism. Austin Parsons and Liam Peebles (Kuwata; Macalester College) Atmospheric syn Vinyl Hydroperoxide Decay Mechanism Austin Parsons and Liam Peebles (Kuwata; Macalester College) Introduction Alkene ozonolysis is a major source of the atmospheric hydroxyl radical, which

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Highly nanoporous silicas with pore apertures

More information