Bowman Chem 345 Lecture Notes by Topic. Electrophilic Aromatic Substitution (EAS):

Size: px
Start display at page:

Download "Bowman Chem 345 Lecture Notes by Topic. Electrophilic Aromatic Substitution (EAS):"

Transcription

1 lectrophilic Aromatic Substitution (AS): Aromatic rings have a tendency to be unreactive due to their inherent stability. However, aromatic rings can react given the right incentives. ne way, they can react is with strong electrophiles. In a typical AS reaction, a hydrogen is replaced by an electrophile. General Scheme: H + The reaction mechanism for AS reactions follows three parts. 1.) Formation of the electrophile. This is dependent on the electrophile. 2.) Reaction of a pi bond from the benzene ring to form the sigma intermediate 3.) Deprotonation of the sigma intermediate to reform the aromatic ring. This step is irreversible. General Mechanism: The placement of the electrophile on the aromatic ring and the rate of the reaction is dependent on the substituents on the aromatic ring. The following list of groups on aromatic rings is a good list to know. Activating Groups Deactivating Groups NR 2 R R H X R R S 3 H CN N 2 NR 3 > > > > > ~ > > > > R=H or sp 3 C ortho/para directors X=Halogen meta directors

2 ortho meta The terms ortho, meta, and para are used to show the relative positions between two groups on a benzene ring. Groups ortho to each other have a 1,2 relationship, meta 1,3, and para 1,4. You can often predict whether a group is going to be an ortho/para or a meta director from resonance structures. The incoming electrophile wants to react with the carbons with the highest electron density. Me Y para ortho meta Me Me Me The sites ortho/para to the Me bare a negative charge, so those sites have the highest electron density. Me is an ortho/para director. N N N N The sites ortho/para to the N 2 bare a positive charge, so those sites have the lowest electron density. N 2 is a meta director. A more acceptable way of explaining the activating/directing effects of various substituents is to look at the energy of the reaction. nergy Diagram The rate determining step is the addition of the electrophile to the benzene ring. By the Hammond postulate, the transition state most closely resembles the structure closest in energy to it. In this case, the sigma intermediate is closest in energy to the transition state, therefore the more stable the carbocation intermediate, the more stable the transition state, and the faster the reaction. This can be used to explain why some groups direct ortho/para and some meta.

3 Alkyl Groups: ortho + meta + major para + major In the case of alkyl groups, the resonance structures of the sigma intermediate have a tertiary carbocation when the electrophile adds ortho or para to the alkyl group. If an electrophile adds meta, then only resonance structures with secondary carbocations can be formed. The presence of an alkyl group adjacent to a carbocation lowers the energy by hyperconjugation (the carbocation feeds on some of the electron density from the bonds attached to adjacent sp 3 C s). This lowers the energy of the intermediates (and the subsequent transition states) leading to ortho and para products but not to the meta products.

4 The energies are a bit exaggerated.

5 lectron Withdrawing Groups: Carbonyls, N 2, Nitriles (meta directors) ortho + meta destabilizing + para + destabilizing You can draw the same intermediates for electron withdrawing groups. In this case, the more substituted carbocations in the ortho and para cases are actually destabilizing structures. lectron withdrawing groups raise the energy of the carbocations by pulling electron density away from them. The meta intermediates do not have any stabilizing interactions, but at least they do not have destabilizing interactions.

6 Strong lectron Donating Groups: R, NR 2 (ortho-para directors) Me major ortho Me + Me Me Me meta Me Me + Me Me para Me Me + Me Me Me major In the case of strong electron donating groups, the resonance structures of the sigma intermediate have an extra resonance structure (that has a complete octet) when the electrophile adds ortho or para to the electron donating transition states leading to ortho and para products. This drastically lowers the barrier to the reaction.

7 Weak lectron Donating Groups: Halogens (ortho-para directors) ortho + meta + para + In the case of weak electron donating groups, the resonance structures of the sigma intermediate still have an extra resonance structure which stabilized addition to the ortho and para positions, but the halogens are weak pi donors. They are also very electronegative which destabilizes all of the structures via the inductive effect. While the electron density donated (through the pi system) is enough to direct to ortho and para positions, the electron density withdrawn through the sigma system (inductive effect) makes the reaction proceed at a slower rate. (The inductive effect applies to nitrogen and oxygen as well. But N and are much stronger pi donors and that makes up for any electron density being pulled away through the sigma system).

8 Predicting the product(s). Typically ortho and para directors give mixtures of ortho and para products. The para product is favored by sterics and the ortho product is favored by statistics (two ortho positions as compared to one para position). In most cases, the para product is the major product. I am okay with you defaulting to para being the major product. If you have more than one directing group, then see if there is overlap between the directing group and that will be the most likely product. If there is not overlap between the two, then focus on the most activating group. The major product will likely be the one from that group. If there is a tie, use sterics to break the tie. + para beats ortho 2 N + 2 N both direct to the same spot Me + Me Me is a stronger activating group than Me + There is a tie, so electrophile goes to the spot directed by both groups but is less sterically hindered.

9 We have been using the + as a generic electrophile. The main groups we are going to be using in AS reactions are,, N 2, and carbonyls. The generic reaction conditions for each of these reactions are as follows: 2 Fe 3 2 Al 3 Can work on aromatic rings that are strongly deactivated (ie: meta director) H 2 S 4 HN 3 N Al 3 1.) P 3, DMF 2.) H 2 H There are limited examples of Friedel-Crafts/Vilsmeier-Haack reactions working on deactivated rings (with a meta director). For the purposes of this course, a Friedel-Crafts reaction or Vilsmaier- Haack reaction will need a strong electron donating group (ie:, N) when a meta director is on the aromatic ring.

10 The actual conditions/reagents in the lab that you use may vary depending on the starting material. These will be the standard conditions that you should use in this course. At the end of these notes, there are a couple of variants that use the same principles, but have been optimized to give better yields. Do not memorize the variants. They are only there to serve as examples of what is possible. Halogen lectrophiles: General Conditions: 2 Fe 3 2 Al 3 Can work on aromatic rings that are strongly deactivated (ie: meta director) omination: Chlorination:

11 Literature examples: 1,2,3,4 2 2 Al 3 Al 3 Me Me NBS MeCN NBS MeCN (63%) (97%) Me Me N NBS TBCA CH 3 C 2 H TBCA CF 3 C 2 H 15 min no reaction after 1 week + N N N TBCA + (73%) (7%) (1%) NH 2 NBS MeCN Me NCS (48%) NH 2 Me + (11%) Me NH 2 Me 2 N N TBCA CF 3 C 2 H 24 h 2 N (80%) Me Zr 4 CH 2 2 NCS Zr 4 CH 2 2 NCS Me NCS Me Me NBS Zr 4 CH 2 2 NBS Me Me NH 2 Zr 4 CH /H NH 2 Me 2 /H Zr 4 CH 2 2 Me AcH AcH H N 2 /H H N AcH 1 Zaczek, N. M.; Tyszkiewicz, R. B. J. Chem. d. 1986, 63, Zysman-Colman,.; et. al. Can. J. Chem. 2009, 87, De Almeida, L. S.; De Mattos, M. C. S.; steves, P. M. Synlett 2013, 24, Zhang, Y.; Shibatomi, K.; Yamamoto, H. Synlett 2005, 18,

12 Nitration:

13 Friedel-Crafts Acylation:

14 Vilsmeier-Haack Reaction: There are a couple of examples in the literature of placing a carbonyl on a deactivated aromatic ring by using the Vilsmeier-Haack conditions 5 or Friedel- Crafts 6 but these examples are exceedingly rare. For the purposes of this course, if a meta director is on the aromatic ring, then a strong electron donating group (ie: amine, amide, alkoxy, hydroxyl) needs to be attached to the ring as well. 5 Kumar, M. S. et. al. Tetrahedron Letters 2014, 55, Venkateswarlu, M. et. al. International Journal of rganic Chemistry 2011, 1, Gu, X-L. et. al. Monatshefte fuer Chemie 2015, 146, Zhang, W-J. et. al. Tetrahedron 2013, 69,

15 Literature xamples of Friedel-Crafts Acylation and Vilsmeier-Haack Reaction: 7 7 Kumar, M. S. et. al. Tetrahedron Letters 2014, 55, Venkateswarlu, M. et. al. International Journal of rganic Chemistry 2011, 1, Gu, X-L. et. al. Monatshefte fuer Chemie 2015, 146, Zhang, W-J. et. al. Tetrahedron 2013, 69, Amagat, M. P. Bull. Soc. Chim. 1927, 41, Ali, M. M. et. al. Synthetic Communications 2002, 32,

16 Al 3 N H 2 H P 3 H Al 3 Al 3 P 3 H 2 DMF P 3 DMF H 2

17 Friedel-Crafts Alkylation 8 The electrophile in these reactions is a carbocation or carbocation like molecule (in cases where a primary or methyl carbocation are used). There are multiple ways of making carbocations. An alkyl halide mixed with a Lewis acid, an alcohol with a strong acid (H 2 S 4 ), or an alkene with a strong acid (H 2 S 4 ) are three of the more common ways of generating the electrophile. Mechanism: excess Al 3 8 Loudon, M.; Parise, J. rganic Chemistry 6 th ed. 2016,

18 excess Al 3 H 2 S 4 excess H

19 H 2 S 4 excess Friedel-Crafts alkylation reactions tend to be messy. Multiple or rearranged products can occur. ne problem with the Friedel-Crafts alkylation is that the group that is added to the ring is an activating group. This means that the product is more reactive than the starting material, as a result it is very difficult to stop after one addition and multiple additions occur. Me + + Al More

20 To counteract this, a large excess of starting material is needed to minimize over alkylation. t Al 3 excess Intramolecular reactions where 5 or six member rings form are also a good way to minimize overalkylation. 9 H S F H The electrophile in these cases are a carbocation (or in the case or primary/methyl groups a carbocation like structure). Carbocations are prone to rearrangements. Al 3 excess racemic 49% 27% 9 ight, S. T. J. rg. Chem. 1990, 55,

21 Due to the instability of primary carbocations, they are unlikely to form and rearrange as the leaving group leaves as depicted above. However, if you show a step wise mechanism like below, I will accept it. In short, be very careful when using Friedel-Crafts alkylation. It is very easy for the wrong product or multiple products to be made in this fashion.

Chapter 19: Aromatic Substitution Reactions

Chapter 19: Aromatic Substitution Reactions Chem A225 Notes Page 52 Chapter 19: Aromatic Substitution Reactions Topic One: lectrophilic Aromatic Substitution I. Introduction to lectrophilic Aromatic Substitution (AS) A. eneral Reaction Pattern B.

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi

Electrophilic Aromatic Substitution. Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi Electrophilic Aromatic Substitution Dr. Mishu Singh Department of chemistry Maharana Pratap Govt.P.G.College Hardoi 1 Recall the electophilic addition of HBr (or Br2) to alkenes H + nu cleophile H Br H

More information

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION CAPTR 16 - CMISTRY F BNZN: LCTRPILIC ARMATIC SUBSTITUTIN As stated in the previous chapter, benzene and other aromatic rings do not undergo electrophilic addition reactions of the simple alkenes but rather

More information

Electrophilic Aromatic Substitution (Aromatic compounds) Ar-H = aromatic compound 1. Nitration Ar-H + HNO 3, H 2 SO 4 Ar-NO 2 + H 2 O 2.

Electrophilic Aromatic Substitution (Aromatic compounds) Ar-H = aromatic compound 1. Nitration Ar-H + HNO 3, H 2 SO 4 Ar-NO 2 + H 2 O 2. Electrophilic Aromatic Substitution (Aromatic compounds) Ar- = aromatic compound 1. Nitration Ar- + NO 3, 2 SO 4 Ar- + 2 O 2. Sulfonation Ar- + 2 SO 4, SO 3 Ar-SO 3 + 2 O 3. alogenation Ar- + X 2, Fe Ar-X

More information

I5 ELECTROPHILIC SUBSTITUTIONS OF

I5 ELECTROPHILIC SUBSTITUTIONS OF Section I Aromatic chemistry I5 ELECTPILIC SUBSTITUTINS F MN-SUBSTITUTED AMATIC INGS Key Notes ortho, meta and para substitution Substituent effect eaction profile Activating groups inductive o/p Deactivating

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Chem 263 ct. 8, 2013 lectrophilic Aromatic Substitution Benzene appears to be a remarkably stable and unreactive compared to alkenes, such as cyclohexene or ethylene, or even alkanes, such as cyclohexane

More information

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or

Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or Treatment of cyclooctatetrene with potassium gives you a dianion. Classify the starting material and product as aromatic, antiaromatic or nonaromatic? 1 2 Classify cyclononatetrene and it s various ions

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Chem 263 Sept 29, 2016 lectrophilic Aromatic Substitution Benzene appears to be a remarkably stable (36 kcal/mole more) and unreactive compared to alkenes, such as cyclohexene or ethylene, or even alkanes,

More information

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e

Organic Chemistry. Second Edition. Chapter 19 Aromatic Substitution Reactions. David Klein. Klein, Organic Chemistry 2e Organic Chemistry Second Edition David Klein Chapter 19 Aromatic Substitution Reactions Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Klein, Organic Chemistry 2e 19.1 Introduction to Electrophilic

More information

Key ideas: In EAS, pi bond is Nu and undergoes addition.

Key ideas: In EAS, pi bond is Nu and undergoes addition. Objective 7. Apply addition and elimination concepts to predict electrophilic aromatic substitution reactions (EAS) of benzene and monosubstituted benzenes. Skills: Draw structure ID structural features

More information

Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution

Chapter 13 Reactions of Arenes Electrophilic Aromatic Substitution . 13 hapter 13 eactions of Arenes lectrophilic Aromatic ubstitution lectrophiles add to aromatic rings in a fashion somewhat similar to the addition of electrophiles to alkenes. ecall: 3 4 Y 1 4 2 1 δ

More information

Chapter 17. Reactions of Aromatic Compounds

Chapter 17. Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Although benzene s pi electrons are in a stable aromatic system, they are available to attack a strong electrophile to give

More information

Aromatic Compounds II

Aromatic Compounds II 2302272 Org Chem II Part I Lecture 2 Aromatic Compounds II Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 17 in Organic Chemistry, 8 th Edition, L.

More information

Ch 16 Electrophilic Aromatic Substitution

Ch 16 Electrophilic Aromatic Substitution Ch 16 Electrophilic Aromatic Substitution Mechanism - Aromatic rings typically undergo substitution, where an H is replaced with an electrophile (E+). - The rings do not typically undergo addition across

More information

Examples of Substituted Benzenes

Examples of Substituted Benzenes Organic Chemistry 5 th Edition Paula Yurkanis Bruice Examples of Substituted Benzenes Chapter 15 Reactions of Substituted Benzenes Irene Lee Case Western Reserve University Cleveland, OH 2007, Prentice

More information

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react

Reactions of Aromatic Compounds. Aromatic compounds do not react like other alkenes. With an appropriate catalyst, however, benzene will react Reactions of Aromatic Compounds Aromatic compounds do not react like other alkenes 2 Fe 3 2 Does not form A major part of the problem for this reaction is the product has lost all aromatic stabilization,

More information

There are two main electronic effects that substituents can exert:

There are two main electronic effects that substituents can exert: Substituent Effects There are two main electronic effects that substituents can exert: RESONANCE effects are those that occur through the π system and can be represented by resonance structures. These

More information

Synthesis Using Aromatic Materials

Synthesis Using Aromatic Materials Chapter 10 Synthesis Using Aromatic Materials ELECTROPHILIC AROMATIC SUBSTITUTION AND DIRECTED ORTHO METALATION Copyright 2018 by Nelson Education Limited 1 10.2 p Bonds Acting as Nucleophiles Copyright

More information

Chapter 19: Benzene and Aromatic Substitution Reactions [Sections: 18.2, 18.6; ]

Chapter 19: Benzene and Aromatic Substitution Reactions [Sections: 18.2, 18.6; ] Chapter 19: Benzene and Aromatic Substitution eactions [Sections: 18.2, 18.6; 19.1-19.12] omenclature of Substituted Benzenes i. Monosubstituted Benzenes C 2 C 3 ii. Disubstituted Benzenes X X X Y Y Y

More information

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized

Chapter 12. Reactions of Arenes: Electrophilic Aromatic Substitution. Class Notes. A. The method by which substituted benzenes are synthesized Chapter 12 Reactions of Arenes: Electrophilic Aromatic Substitution Chapter 12 suggested problems: 22, 23, 26, 27, 32, 33 Class Notes I. Electrophilic aromatic substitution reactions A. The method by which

More information

12/27/2010. Chapter 15 Reactions of Aromatic Compounds

12/27/2010. Chapter 15 Reactions of Aromatic Compounds Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen atom

More information

Learning Guide for Chapter 18 - Aromatic Compounds II

Learning Guide for Chapter 18 - Aromatic Compounds II Learning Guide for Chapter 18 Aromatic Compounds. lectrophilic aromatic substitution ntroduction Mechanism Reagents and Products lectrophiles ffects of stituents FriedelCrafts alkylation and acylation

More information

Chapter 17 Aromati ti S u stit tit t u i tion Reactions

Chapter 17 Aromati ti S u stit tit t u i tion Reactions Chapter 17 Aromatic Substitution Reactions 1 17.1 Mechanism for Electricphilic Aromatic Substitution Arenium ion resonance stabilization 2 Example 1. Example 2. 3 Example 2. Mechanism of the nitration

More information

Lecture 27 Organic Chemistry 1

Lecture 27 Organic Chemistry 1 CHEM 232 rganic Chemistry I at Chicago Lecture 27 rganic Chemistry 1 Professor Duncan Wardrop April 20, 2010 1 Self Test Question Nitrosonium (not nitronium) cations can be generated by treating sodium

More information

Chapter 17: Reactions of Aromatic Compounds

Chapter 17: Reactions of Aromatic Compounds 1 Chapter 17: Reactions of Aromatic Compounds I. Introduction to Electrophilic Aromatic Substitution (EAS) A. General Mechanism II. Reactions of Electrophilic Aromatic Substitution A. Halogenation (E =

More information

Chapter 15 Reactions of Aromatic Compounds

Chapter 15 Reactions of Aromatic Compounds Chapter 15 1 Chapter 15 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Arene (Ar-H) is the generic term for an aromatic hydrocarbon The aryl group (Ar) is derived by removal of a hydrogen

More information

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step

Chapter 15. Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution on Arenes. The first step is the slow, rate-determining step Electrophilic Aromatic Substitution on Arenes Chapter 15 Reactions of Aromatic Compounds The characteristic reaction of aromatic rings is substitution initiated by an electrophile halogenation nitration

More information

Substituents already attached to an aromatic ring influence the preferred site of attachment of an incoming electrophile. NO2

Substituents already attached to an aromatic ring influence the preferred site of attachment of an incoming electrophile. NO2 Lecture outline Directing effects of substituents Substituents already attached to an aromatic ring influence the preferred site of attachment of an incoming electrophile. e.g., nitration of toluene 3

More information

432 CHAPTER 19. Solutions H H H. Base H O H S O H - SO 3 O S O O O

432 CHAPTER 19. Solutions H H H. Base H O H S O H - SO 3 O S O O O 432 CAPTER 19 Solutions 19.1. Base 19.2. S S - S 3 S S S CAPTER 19 433 19.3. D S D S 3 D D D D D 19.4. S - 2 nitronium ion 2 2 2 2 19.5. c) + 434 CAPTER 19 19.6. Al 3 Al 3 Al 3 Al 3 Al 3 Al 3 CAPTER 19

More information

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions

11/30/ Substituent Effects in Electrophilic Substitutions. Substituent Effects in Electrophilic Substitutions Chapter 9 Problems: 9.1-29, 32-34, 36-37, 39-45, 48-56, 58-59, 61-69, 71-72. 9.8 Substituent effects in the electrophilic substitution of an aromatic ring Substituents affect the reactivity of the aromatic

More information

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W

CHEM Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W CHEM 2425. Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution (homework) W Short Answer Exhibit 16-1 MATCH a structure or term from the following list with each description below. Place

More information

Chapter 17 Reactions of Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds rganic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice all Electrophilic

More information

Chapter 17 Reactions of Aromatic Compounds

Chapter 17 Reactions of Aromatic Compounds Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution o General reaction - an electrophile replaces a hydrogen Electrons of pi system attack strong electrophile, generating resonancestabilized

More information

Chapter 5. Aromatic Compounds

Chapter 5. Aromatic Compounds Chapter 5. Aromatic Compounds 5.1 Structure of Benzene: The Kekule Proposal Mid-1800s, benzene was known to have the molecular formula C 6 6. Benzene reacts with 2 in the presence of iron to give substitution

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 5-2. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry,

More information

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall

Organic Chemistry, 7 L. G. Wade, Jr. Chapter , Prentice Hall Organic Chemistry, 7 th Edition L. G. Wade, Jr. Chapter 17 Reactions of Aromatic Compounds 2010, Prentice Hall Electrophilic Aromatic Substitution Although h benzene s pi electrons are in a stable aromatic

More information

Nitration of (Trifluoromethyl( Trifluoromethyl)benzene CF 3 HNO 3 + +

Nitration of (Trifluoromethyl( Trifluoromethyl)benzene CF 3 HNO 3 + + Effect on Rate Rate and Regioselectivity in Electrophilic Aromatic Substitution A substituent already present on the ring affects both the rate and regioselectivity of electrophilic aromatic substitution.

More information

Benzene and Aromatic Compounds

Benzene and Aromatic Compounds 1 Background Benzene and Aromatic Compounds Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Benzene has four degrees of unsaturation, making it a highly unsaturated hydrocarbon. Whereas

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2

16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 16. Chemistry of Benzene: Electrophilic Aromatic Substitution جانشینی الکتروندوستی آروماتیک شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

2016 Pearson Education, Inc. Isolated and Conjugated Dienes

2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Isolated and Conjugated Dienes 2016 Pearson Education, Inc. Reactions of Isolated Dienes 2016 Pearson Education, Inc. The Mechanism Double Bonds can have Different Reactivities

More information

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16

08. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 08. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 6 th edition, Chapter 16 Benzene is a nucleophile p electrons make benzene nucleophile, like alkenes.

More information

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will 71. B SN2 stands for substitution nucleophilic bimolecular. This means that there is a bimolecular rate-determining step. Therefore, the reaction will follow second-order kinetics based on the collision

More information

Benzenes & Aromatic Compounds

Benzenes & Aromatic Compounds Benzenes & Aromatic Compounds 1 Structure of Benzene H H C C C H C 6 H 6 H C C C H H A cyclic conjugate molecule Benzene is a colourless odourless liquid, boiling at 80 o C and melting at 5 o C. It is

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Electrophilic aromatic substitution: E + E + + Some electrophilic aromatic substitution: X N 2 S 3 R C R alogenation Nitration Sulfonation

More information

Reactions of Benzene Reactions of Benzene 1

Reactions of Benzene Reactions of Benzene 1 Reactions of Benzene Reactions of Benzene 1 2 Halogenation of Benzene v Benzene does not react with Br 2 or Cl 2 unless a Lewis acid is present (a catalytic amount is usually enough) 3 v Mechanism v Mechanism

More information

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES

ORGANIC - BROWN 8E CH. 22- REACTIONS OF BENZENE AND ITS DERIVATIVES !! www.clutchprep.com CONCEPT: ELECTROPHILIC AROMATIC SUBSTITUTION GENERAL MECHANISM Benzene reacts with very few reagents. It DOES NOT undergo typical addition reactions. Why? If we can get benzene to

More information

Chemistry 204: Benzene and Aromaticity

Chemistry 204: Benzene and Aromaticity Chemistry 204: Benzene and Aromaticity Structure of and Bonding in Benzene benzene, C 6 H 6, was first isolated in 1825 (Michael Faraday), but it was not until more than 100 years later that an adequate

More information

Electrophilic Aromatic Substitution

Electrophilic Aromatic Substitution Lecture 12 Electrophilic Aromatic Substitution E E February 22, 2018 Electrophilic Aromatic Substitution Electrophilic aromatic substitution: a reaction in which a hydrogen atom on an aromatic ring is

More information

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry Benzene and Aromatic Compounds Chapter 15 Organic Chemistry, 8 th Edition John McMurry 1 Background Benzene (C 6 H 6 ) is the simplest aromatic hydrocarbon (or arene). Four degrees of unsaturation. It

More information

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde

Chapter 4: Aromatic Compounds. Bitter almonds are the source of the aromatic compound benzaldehyde Chapter 4: Aromatic Compounds Bitter almonds are the source of the aromatic compound benzaldehyde Sources of Benzene Benzene, C 6 H 6, is the parent hydrocarbon of the especially stable compounds known

More information

CHEMISTRY. Module No and Title Module-, Electrophilic Aromatic Substitution: The ortho/para ipso attack, orientation in other ring systems.

CHEMISTRY. Module No and Title Module-, Electrophilic Aromatic Substitution: The ortho/para ipso attack, orientation in other ring systems. Subject Chemistry Paper No and Title Paper-5, Organic Chemistry-II Module No and Title Module-, Electrophilic Aromatic Substitution: The ortho/para Module Tag CHE_P5_M29 TABLE OF CONTENTS 1. Learning Outcomes

More information

Hour Examination # 1

Hour Examination # 1 CEM 347 rganic Chemistry II Spring 2015 Exam # 1 Solutions Key Page 1 of 11 CEM 347 rganic Chemistry II Spring 2015 Instructor: Paul Bracher our Examination # 1 Wednesday, February 11 th, 2015 6:00 8:00

More information

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution

Chapter 17 Reactions of Aromatic Compounds. Electrophilic Aromatic Substitution Chapter 17 Reactions of Aromatic Compounds Electrophilic Aromatic Substitution Electrophile substitutes for a hydrogen on the benzene ring. Chapter 17: Aromatics 2-Reactions Slide 17-2 1 Mechanism Step

More information

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine.

The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. The now-banned diet drug fen-phen is a mixture of two synthetic substituted benzene: fenfluramine and phentermine. Chemists have synthesized compounds with structures similar to adrenaline, producing amphetamine.

More information

Chemistry of Benzene: Electrophilic Aromatic Substitution

Chemistry of Benzene: Electrophilic Aromatic Substitution Chemistry of Benzene: Electrophilic Aromatic Substitution Why this Chapter? Continuation of coverage of aromatic compounds in preceding chapter focus shift to understanding reactions Examine relationship

More information

5, Organic Chemistry-II (Reaction Mechanism-1)

5, Organic Chemistry-II (Reaction Mechanism-1) Subject Chemistry Paper No and Title Module No and Title Module Tag 5, Organic Chemistry-II (Reaction Mechanism-1) 28, Arenium ion mechanism in electrophilic aromatic substitution, orientation and reactivity,

More information

H 2 SO 4 Ar-NO 2 + H2O

H 2 SO 4 Ar-NO 2 + H2O Phenyl group: Shorthand for phenyl: Ph, C 6 5,. An aryl group is an aromatic group: phenyl, substituted phenyl, or other aromatic group. Shorthand: Ar Generalized electrophilic aromatic substitution: E

More information

Chem 263 Oct. 6, Single bonds, σ. e - donating Activate Activate ortho and para directing ortho and para directing

Chem 263 Oct. 6, Single bonds, σ. e - donating Activate Activate ortho and para directing ortho and para directing Chem 263 ct. 6, 2009 lectrophilic Substitution of Substituted Benzenes Resonance ffect Inductive ffect C=C, π system Single bonds, σ Strong Weak e - donating Activate Activate ortho and para directing

More information

Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene

Chapter 16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Reactivity of Benzene hapter 16 hemistry of Benzene: Electrophilic Aromatic Substitution Reactivity of Benzene - stabilization due to aromaticity makes benzene significantly less reactive than isolated alkenes 2 no reaction

More information

BENZENE AND AROMATIC COMPOUNDS

BENZENE AND AROMATIC COMPOUNDS BENZENE AND AROMATIC COMPOUNDS The discovery of benzene: 1825 - Michael Faraday, empirical formula of C 1834 - Eilhard Mitscherlich synthesized benzin from gum benzoin, empirical formula C Aromatic The

More information

NBS, CCl 4 heat A B C D

NBS, CCl 4 heat A B C D 1. What is(are) the expected product(s) of the following reaction? 2 C=CC( ) 2 NBS, CCl 4 heat A B C D 1) only B 2) only C 3) A and C 4) B and D 2. Which of the following is the 1,4-addition product in

More information

REACTIONS OF AROMATIC COMPOUNDS

REACTIONS OF AROMATIC COMPOUNDS A STUDENT SHOULD BE ABLE TO: REACTIONS OF AROMATIC COMPOUNDS 1. Predict the product(s) of Electrophilic aromatic substitution (EAS): halogenation, sulfonation, nitration, Friedel- Crafts alkylation and

More information

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones MCAT rganic Chemistry Problem Drill 10: Aldehydes and Ketones Question No. 1 of 10 Question 1. Which of the following is not a physical property of aldehydes and ketones? Question #01 (A) Hydrogen bonding

More information

March 08 Dr. Abdullah Saleh

March 08 Dr. Abdullah Saleh March 08 Dr. Abdullah Saleh 1 Effects of Substituents on Reactivity and Orientation The nature of groups already on an aromatic ring affect both the reactivity and orientation of future substitution Activating

More information

Aryl Halides. Structure

Aryl Halides. Structure Aryl Halides Structure Aryl halides are compounds containing halogen attached directly to an aromatic ring. They have the general formula ArX, where Ar is phenyl, substituted phenyl. X= F,Cl,Br,I An aryl

More information

CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION A B C D E

CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION A B C D E CHEM 242 REACTIONS OF ARENES: CHAP 12 ASSIGN ELECTROPHILIC AROMATIC SUBSTITUTION 1. Consider carefully the mechanism of the following electrophilic aromatic substitution reaction and indicate which of

More information

Organic Chemistry Practice Problems: Solutions

Organic Chemistry Practice Problems: Solutions rganic Chemistry Practice Problems: Solutions 1. 2. a. B, A b. D, B c. A, D d. D, A a. Resonance b. Electronegativity of fluorine atoms F F c. Neither is very acidic, but the oxygen will help stabilise

More information

15.10 Effect of Substituents on Reactivity and Orientation

15.10 Effect of Substituents on Reactivity and Orientation 15.10 ffect of Substituents on Reactivity and Orientation Z NO 3 2 SO 4 Z Z Z + + o- p- m- Z O Me CN o(%) 40 59 30 6 17 p(%) 60 37 69

More information

Chem 263 Oct. 10, The strongest donating group determines where new substituents are introduced.

Chem 263 Oct. 10, The strongest donating group determines where new substituents are introduced. Chem 263 ct. 10, 2013 The strongest donating group determines where new substituents are introduced. N 2 N 3 2 S 4 + N 3 N 2 2 S 4 N 2 N 2 + 2 N N 2 N 3 2 S 4 N 2 2 N N 2 2,4,6-trinitrophenol picric acid

More information

Fundamentals of Organic Chemistry

Fundamentals of Organic Chemistry Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges Credit hrs.: (2+1) King Saud University College of Science, Chemistry Department CHEM 109 CHAPTER 3. AROMATIC HYDROCARBONS Aromatic

More information

C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives

C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives C h a p t e r N i n e t e e n Aromatics II: Reactions of Benzene & Its Derivatives Arenium ion from addition of tert-butyl cation to benzene (blue is δ+and red δ-) Note: Problems with italicized numbers

More information

and Stereochemistry) PAPER 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) MODULE 4: Applications of Electronic Effects

and Stereochemistry) PAPER 1: ORGANIC CHEMISTRY- I (Nature of Bonding and Stereochemistry) MODULE 4: Applications of Electronic Effects Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 1: ORGANIC - I (Nature of Bonding Module 4: Applications of Electronic Effects CHE_P1_M4 PAPER 1: ORGANIC - I (Nature of Bonding

More information

5. (6 pts) Show how the following compound can be synthesized from the indicated starting material:

5. (6 pts) Show how the following compound can be synthesized from the indicated starting material: Exam 2 Name CHEM 212 1. (36 pts) Complete the following chemical reactions showing all major organic products; illustrate proper stereochemistry where appropriate. If no reaction occurs, indicate NR :

More information

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature

Amines Reading Study Problems Key Concepts and Skills Lecture Topics: Amines: structure and nomenclature Amines Reading: Wade chapter 19, sections 19-1-19-19 Study Problems: 19-37, 19-39, 19-40, 19-41, 19-44, 19-46, 19-47, 19-48, 19-51, 19-54 Key Concepts and Skills: Explain how the basicity of amines varies

More information

CHEM 303 Organic Chemistry II Problem Set III Chapter 14 Answers

CHEM 303 Organic Chemistry II Problem Set III Chapter 14 Answers CHEM 303 rganic Chemistry II Problem Set III Chapter 14 Answers 1) Give the major products of each of the following reactions. If a mixture is expected, identify the major product. + H 3 CHC CHCH 3 H 2

More information

Loudon Chapter 17 Review: Allylic/Benzylic Reactivity

Loudon Chapter 17 Review: Allylic/Benzylic Reactivity Chapter 17 is all about reactions that happen at the position one away from an aromatic ring, or one away from a double bond. These are called the benzylic and allylic positions respectively. Benzyl and

More information

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016

CHE1502. Tutorial letter 201/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry CHE1502/201/1/2016 CE1502/201/1/2016 Tutorial letter 201/1/2016 General Chemistry 1B CE1502 Semester 1 Department of Chemistry This tutorial letter contains the answers to the questions in assignment 1. FIRST SEMESTER: KEY

More information

CHEM 347 Organic Chemistry II Spring Instructor: Paul Bracher. Quiz # 2

CHEM 347 Organic Chemistry II Spring Instructor: Paul Bracher. Quiz # 2 CHEM 347 Organic Chemistry II Spring 2015 Quiz # 2 Solutions Key Page 1 of 12 CHEM 347 Organic Chemistry II Spring 2015 Instructor: Paul Bracher Quiz # 2 Due: Monday, February 9 th, 2015 2:00 p.m. (in

More information

4. AROMATIC COMPOUNDS

4. AROMATIC COMPOUNDS BOOKS 1) Organic Chemistry Structure and Function, K. Peter C. Vollhardt, Neil Schore, 6th Edition 2) Organic Chemistry, T. W. Graham Solomons, Craig B. Fryhle 3) Organic Chemistry: A Short Course, H.

More information

S N 1 Displacement Reactions

S N 1 Displacement Reactions S N 1 Displacement Reactions Tertiary alkyl halides cannot undergo S N 2 reactions because of the severe steric hindrance blocking a backside approach of the nucleophile. They can, however, react via an

More information

240 Chem. Aromatic Compounds. Chapter 6

240 Chem. Aromatic Compounds. Chapter 6 240 Chem Aromatic Compounds Chapter 6 1 The expressing aromatic compounds came to mean benzene and derivatives of benzene. Structure of Benzene: Resonance Description C 6 H 6 1.It contains a six-membered

More information

Chem 263 Oct. 4, 2016

Chem 263 Oct. 4, 2016 Chem 263 ct. 4, 2016 ow to determine position and reactivity: Examples The strongest donating group wins: 2 3 2 S 4 + 3 2 2 S 4 2 2 + 2 2 3 2 S 4 2 2 2 2,4,6-trinitrophenol picric acid This reactivity

More information

Loudon Chapter 23 Review: Amines CHEM 3331, Jacquie Richardson, Fall Page 1

Loudon Chapter 23 Review: Amines CHEM 3331, Jacquie Richardson, Fall Page 1 Loudon Chapter 23 eview: Amines CEM 3331, Jacquie ichardson, Fall 2010 - Page 1 This chapter is about the chemistry of nitrogen. We ve seen it before in several places, but now we can look at several reactions

More information

Reactions. Reactions. Elimination. 2. Elimination Often competes with nucleophilic substitution. 2. Elimination Alkyl halide is treated with a base

Reactions. Reactions. Elimination. 2. Elimination Often competes with nucleophilic substitution. 2. Elimination Alkyl halide is treated with a base eactions 1 eactions 2 2. limination Alkyl halide is treated with a base B: 2. limination ften competes with nucleophilic substitution LIMINATIN Nu: SUBSTITUTIN Nu Bimolecular B: limination B * * 3 Kinetics

More information

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol.

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol. CH. 23 Chapter 23 Phenols Nomenclature The OH group takes precedence as the parent phenol. Carboxyl and acyl groups take precedence over the OH group. The OH group is a strong electron-donating group through

More information

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings.

More Nomenclature: Common Names for Selected Aromatic Groups. Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. More Nomenclature: Common Names for Selected Aromatic Groups Phenyl group = or Ph = C 6 H 5 = Aryl = Ar = aromatic group. It is a broad term, and includes any aromatic rings. Benzyl = Bn = It has a -CH

More information

Problem Set #3 Solutions

Problem Set #3 Solutions Problem Set #3 Solutions 1. a) C 3 (methyl group) Since carbon (E = 2.5) is slightly more electronegative than hydrogen (E = 2.2), there will be a small dipole moment pulling electron density away from

More information

Chapter 9 Aldehydes and Ketones Excluded Sections:

Chapter 9 Aldehydes and Ketones Excluded Sections: Chapter 9 Aldehydes and Ketones Excluded Sections: 9.14-9.19 Aldehydes and ketones are found in many fragrant odors of many fruits, fine perfumes, hormones etc. some examples are listed below. Aldehydes

More information

Chapter 16: Aromatic Compounds

Chapter 16: Aromatic Compounds Chamras Chemistry 106 Lecture otes xamination 2 Materials Chapter 16: Aromatic Compounds Benzene, the Most Commonly Known Aromatic Compound: The aromatic nature of benzene stabilizes it 36 kcal.mol 1.

More information

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid Revision Hybridisation -The valence electrons of a Carbon atom sit in 1s 2 2s 2 2p 2 orbitals that are different in energy. It has 2 x 2s electrons + 2 x 2p electrons are available to form 4 covalent bonds.

More information

Chemistry Organic Chemistry II

Chemistry Organic Chemistry II Chemistry 3720 - rganic Chemistry II Dr. Peter Norris 6014 Ward Beecher (330) 941-1553 pnorris@ysu.edu http://www.as.ysu.edu/~pnorris/public_html Lecture needs: Carey Molecular models Adobe Acrobat Reader

More information

Chemistry 52 Exam #1. Name: 22 January This exam has six (6) questions, two cover pages, six pages, and 2 scratch pages.

Chemistry 52 Exam #1. Name: 22 January This exam has six (6) questions, two cover pages, six pages, and 2 scratch pages. Chemistry 52 Exam #1 Name: 22 January 2003 This exam has six (6) questions, two cover pages, six pages, and 2 scratch pages. Please check before beginning to make sure no questions are missing. 65 minutes

More information

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions hapter 15 eactions of Aromatic ompounds 1. Electrophilic Aromatic Substitution eactions v verall reaction reated by Professor William Tam & Dr. Phillis hang opyright S 3 2 S 4 S 3 2. A General Mechanism

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote William. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, arcourt Brace & Company, 6277 Sea arbor Drive, Orlando,

More information

Lecture 3: Aldehydes and ketones

Lecture 3: Aldehydes and ketones Lecture 3: Aldehydes and ketones I want to start by talking about the mechanism of hydroboration/ oxidation, which is a way to get alcohols from alkenes. This gives the anti-markovnikov product, primarily

More information

Chemistry 14D Winter 2010 Exam 2 Page 1

Chemistry 14D Winter 2010 Exam 2 Page 1 Chemistry 14D Winter 2010 Exam 2 Page 1 1. (2) Circle the best statement of Markovnikov s rule. (a) When X adds to an alkene, the hydrogen of X becomes bonded to the alkene carbon that bears the least

More information