The Powerful Diversity of the AFM Probe

Size: px
Start display at page:

Download "The Powerful Diversity of the AFM Probe"

Transcription

1 The Powerful Diversity of the AFM Probe Stefan B. Kaemmer, Bruker Nano Surfaces Division, Santa Barbara, CA March 21, 2011

2 Introduction The tip allows us to measure a quantity. This quantity is based on what interaction the selected tip is sensitive to. Surface topography Molecular forces (Pulling, molecular recognition) Nanomechanical information (PeakForce QNM) Electrical information (CAFM, SCM, SPoM, ) Optical information (Raman, IR, Fluorescence) Thermal information (SThM, nta) 2

3 What do we cover in this talk? In order to get quality information one needs the right tools: A high performance AFM, The correct tip 600 nm height image of Lambda DNA adsorbed onto a mica surface. (TappingMode TM in fluid.) 500 nm phase image of E. coli S-layer membranes exhibiting the characteristic 14nm lattice periodicity. (TappingMode TM in fluid.) 45 mm 180 mm image of Human endothelial cells captured at 2k x 2k pixel resolution. (Contact mode in fluid) 3

4 Cantilever and beam bounce setup Amplification: B = 3s/l but ultimate sensitivity is independent of l and proportional to 1/s l: length of cantilever S: distance between detector and cantilever 4

5 Where to find information about tips? 5

6 Probe selection Imaging Environment AFM Mode Sample Type Probe Family/Model Liquid Air Tapping Contact Force Curves Biomolecules (nucleic acids, proteins, lipids, carbohydrates, etc) Silicon OTESPA - X X - - RTESP - X X - - TESP - X X - - Biolever X X Etched Silicon Cantilever 5-10 nm Biomolecules (nucleic acids, proteins, lipids, carbohydrates, etc) Silicon Nitride SNL X - X X X MSNL X - X X X NP-STT X - X X - Cells Silicon Biolever X - - X X Cells Silicon Nitride DNP X - X X X MLCT X - X X X Tissues Silicon TESP - X X - - Silicon Nitride Cantilever nm Tissues Silicon Nitride DNP X - X X X MLCT X - X X X SNL X - X X X MSNL X - X X X 6

7 Example: Force measurements AFM is used for force measurements in pn (10-12 N) range Approach Retract z Hooke s law shows us that the force measured is directly proportional to the cantilever spring constant So the solution is easy: Just make a super soft cantilever and have a go. Or not? 7

8 Example: Force measurements 8

9 Example: Force measurements J Hutter, J Bechhoefer, Rev. Sci. Instrum. 64 (1993) 9

10 Example: Force measurements Example: OBL lever Biolever (from BrukerAFMprobes.com) 10

11 Tip functionalization Measure the specific interaction between a molecule attached to the tip apex (A) and another one attached to a support (from atomically flat support to living cells) in (most of the time) a liquid environment. A A A A A A A A A A A A A A A A A A A A B B B B B B B B B B B 11

12 Molecular Recognition Mapping Malaria-Infected Erythrocytes AFM Probe functionalized with endothelial surface receptor CD36. Malaria-infected RBCs (IE s) show different shape and appearance of knob-like surface structures. Knobs believed involved in adherence to endothelial cells Imaging of IE s with CD36 probe showed adhesion sites mapped to knob-like structures. Li et al. WCB

13 Mechanical Property Mapping Live and dead cells PeakForce deformation channel 13

14 Probe selection Imaging Environment AFM Mode Sample Type Probe Family/Model Liquid Air Tapping Contact Force Curves Biomolecules (nucleic acids, proteins, lipids, carbohydrates, etc) Silicon OTESPA - X X - - RTESP - X X - - TESP - X X - - Biolever X X Etched Silicon Cantilever 5-10 nm Biomolecules (nucleic acids, proteins, lipids, carbohydrates, etc) Silicon Nitride SNL X - X X X MSNL X - X X X NP-STT X - X X - Cells Silicon Biolever X - - X X Cells Silicon Nitride DNP X - X X X MLCT X - X X X Tissues Silicon TESP - X X - - Silicon Nitride Cantilever nm Tissues Silicon Nitride DNP X - X X X MLCT X - X X X SNL X - X X X MSNL X - X X X Resonance frequency of probes in fluid drops to 1/2-1/3 of the resonance frequency of the probe in air. Resonance frequency in fluid easily identified through use of thermal tune. 14

15 Tapping Mode Newtons 2 nd law of motion Effective resonance frequency 15

16 Tapping Mode Tapping Mode 16

17 Lateral resolution Smallest features that can be resolved In optics it is determined by the spot size of the focused beam, in SPM by tip size and tip-sample distance Tip size -> What does the sample actually see of the tip? E.g. STM resolution is restricted to area of tip at which current changes less than a magnitude (CJ Chen. Intro to STM 1993) In force microscopy we have to look at the change in tip-sample interaction forces to define the lateral resolution. 17

18 Why do we actually want to stay close to the surface? Lets take the example of electrostatic measurements. z r s x q Grounded tip away from a point charge q. The force on the tip will be F=f(x) with F max at x=0 The force is a function of F(x,s,r). One can show that: Force DLat DLat is: proportional to sqrt(r) directly proportional to the tip-sample distance s. q1 q2 This is why you want to be close to the surface and not far away like in noncontact for the highest lateral resolution. 18

19 What tip do we need? We want to stay close but at the same time want to avoid the jump to contact. F Spring s F Total = F Spring - F Ext F Total (s)=0 s F Ext s=0 time So we need a tip with a high enough spring constant to avoid the instability 19

20 Resonance versus Sub-Resonance Tapping Cantilever Response F ~ s k Solution: k 0.1~ 0.4 N/m F ~ A Q s ~ f Q Frequency k A0 ( A0 As ) k w ~ Q w<1x10-18 Joule/cycle A 0 ~ 20 nm, k=1n/m, Setpoint 0.9 Need: w>10x10-18 Joule/cycle, for a tip with R~10 nm 0 Bruker NanoSurfaces Division February 17,

21 Peak Force Tapping Trajectory of the tip 1 nn approaching withdraw van der Waals Peak tapping force Time TESP (42 N/m) on Si, MM8 February 17, 2011 Bruker NanoSurfaces Division 21

22 Resolution & Force Control C 60 H 122 Height Stress = 1.27 GPa 1 nn C 36 H 74 Height Dia 1 nm C 18 H 38 Height 80x80 nm 500x500 nm 10pN 1uN 80x80 nm February 17, 2011 Bruker NanoSurfaces Division 22

23 True atomic resolution - Gibbsite in water 1 x 1 um 2 topography image of gibbsite platelets on mica substrate Tapping mode topography (left) and phase image (right) of a gibbsite surface in pure water. Data taken on regular MultiMode-AFM using Fastscan B cantilever. Courtesy of F. Mugele and D. Ebeling, Univ. of Twente/NL. 23

24 True atomic resolution - Mica in water Data taken on regular MultiMode-AFM. Courtesy of F. Mugele and D. Ebeling, Univ. of Twente/NL. 24

25 Conclusion Choosing the right cantilever for the job will unlock the full potential of your AFM It is beneficial to make some rough estimates on what can be achieved with a given cantilever Peak Force Tapping achieves extremely high resolution data in air due to superior force control and the ability to use soft cantilevers By working in liquids Tapping Mode using small amplitudes can produce true atomic resolution data High solution imaging: the sensitivity and even noise have been sufficient for a decade with Multimode IIIa I would like to thank my colleagues Andrea Slade, Steven Minne, James Shaw, and Chanmin Su for helpful discussions 25

AFM for Measuring Surface Topography and Forces

AFM for Measuring Surface Topography and Forces ENB 2007 07.03.2007 AFM for Measuring Surface Topography and Forces Andreas Fery Scanning Probe : What is it and why do we need it? AFM as a versatile tool for local analysis and manipulation Dates Course

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

BioAFM spectroscopy for mapping of Young s modulus of living cells

BioAFM spectroscopy for mapping of Young s modulus of living cells BioAFM spectroscopy for mapping of Young s modulus of living cells Jan Přibyl pribyl@nanobio.cz Optical microscopy AFM Confocal microscopy Young modulus Content Introduction (theory) Hook s law, Young

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting information Self-assembled nanopatch with peptide-organic multilayers and mechanical

More information

Improving the accuracy of Atomic Force Microscope based nanomechanical measurements. Bede Pittenger Bruker Nano Surfaces, Santa Barbara, CA, USA

Improving the accuracy of Atomic Force Microscope based nanomechanical measurements. Bede Pittenger Bruker Nano Surfaces, Santa Barbara, CA, USA Improving the accuracy of Atomic Force Microscope based nanomechanical measurements Bede Pittenger Bruker Nano Surfaces, Santa Barbara, CA, USA How can we improve accuracy in our nanomechanical measurements?

More information

Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM

Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM Quantitative Mechanical Property Mapping at the Nanoscale with PeakForce QNM By: Bede Pittenger, Natalia Erina, Chanmin Su INTRODUCTION The scanning probe microscope (SPM) 1 has long been recognized as

More information

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/08/06 Prof. C. Ortiz, MIT-DMSE I LECTURE 2 : THE FORCE TRANSDUCER

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/08/06 Prof. C. Ortiz, MIT-DMSE I LECTURE 2 : THE FORCE TRANSDUCER I LECTURE 2 : THE FORCE TRANSDUCER Outline : LAST TIME : WHAT IS NANOMECHANICS... 2 HOW CAN WE MEASURE SUCH TINY FORCES?... 3 EXAMPLE OF A FORCE TRANSDUCER... 4 Microfabricated cantilever beams with nanosized

More information

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman General concept and defining characteristics of AFM Dina Kudasheva Advisor: Prof. Mary K. Cowman Overview Introduction History of the SPM invention Technical Capabilities Principles of operation Examples

More information

Atomic Force Microscopy imaging and beyond

Atomic Force Microscopy imaging and beyond Atomic Force Microscopy imaging and beyond Arif Mumtaz Magnetism and Magnetic Materials Group Department of Physics, QAU Coworkers: Prof. Dr. S.K.Hasanain M. Tariq Khan Alam Imaging and beyond Scanning

More information

Outline Scanning Probe Microscope (SPM)

Outline Scanning Probe Microscope (SPM) AFM Outline Scanning Probe Microscope (SPM) A family of microscopy forms where a sharp probe is scanned across a surface and some tip/sample interactions are monitored Scanning Tunneling Microscopy (STM)

More information

Lecture 12: Biomaterials Characterization in Aqueous Environments

Lecture 12: Biomaterials Characterization in Aqueous Environments 3.051J/20.340J 1 Lecture 12: Biomaterials Characterization in Aqueous Environments High vacuum techniques are important tools for characterizing surface composition, but do not yield information on surface

More information

Empowering today s nanoscale research with Peak Force Tapping

Empowering today s nanoscale research with Peak Force Tapping Empowering today s nanoscale research with Peak Force Tapping Bede Pittenger, Andrea Slade and Chunzeng Li Bruker NanoSurfaces, Santa Barbara, CA, USA A brief review of AFM imaging technology Mapping topography

More information

Scanning Force Microscopy

Scanning Force Microscopy Scanning Force Microscopy Roland Bennewitz Rutherford Physics Building 405 Phone 398-3058 roland.bennewitz@mcgill.ca Scanning Probe is moved along scan lines over a sample surface 1 Force Microscopy Data

More information

Atomic and molecular interactions. Scanning probe microscopy.

Atomic and molecular interactions. Scanning probe microscopy. Atomic and molecular interactions. Scanning probe microscopy. Balázs Kiss Nanobiotechnology and Single Molecule Research Group, Department of Biophysics and Radiation Biology 27. November 2013. 2 Atomic

More information

Application Note #149 Improving the Accuracy of Nanomechanical Measurements with Force-Curve-Based AFM Techniques

Application Note #149 Improving the Accuracy of Nanomechanical Measurements with Force-Curve-Based AFM Techniques Application Note #149 Improving the Accuracy of Nanomechanical Measurements with Force-Curve-Based AFM Techniques The structure and mechanical properties of sub-micron features in materials are of particular

More information

Characterization of MEMS Devices

Characterization of MEMS Devices MEMS: Characterization Characterization of MEMS Devices Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap Characterization of MEMS

More information

Accurate thickness measurement of graphene

Accurate thickness measurement of graphene Accurate thickness measurement of graphene Cameron J Shearer *, Ashley D Slattery, Andrew J Stapleton, Joseph G Shapter and Christopher T Gibson * Centre for NanoScale Science and Technology, School of

More information

Measurements of interaction forces in (biological) model systems

Measurements of interaction forces in (biological) model systems Measurements of interaction forces in (biological) model systems Marina Ruths Department of Chemistry, UMass Lowell What can force measurements tell us about a system? Depending on the technique, we might

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/22/07 Prof. C. Ortiz, MIT-DMSE

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/22/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 5: AFM IMAGING Outline : LAST TIME : HRFS AND FORCE-DISTANCE CURVES... 2 ATOMIC FORCE MICROSCOPY : GENERAL COMPONENTS AND FUNCTIONS... 3 Deflection vs. Height Images... 4 3D Plots and 2D Section

More information

AFM Imaging In Liquids. W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division

AFM Imaging In Liquids. W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division AFM Imaging In Liquids W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division Imaging Techniques: Scales Proteins 10 nm Bacteria 1μm Red Blood Cell 5μm Human Hair 75μm Si Atom Spacing 0.4nm

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Noninvasive determination of optical lever sensitivity in atomic force microscopy

Noninvasive determination of optical lever sensitivity in atomic force microscopy REVIEW OF SCIENTIFIC INSTRUMENTS 77, 013701 2006 Noninvasive determination of optical lever sensitivity in atomic force microscopy M. J. Higgins a R. Proksch Asylum Research, 6310 Hollister Ave, Santa

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Point mass approximation. Rigid beam mechanics. spring constant k N effective mass m e. Simple Harmonic Motion.. m e z = - k N z

Point mass approximation. Rigid beam mechanics. spring constant k N effective mass m e. Simple Harmonic Motion.. m e z = - k N z Free end Rigid beam mechanics Fixed end think of cantilever as a mass on a spring Point mass approximation z F Hooke s law k N = F / z This is beam mechanics, standard in engineering textbooks. For a rectangular

More information

Single-Molecule Recognition and Manipulation Studied by Scanning Probe Microscopy

Single-Molecule Recognition and Manipulation Studied by Scanning Probe Microscopy Single-Molecule Recognition and Manipulation Studied by Scanning Probe Microscopy Byung Kim Department of Physics Boise State University Langmuir (in press, 2006) swollen collapsed Hydrophilic non-sticky

More information

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM Module 26: Atomic Force Microscopy Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM 1 The AFM apart from generating the information about the topography of the sample features can be used

More information

And Manipulation by Scanning Probe Microscope

And Manipulation by Scanning Probe Microscope Basic 15 Nanometer Scale Measurement And Manipulation by Scanning Probe Microscope Prof. K. Fukuzawa Dept. of Micro/Nano Systems Engineering Nagoya University I. Basics of scanning probe microscope Basic

More information

Probing the Hydrophobic Interaction between Air Bubbles and Partially. Hydrophobic Surfaces Using Atomic Force Microscopy

Probing the Hydrophobic Interaction between Air Bubbles and Partially. Hydrophobic Surfaces Using Atomic Force Microscopy Supporting Information for Probing the Hydrophobic Interaction between Air Bubbles and Partially Hydrophobic Surfaces Using Atomic Force Microscopy Chen Shi, 1 Derek Y.C. Chan, 2.3 Qingxia Liu, 1 Hongbo

More information

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de yang.xu@tu-ilmenau.de

More information

DETERMINATION OF THE ADHESION PROPERTIES OF MICA VIA ATOMIC FORCE SPECTROSCOPY

DETERMINATION OF THE ADHESION PROPERTIES OF MICA VIA ATOMIC FORCE SPECTROSCOPY 2nd International Conference on Ultrafine Grained & Nanostructured Materials (UFGNSM) International Journal of Modern Physics: Conference Series Vol. 5 (2012) 33 40 World Scientific Publishing Company

More information

Università degli Studi di Bari "Aldo Moro"

Università degli Studi di Bari Aldo Moro Università degli Studi di Bari "Aldo Moro" Table of contents 1. Introduction to Atomic Force Microscopy; 2. Introduction to Raman Spectroscopy; 3. The need for a hybrid technique Raman AFM microscopy;

More information

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/22/07 Prof. C. Ortiz, MIT-DMSE

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/22/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 5: AFM IMAGING Outline : LAST TIME : HRFS AND FORCE-DISTANCE CURVES... 2 ATOMIC FORCE MICROSCOPY : GENERAL COMPONENTS AND FUNCTIONS... 3 Deflection vs. Height Images... 4 3D Plots and 2D Section

More information

Combined AFM and Raman Enables: Comprehensive Data Using Optical, AFM, and Spectroscopic Methods

Combined AFM and Raman Enables: Comprehensive Data Using Optical, AFM, and Spectroscopic Methods Combined AFM and Raman Enables: Comprehensive Data Using Optical, AFM, and Spectroscopic Methods Dark field: sees cracks, and contamination: - Pick appropriate area for AFM scan AFM: real 3D morphology

More information

3.052 Nanomechanics of Materials and Biomaterials Tuesday 04/03/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 13: MIDTERM #1 SOLUTIONS REVIEW

3.052 Nanomechanics of Materials and Biomaterials Tuesday 04/03/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 13: MIDTERM #1 SOLUTIONS REVIEW I LECTURE 13: MIDTERM #1 SOLUTIONS REVIEW Outline : HIGH RESOLUTION FORCE SPECTROSCOPY...2-10 General Experiment Description... 2 Verification of Surface Functionalization:Imaging of Planar Substrates...

More information

NIS: what can it be used for?

NIS: what can it be used for? AFM @ NIS: what can it be used for? Chiara Manfredotti 011 670 8382/8388/7879 chiara.manfredotti@to.infn.it Skype: khiaram 1 AFM: block scheme In an Atomic Force Microscope (AFM) a micrometric tip attached

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) Scanning Probe Microscopy (SPM) Scanning Tunneling Microscopy (STM) --- G. Binnig, H. Rohrer et al, (1982) Near-Field Scanning Optical Microscopy (NSOM) --- D. W. Pohl (1982) Atomic Force Microscopy (AFM)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1. Supplementary Methods Characterization of AFM resolution We employed amplitude-modulation AFM in non-contact mode to characterize the topography of the graphene samples. The measurements were performed

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Intermittent-Contact Mode Force Microscopy & Electrostatic Force Microscopy (EFM)

Intermittent-Contact Mode Force Microscopy & Electrostatic Force Microscopy (EFM) WORKSHOP Nanoscience on the Tip Intermittent-Contact Mode Force Microscopy & Electrostatic Force Microscopy (EFM) Table of Contents: 1. Motivation... 1. Simple Harmonic Motion... 1 3. AC-Mode Imaging...

More information

A SCIENTIFIC APPROACH TO A STICKY PROBLEM

A SCIENTIFIC APPROACH TO A STICKY PROBLEM A SCIENTIFIC APPROACH TO A STICKY PROBLEM Sticking, the adherence of granule to punch face or die bore, is one of the major issues affecting the manufacture of solid dose pharmaceuticals. As part of I

More information

Diamond in Nanoscale Biosensing

Diamond in Nanoscale Biosensing Czech Nano-Team Workshop 2006 Diamond in Nanoscale Biosensing Bohuslav Rezek Institute of Physics AS CR Acknowledgements Dr. Christoph Nebel Dr. Dongchan Shin Dr. Hideyuki Watanabe Diamond Research Center

More information

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY SECOND EDITION C. JULIAN CHEN Department of Applied Physics and Applied Mathematics, Columbia University, New York OXFORD UNIVERSITY PRESS Contents Preface

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

Supplementary Figure 1 a) Scheme of microfluidic device fabrication by photo and soft lithography,

Supplementary Figure 1 a) Scheme of microfluidic device fabrication by photo and soft lithography, a b 1 mm Supplementary Figure 1 a) Scheme of microfluidic device fabrication by photo and soft lithography, (a1, a2) 50nm Pd evaporated on Si wafer with 100 nm Si 2 insulating layer and 5nm Cr as an adhesion

More information

The most versatile AFM platform for your nanoscale microscopy needs

The most versatile AFM platform for your nanoscale microscopy needs The most versatile AFM platform for your nanoscale microscopy needs Atomic Force Microscopy (AFM) for nanometer resolution imaging with electrical, magnetic, thermal, and mechanical property measurement

More information

Atomic Force Microscopy (AFM) Part I

Atomic Force Microscopy (AFM) Part I Atomic Force Microscopy (AFM) Part I CHEM-L2000 Eero Kontturi 6 th March 2018 Lectures on AFM Part I Principles and practice Imaging of native materials, including nanocellulose Part II Surface force measurements

More information

RHK Technology Brief

RHK Technology Brief The Atomic Force Microscope as a Critical Tool for Research in Nanotribology Rachel Cannara and Robert W. Carpick Nanomechanics Laboratory, University of Wisconsin Madison Department of Engineering Physics,

More information

Protrusion Force Microscopy

Protrusion Force Microscopy Protrusion Force Microscopy A. Bouissou & R. Poincloux IPBS, Toulouse A. Labernadie, A. Proag, G. Charrière, I. Maridonneau-Parini IPBS, Toulouse P. Delobelle Femto, Besançon T. Mangeat LBCMCP, Toulouse

More information

Vibration Studying of AFM Piezoelectric Microcantilever Subjected to Tip-Nanoparticle Interaction

Vibration Studying of AFM Piezoelectric Microcantilever Subjected to Tip-Nanoparticle Interaction Journal of Novel Applied Sciences Available online at www.jnasci.org 2013 JNAS Journal-2013-2-S/806-811 ISSN 2322-5149 2013 JNAS Vibration Studying of AFM Piezoelectric Microcantilever Subjected to Tip-Nanoparticle

More information

STM: Scanning Tunneling Microscope

STM: Scanning Tunneling Microscope STM: Scanning Tunneling Microscope Basic idea STM working principle Schematic representation of the sample-tip tunnel barrier Assume tip and sample described by two infinite plate electrodes Φ t +Φ s =

More information

Introduction to Scanning Tunneling Microscopy

Introduction to Scanning Tunneling Microscopy Introduction to Scanning Tunneling Microscopy C. JULIAN CHEN IBM Research Division Thomas J. Watson Research Center Yorktown Heights, New York New York Oxford OXFORD UNIVERSITY PRESS 1993 CONTENTS List

More information

Contents. Principles: Theory and Practice

Contents. Principles: Theory and Practice Contents Part I Principles: Theory and Practice 1 Physical Principles of Scanning Probe Microscopy Imaging... 3 1.1 Introduction... 3 1.2 The Physical Principles of Atomic Force Microscopy... 4 1.2.1 Forces

More information

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy Jing-jiang Yu Nanotechnology Measurements Division Agilent Technologies, Inc. Atomic Force Microscopy High-Resolution

More information

Fundamentals of Atomic Force Microscopy Part 2: Dynamic AFM Methods

Fundamentals of Atomic Force Microscopy Part 2: Dynamic AFM Methods Fundamentals of tomic Force Microscopy Part 2: Dynamic FM Methods Week 2, Lecture 5 ttractive and repulsive regimes and phase contrast in amplitude modulation FM rvind Raman Mechanical Engineering Birck

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

BMB November 17, Single Molecule Biophysics (I)

BMB November 17, Single Molecule Biophysics (I) BMB 178 2017 November 17, 2017 14. Single Molecule Biophysics (I) Goals 1. Understand the information SM experiments can provide 2. Be acquainted with different SM approaches 3. Learn to interpret SM results

More information

VEDA - Virtual Environment for Dynamic Atomic Force Microscopy

VEDA - Virtual Environment for Dynamic Atomic Force Microscopy VEDA - Virtual Environment for Dynamic Atomic Force Microscopy John Melcher, Daniel Kiracofe, doctoral students Steven Johnson, undergraduate Shuiqing Hu, Veeco Arvind Raman, Associate Professor Mechanical

More information

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1

Contents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1 V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 2009 EE 710: Nanoscience and Engineering Part 1: Introduction Course Texts: Bhushan, Springer Handbook of Nanotechnology 2 nd ed., Springer 2007 Hornyak, et.al, Introduction ti to Nanoscience, CRC

More information

Keysight Technologies Carbon Nanotube Tips for MAC Mode AFM Measurements in Liquids. Application Note

Keysight Technologies Carbon Nanotube Tips for MAC Mode AFM Measurements in Liquids. Application Note Keysight Technologies Carbon Nanotube Tips for MAC Mode AFM Measurements in Liquids Application Note Introduction Atomic force microscopy (AFM) is a powerful technique in revealing the microscopic structure

More information

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Peter Liljeroth Department of Applied Physics, Aalto University School of Science peter.liljeroth@aalto.fi Projekt współfinansowany

More information

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/15/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 4: FORCE-DISTANCE CURVES

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/15/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 4: FORCE-DISTANCE CURVES I LECTURE 4: FORCE-DISTANCE CURVES Outline : LAST TIME : ADDITIONAL NANOMECHANICS INSTRUMENTATION COMPONENTS... 2 PIEZOS TUBES : X/Y SCANNING... 3 GENERAL COMPONENTS OF A NANOMECHANICAL DEVICE... 4 HIGH

More information

Mapping Elastic Properties of Heterogeneous Materials in Liquid with Angstrom-Scale Resolution

Mapping Elastic Properties of Heterogeneous Materials in Liquid with Angstrom-Scale Resolution Supporting information Mapping Elastic Properties of Heterogeneous Materials in Liquid with Angstrom-Scale Resolution Carlos A. Amo, Alma. P. Perrino, Amir F. Payam, Ricardo Garcia * Materials Science

More information

Optics and Spectroscopy

Optics and Spectroscopy Introduction to Optics and Spectroscopy beyond the diffraction limit Chi Chen 陳祺 Research Center for Applied Science, Academia Sinica 2015Apr09 1 Light and Optics 2 Light as Wave Application 3 Electromagnetic

More information

2d-Laser Cantilever Anemometer

2d-Laser Cantilever Anemometer 2d-Laser Cantilever Anemometer Introduction Measuring principle Calibration Design Comparative measurement Contact: Jaroslaw Puczylowski University of Oldenburg jaroslaw.puczylowski@forwind.de Introduction

More information

Supplementary Materials. Mechanics and Chemistry: Single Molecule Bond Rupture Forces Correlate with

Supplementary Materials. Mechanics and Chemistry: Single Molecule Bond Rupture Forces Correlate with Supplementary Materials Mechanics and Chemistry: Single Molecule Bond Rupture Forces Correlate with Molecular Backbone Structure M. Frei 1, S Aradhya 1, M. Koentopp 2, M. S. Hybertsen 3, L. Venkataraman

More information

Scanning Nanoelectrochemistry and Nanoelectrical Liquid Imaging with Nanoelectrode Probe

Scanning Nanoelectrochemistry and Nanoelectrical Liquid Imaging with Nanoelectrode Probe Scanning Nanoelectrochemistry and Nanoelectrical Liquid Imaging with Nanoelectrode Probe Teddy Huang, PhD Sr. Applications Scientist, Bruker Nano Surfaces, Teddy.Huang@Bruker.com Outline Overview Nanoelectrode

More information

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities Kavli Workshop for Journalists June 13th, 2007 CNF Cleanroom Activities Seeing nm-sized Objects with an SEM Lab experience: Scanning Electron Microscopy Equipment: Zeiss Supra 55VP Scanning electron microscopes

More information

Chapter 2 Correlation Force Spectroscopy

Chapter 2 Correlation Force Spectroscopy Chapter 2 Correlation Force Spectroscopy Correlation Force Spectroscopy: Rationale In principle, the main advantage of correlation force spectroscopy (CFS) over onecantilever atomic force microscopy (AFM)

More information

Structural investigation of single biomolecules

Structural investigation of single biomolecules Structural investigation of single biomolecules NMR spectroscopy and X-ray crystallography are currently the most common techniques capable of determining the structures of biological macromolecules like

More information

Visualization of Nanoscale Components Using Low Cost AFMs Part 2. Dr. Salahuddin Qazi

Visualization of Nanoscale Components Using Low Cost AFMs Part 2. Dr. Salahuddin Qazi Visualization of Nanoscale Components Using Low Cost AFMs Part 2 Dr. Salahuddin Qazi State University of New York Institute of Technology Utica, New York. Outline Introduction Visualization by Phase Imaging

More information

Interfacial cavitation nuclei studied by scanning probe microscopy techniques

Interfacial cavitation nuclei studied by scanning probe microscopy techniques Proceedings of the 7 th International Symposium on Cavitation CAV2009 Paper No. 5 August 17-22, 2009, Ann Arbor, Michigan, USA Interfacial cavitation nuclei studied by scanning probe microscopy techniques

More information

Atomic Force Microscopy Characterization of Room- Temperature Adlayers of Small Organic Molecules through Graphene Templating

Atomic Force Microscopy Characterization of Room- Temperature Adlayers of Small Organic Molecules through Graphene Templating Atomic Force icroscopy Characterization of Room- Temperature Adlayers of Small Organic olecules through Graphene Templating Peigen Cao, Ke Xu,2, Joseph O. Varghese, and James R. Heath *. Kavli Nanoscience

More information

Introduction to Scanning Probe Microscopy

Introduction to Scanning Probe Microscopy WORKSHOP Nanoscience on the Tip Introduction to Scanning Probe Microscopy Table of Contents: 1 Historic Perspectives... 1 2 Scanning Force Microscopy (SFM)... 2 2.1. Contact Mode... 2 2.2. AC Mode Imaging...

More information

Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design

Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design Tamkang Journal of Science and Engineering, Vol. 12, No. 4, pp. 399 407 (2009) 399 Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System

More information

Scanning Tunneling Microscopy and its Application

Scanning Tunneling Microscopy and its Application Chunli Bai Scanning Tunneling Microscopy and its Application With 181 Figures SHANGHAI SCIENTIFIC & TECHNICAL PUBLISHERS Jpl Springer Contents 1. Introduction 1 1.1 Advantages of STM Compared with Other

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]

SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM] G01Q SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM] Scanning probes, i.e. devices having at least a tip of nanometre sized dimensions

More information

Scanning Probe Microscopy. EMSE-515 F. Ernst

Scanning Probe Microscopy. EMSE-515 F. Ernst Scanning Probe Microscopy EMSE-515 F. Ernst 1 Literature 2 3 Scanning Probe Microscopy: The Lab on a Tip by Ernst Meyer,Ans Josef Hug,Roland Bennewitz 4 Scanning Probe Microscopy and Spectroscopy : Theory,

More information

Imaging Nucleic Acids with the AFM. W Travis Johnson PhD Agilent Technologies Nanomeasurements Division

Imaging Nucleic Acids with the AFM. W Travis Johnson PhD Agilent Technologies Nanomeasurements Division Imaging Nucleic Acids with the AFM W Travis Johnson PhD Agilent Technologies Nanomeasurements Division Structure of DNA A T G C Standard Watson-Crick A-T & G-C base pairs in B-DNA DNA double helix composed

More information

Surface Chemical Analysis Using Scanning Probe Microscopy

Surface Chemical Analysis Using Scanning Probe Microscopy STR/03/067/ST Surface Chemical Analysis Using Scanning Probe Microscopy A. L. K. Tan, Y. C. Liu, S. K. Tung and J. Wei Abstract - Since its introduction in 1986 as a tool for imaging and creating three-dimensional

More information

Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy

Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy Author Watson, Gregory, Watson, Jolanta Published 008 Journal

More information

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Contents What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Figure1: 2004 Seth Copen Goldstein What is AFM? A type of Scanning Probe Microscopy

More information

Characterization Tools

Characterization Tools Lectures in Nanoscience & Technology Characterization Tools K. Sakkaravarthi Department of Physics National Institute of Technology Tiruchirappalli 620 015 Tamil Nadu India sakkaravarthi@nitt.edu ksakkaravarthi.weebly.com

More information

bio-molecular studies Physical methods in Semmelweis University Osváth Szabolcs

bio-molecular studies Physical methods in Semmelweis University Osváth Szabolcs Physical methods in bio-molecular studies Osváth Szabolcs Semmelweis University szabolcs.osvath@eok.sote.hu Light emission and absorption spectra Stokes shift is the difference (in wavelength or frequency

More information

Review. Surfaces of Biomaterials. Characterization. Surface sensitivity

Review. Surfaces of Biomaterials. Characterization. Surface sensitivity Surfaces of Biomaterials Three lectures: 1.23.05 Surface Properties of Biomaterials 1.25.05 Surface Characterization 1.27.05 Surface and Protein Interactions Review Bulk Materials are described by: Chemical

More information

Agilent Technologies. Scanning Microwave Microscopy (SMM)

Agilent Technologies. Scanning Microwave Microscopy (SMM) Agilent Technologies Scanning Microwave Microscopy (SMM) Expanding Impedance Measurements to the Nanoscale: Coupling the Power of Scanning Probe Microscopy with the PNA Presented by: Craig Wall PhD Product

More information

FD-based AFM: The tool to image and simultaneously map multiple properties of biological systems

FD-based AFM: The tool to image and simultaneously map multiple properties of biological systems force-distance curve-based atomic force microscopy FD-based AFM: The tool to image and simultaneously map multiple properties of biological systems Technical Journal Club 1. Sept 215 Valeria Eckhardt Overview

More information

Characterization of Materials with a Combined AFM/Raman Microscope

Characterization of Materials with a Combined AFM/Raman Microscope Application Note 089 short Characterization of Materials with a Combined AFM/Raman Microscope Marko Surtchev 1, Sergei Magonov 1 and Mark Wall 2 1 NT-MDT America, Tempe, AZ U.S.A. 2 Thermo Fisher Scientific,

More information

Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope

Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 70, NUMBER 3 MARCH 1999 Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope J. W. Hong,

More information

Atomic force microscopy study of polypropylene surfaces treated by UV and ozone exposure: modification of morphology and adhesion force

Atomic force microscopy study of polypropylene surfaces treated by UV and ozone exposure: modification of morphology and adhesion force Ž. Applied Surface Science 144 145 1999 627 632 Atomic force microscopy study of polypropylene surfaces treated by UV and ozone exposure: modification of morphology and adhesion force H.-Y. Nie ), M.J.

More information

Nanoscale Chemical Imaging with Photo-induced Force Microscopy

Nanoscale Chemical Imaging with Photo-induced Force Microscopy OG2 BCP39nm_0062 PiFM (LIA1R)Fwd 500 279.1 µv 375 250 nm 500 375 250 125 0 nm 125 219.0 µv Nanoscale Chemical Imaging with Photo-induced Force Microscopy 0 Thomas R. Albrecht, Derek Nowak, Will Morrison,

More information

Improving Micro-Raman/AFM Systems Imaging Using Negative-Stiffness Vibration Isolation

Improving Micro-Raman/AFM Systems Imaging Using Negative-Stiffness Vibration Isolation Photonics.com - February 2011 Improving Micro-Raman/AFM Systems Imaging Using Negative-Stiffness Vibration Isolation Negative-stiffness vibration isolators can easily support the heavy weight of a combined

More information

Nanoscale IR spectroscopy of organic contaminants

Nanoscale IR spectroscopy of organic contaminants The nanoscale spectroscopy company The world leader in nanoscale IR spectroscopy Nanoscale IR spectroscopy of organic contaminants Application note nanoir uniquely and unambiguously identifies organic

More information

Optimal Design and Evaluation of Cantilever Probe for Multifrequency Atomic Force Microscopy

Optimal Design and Evaluation of Cantilever Probe for Multifrequency Atomic Force Microscopy 11 th World Congress on Structural and Multidisciplinary Optimisation 07 th -12 th, June 2015, Sydney Australia Optimal Design and Evaluation of Cantilever Probe for Multifrequency Atomic Force Microscopy

More information

Introduction to Scanning Probe Microscopy Zhe Fei

Introduction to Scanning Probe Microscopy Zhe Fei Introduction to Scanning Probe Microscopy Zhe Fei Phys 590B, Apr. 2019 1 Outline Part 1 SPM Overview Part 2 Scanning tunneling microscopy Part 3 Atomic force microscopy Part 4 Electric & Magnetic force

More information