Although they are composed of ions, ionic compounds are electrically neutral. Most ionic compounds are crystalline solids at room temperature.

Size: px
Start display at page:

Download "Although they are composed of ions, ionic compounds are electrically neutral. Most ionic compounds are crystalline solids at room temperature."

Transcription

1 Key Concepts Although they are composed of ions, ionic compounds are electrically neutral. Most ionic compounds are crystalline solids at room temperature. Ionic compounds generally have high melting points. Ionic compounds can conduct an electric current when melted or dissolved in water. 46 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

2 CHEMISTRY & YOU What are some properties that are unique to metals? Wrought iron is a very pure form of iron that contains trace amounts of carbon. It is a tough, malleable, ductile, and corrosionresistant material that melts at very high temperatures. 47 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

3 Metallic Bonds and Metallic Properties Metallic bonds are the forces of attraction between the free-floating valence electrons and the positively charged metal ions. These bonds hold metals together. 48 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

4 Metallic Bonds and Metallic Properties Properties of Metals Metals are good conductors of electric current because electrons can flow freely in the metal. Movie-conduction 49 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

5 Metallic Bonds and Metallic Properties Properties of Metals Metals are good conductors of electric current because electrons can flow freely in the metal. As electrons enter one end of a bar of metal, an equal number of electrons leave the other end. 50 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

6 Metallic Bonds and Metallic Properties Properties of Metals Metals are ductile that is, they can be drawn into wires. Force Metal rod Die Wire 51 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

7 Metallic Bonds and Metallic Properties Properties of Metals When a metal is subjected to pressure, the metal cations easily slide past one another. Sea of electrons Force Metal cation Metal 52 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

8 Metallic Bonds and Metallic Properties Properties of Metals When a metal is subjected to pressure, the metal cations easily slide past one another. Sea of electrons Metal cation Metal Force Force Ionic crystal Nonmetal anion Metal cation Strong repulsions If an ionic crystal is struck with a hammer, the blow tends to push the positive ions close together. The positive ions repel one another, and the crystal shatters. 53 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

9 CHEMISTRY & YOU How are metals and ionic compounds different? How are they similar? 54 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

10 CHEMISTRY & YOU How are metals and ionic compounds different? How are they similar? Both metals and ionic compounds form crystal structures. However, they have different configurations of electrons. The sea of electrons surrounding cations in a metal allows metals to be ductile and malleable. Ionic crystals will fracture under pressure. 55 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

11 Alloys Alloys Why are alloys important? Alloys are mixtures of two or more elements, at least one of which is a metal. Brass, for example, is an alloy of copper and zinc. 56 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

12 Alloys Alloys are important because their properties are often superior to those of their component elements. Sterling silver (92.5 percent silver and 7.5 percent copper) is harder and more durable than pure silver, yet it is still soft enough to be made into jewelry and tableware. 57 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

13 Alloys The most important alloys today are steels. The principal elements in most steels, in addition to iron and carbon, are boron, chromium, manganese, molybdenum, nickel, tungsten, and vanadium. Steels have a wide range of useful properties, such as corrosion resistance, ductility, hardness, and toughness. Stainless Steel 80.6% Fe 18.0% Cr 0.4% C 1.0% Ni 58 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

14 Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 59 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

15 CHEMISTRY & YOU How are atoms joined together to make compounds with different structures? Although the types of pieces are limited, you can make many different toy models depending on how many pieces you use and how they are arranged. 60 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

16 Molecules and Molecular Compounds In nature, only the noble gas elements, such as helium and neon, exist as uncombined atoms. They are monatomic; that is, they consist of single atoms. Helium, which is less dense than air, is often used to inflate balloons. 61 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

17 Molecules and Molecular Compounds But not all elements are monatomic. O 2 represents two oxygen atoms that are bonded together. Scuba divers breath compressed air, a mixture that contains oxygen gas. 62 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

18 Molecules and Molecular Compounds Ionic compounds are generally crystalline solids with high melting points. Other compounds, however, have very different properties. Water (H 2 O) is a liquid at room temperature. Carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) are both gases at room temperature. 63 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

19 Molecules and Molecular Compounds The attractions that hold together the atoms in O 2, H 2 O, CO 2, and N 2 O cannot be explained by ionic bonding. These bonds do not involve the transfer of electrons. 64 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

20 Molecules and Molecular Compounds Sharing Electrons Recall that ionic bonds form when the combining atoms give up or accept electrons. Another way that atoms can combine is by sharing electrons. Atoms that are held together by sharing electrons are joined by a covalent bond. 65 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

21 Molecules and Molecular Compounds Sharing Electrons A molecule is a neutral group of atoms joined together by covalent bonds. Oxygen gas consists of oxygen molecules; each oxygen molecule consists of two covalently bonded oxygen atoms. 66 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

22 Molecules and Molecular Compounds Sharing Electrons An oxygen molecule is an example of a diatomic molecule a molecule that contains two atoms. Other elements found in nature in the form of diatomic molecules include hydrogen, nitrogen, and the halogens. 67 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

23 Molecules and Molecular Compounds Sharing Electrons Molecules can also be made of atoms of different elements. A compound composed of molecules is called a molecular compound. Water is an example of a molecular compound. 68 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

24 Molecules and Molecular Compounds Representing Molecules A molecular formula is the chemical formula of a molecular compound. 69 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

25 Molecules and Molecular Compounds Representing Molecules A molecular formula shows how many atoms of each element a substance contains. 70 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

26 Molecules and Molecular Compounds Representing Molecules The molecular formula of water is H 2 O. Notice that the subscript written after an element s symbol indicates the number of atoms of each element in the molecule. If there is only one atom, the subscript 1 is omitted. 71 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

27 Molecules and Molecular Compounds Representing Molecules Butane is also a molecular compound. Butane is commonly used in lighters and household torches. The molecular formula for butane is C 4 H 10. According to this formula, one molecule of butane contains four carbon atoms and ten hydrogen atoms. 72 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

28 Molecules and Molecular Compounds Representing Molecules A molecular formula reflects the actual number of atoms in each molecule. The subscripts are not necessarily the lowest whole-number ratios. 73 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

29 Molecules and Molecular Compounds Representing Molecules Note that molecular formulas also describe molecules consisting of atoms of one element. For example, an oxygen molecule consists of two oxygen atoms bonded together; its molecular formula is O Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

30 Molecules and Molecular Compounds Representing Molecules A molecular formula does not tell you about a molecule s structure. In other words, it does not show either the arrangement of the various atoms in space or which atoms are covalently bonded to one another. 75 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

31 Representing Molecules A variety of diagrams and molecular models can be used to show the arrangement of atoms in a molecule. Molecules and Molecular Compounds 76 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

32 Acetylsalicylic acid, also known as aspirin, has a molecular formula of C 9 H 8 O 4. What elements make up acetylsalicylic acid? How many atoms of each element are found in one molecule of acetylsalicylic acid? 77 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

33 Acetylsalicylic acid, also known as aspirin, has a molecular formula of C 9 H 8 O 4. What elements make up acetylsalicylic acid? How many atoms of each element are found in one molecule of acetylsalicylic acid? One molecule of acetylsalicylic acid is made of 9 carbon atoms, 8 hydrogen atoms, and 4 oxygen atoms. 78 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

34 Comparing Molecular and Ionic Compounds Comparing Molecular and Ionic Compounds What representative units define molecular compounds and ionic compounds? 79 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

35 Comparing Molecular and Ionic Compounds The representative unit of a molecular compound is a molecule. For an ionic compound, the smallest representative unit is a formula unit. 80 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

36 Comparing Molecular and Ionic Compounds Molecular compounds tend to have relatively lower melting and boiling points than ionic compounds. Many molecular compounds are gases or liquids at room temperature. 81 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

37 Comparing Molecular and Ionic Compounds Molecular compounds tend to have relatively lower melting and boiling points than ionic compounds. Many molecular compounds are gases or liquids at room temperature. In contrast to ionic compounds, which are formed from a metal combined with a nonmetal, most molecular compounds are composed of atoms of two or more nonmetals. 82 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

38 Comparing Molecular and Ionic Compounds Water, which is a molecular compound, and sodium chloride, which is an ionic compound, are compared here. Collection of water molecules Array of sodium ions and chloride ions Molecule of water Formula unit of sodium chloride Chemical formula H 2 O NaCl Chemical formula 83 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

39 ionic-covalent dissolve.swf 84 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

40 BIG IDEA Bonding and Interactions In molecular compounds, bonding occurs when atoms share electrons. In ionic compounds, bonding occurs when electrons are transferred between atoms. 85 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

41 The Octet Rule in Covalent Bonding Single Covalent Bonds The hydrogen atoms in a hydrogen molecule are held together mainly by the attraction of the shared electrons to the positive nuclei. Two atoms held together by sharing one pair of electrons are joined by a single covalent bond. 86 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

42 Single Covalent Bonds Hydrogen gas consists of diatomic molecules whose atoms share only one pair of electrons, forming a single covalent bond. The Octet Rule in Covalent Bonding 87 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

43 The Octet Rule in Covalent Bonding Single Covalent Bonds An electron dot structure such as H:H represents the shared pair of electrons of the covalent bond by two dots. The pair of shared electrons forming the covalent bond is also often represented as a dash, as in H H for hydrogen. A structural formula represents the covalent bonds as dashes and shows the arrangement of covalently bonded atoms. 88 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

44 Coordinate Covalent Bonds The ammonium ion (NH 4+ ) consists of atoms joined by covalent bonds. A polyatomic ion, such as NH 4+, is a tightly bound group of atoms that has a positive or negative charge and behaves as a unit. 89 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

45 Coordinate Covalent Bonds Most polyatomic cations and anions contain covalent bonds. Therefore, compounds containing polyatomic ions include both ionic and covalent bonding. 90 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

8.1 Molecular Compounds > Chapter 8 Covalent Bonding. 8.1 Molecular Compounds

8.1 Molecular Compounds > Chapter 8 Covalent Bonding. 8.1 Molecular Compounds Chapter 8 Covalent Bonding 8.1 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY

More information

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. Chapter 8 Covalent Bonding 8.1 What information does a molecular formula provide? 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc.,

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons In nature, only the noble gas elements exist as uncombined atoms. They are monatomic - consist of single atoms. All other elements need to lose or gain electrons To form ionic compounds Some elements share

More information

Electrons responsible for the chemical properties of atoms Electrons in the outer energy level Valence electrons are the s and p electrons in the

Electrons responsible for the chemical properties of atoms Electrons in the outer energy level Valence electrons are the s and p electrons in the Electrons responsible for the chemical properties of atoms Electrons in the outer energy level Valence electrons are the s and p electrons in the outermost, or highest energy level The number of Valence

More information

Chapter 7 Ionic and Metallic Bonding

Chapter 7 Ionic and Metallic Bonding Chapter 7 Ionic and Metallic Bonding Section 7.1 - Ions OBJECTIVES: Determine the number of valence electrons in an atom of a representative element. Section 7.1 - Ions OBJECTIVES: Explain how the octet

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Ionic and Metallic Bonding 7.1 Ions BONDING AND INTERACTIONS Essential Understanding electrically charged. Ions form when atoms gain or lose valence electrons, becoming Lesson Summary Valence Electrons

More information

Ionic and Metallic Bonding

Ionic and Metallic Bonding Unit 5: Ionic and Metallic Bonding H 2 O Valence Electrons are? The electrons responsible for the chemical properties of atoms, and are those in the outer energy level. Valence electrons - The s and p

More information

Chapter 4. The Structure of Matter How atoms form compounds

Chapter 4. The Structure of Matter How atoms form compounds Chapter 4 The Structure of Matter How atoms form compounds Compounds Formed when two or more elements combine Must make a chemical change New properties Atoms from the different elements form bonds Chemical

More information

Chemistry Study Guide

Chemistry Study Guide Chemistry Study Guide Marking Period 3 Exam Week of 3/21/17 Study Guide due - When studying for this test, use your do nows, notes, homework, class handouts, and your textbook. Vocabulary Chapter 7 Anion

More information

CHAPTER 8 Ionic and Metallic Bonds

CHAPTER 8 Ionic and Metallic Bonds CHAPTER 8 Ionic and Metallic Bonds Shows the kind of atoms and number of atoms in a compound. MgCl 2 NaCl CaCO 3 Al 2 O 3 Ca 3 (PO 4 ) 2 Chemical Formulas Al: Cl: counting atoms AlCl 3 Pb: N: O: Pb(NO

More information

Good Morning. Please take out your notebook and something to write with. In your notes: Write the balanced equation for Beryllium Iodide.

Good Morning. Please take out your notebook and something to write with. In your notes: Write the balanced equation for Beryllium Iodide. Good Morning Please take out your notebook and something to write with. In your notes: Write the balanced equation for Beryllium Iodide. Homework Due Wednesday From Monday s Class: 3-7, 10, 11, 14, 16,

More information

Often times we represent atoms and their electrons with Lewis Dot Structures.

Often times we represent atoms and their electrons with Lewis Dot Structures. They are trying to get their number of valence electrons to either 0 or 8. Group 1: 1 valence electron Group 2: 2 valence electrons Group 13: 3 valence electrons Group 14: 4 valence electrons Group 15:

More information

Chapter 8 Covalent Bonding

Chapter 8 Covalent Bonding Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights

More information

Chapter 8 Covalent Bonding

Chapter 8 Covalent Bonding Chapter 8 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY

More information

Study flashcards. Elements Polyatomic ions: be sure to learn the chemical. Slide 1of 29

Study flashcards. Elements Polyatomic ions: be sure to learn the chemical. Slide 1of 29 Study flashcards Elements Polyatomic ions: be sure to learn the chemical formula AND the charge 1of 29 Write the formula for: 1. Phosphate PO 4 3 2. Nitrate NO 3 3. Carbonate CO 3 2 4. Sulfate SO 4 2 5.

More information

All elements what to be STABLE (full or empty like the noble gases of group 18.) All except H and He want 8 valence electrons (Stable Octet!

All elements what to be STABLE (full or empty like the noble gases of group 18.) All except H and He want 8 valence electrons (Stable Octet! SCIENCE FOUNDATIONS Chemical Bonds Remember from last chapter the number of VALENCE ELECTRONS (electrons in the outermost energy level) and OXIDATION NUMBER (ion each element becomes to get full or empty)

More information

Chemical Bonding. Burlingame High School

Chemical Bonding. Burlingame High School Chemical Bonding Electronegativity Is a measure of the ability of an atom in a molecule to attract electrons to itself. Concept proposed by Linus Pauling 1901-1994 Electronegativity Trends Forms of Chemical

More information

Chapter 6: Chemical Bonding

Chapter 6: Chemical Bonding Chapter 6: Chemical Bonding Learning Objectives Describe the formation of ions by electron loss/gain to obtain the electronic configuration of a noble gas. Describe the formation of ionic bonds between

More information

IONIC AND METALLIC BONDING

IONIC AND METALLIC BONDING Name IONIC AND METALLIC BONDING Chem 512 Homework rint this sheet, answer the questions and turn it in as a HARD COY A. Matching Match each description in Column B with the correct term in Column A. Write

More information

***Occurs when atoms of elements combine together to form compounds.*****

***Occurs when atoms of elements combine together to form compounds.***** CHEMICAL BONDING ***Occurs when atoms of elements combine together to form compounds.***** Formation of compounds Involves valence electrons. PE is lower in bonded atoms. Attractive force that develops

More information

ELECTRONS. Construct your own electron dot diagram Choose one element & drag the correct number of VALENCE Br electrons around it.

ELECTRONS. Construct your own electron dot diagram Choose one element & drag the correct number of VALENCE Br electrons around it. Ch. 6 - Chemical Bonds Chemical reactivity depends on electron configuration. Remember the Stable Octet rule: when the highest energy level occupied is filled with electrons (8 electrons for most atoms),

More information

Formation of Ions. Ions formed when atoms gain or lose valence e - to achieve a stable octet

Formation of Ions. Ions formed when atoms gain or lose valence e - to achieve a stable octet Ionic Bonding Formation of Ions Ions formed when atoms gain or lose valence e - to achieve a stable octet Cation Positively charged ion Forms when atom loses electrons Anion negatively charged ion Forms

More information

Chapter 7: Ionic Compounds and Metals

Chapter 7: Ionic Compounds and Metals Chapter 7: Ionic Compounds and Metals Section 7.1 Section 7.2 Section 7.3 Section 7.4 Ion Formation Ionic Bonds and Ionic Compounds Names and Formulas for Ionic Compounds Metallic Bonds and the Properties

More information

CHEMISTRY & YOU What is the difference between the oxygen you breathe and the oxygen in ozone in the atmosphere?

CHEMISTRY & YOU What is the difference between the oxygen you breathe and the oxygen in ozone in the atmosphere? CHEMISTRY & YOU What is the difference between the oxygen you breathe and the oxygen in ozone in the atmosphere? Our atmosphere contains two different molecules that are both made of oxygen atoms. The

More information

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne:

Ionic Bonds. H He: ... Li Be B C :N :O :F: :Ne: Ionic Bonds Valence electrons - the electrons in the highest occupied energy level - always electrons in the s and p orbitals - maximum of 8 valence electrons - elements in the same group have the same

More information

Ionic bonds occur between a metal and a nonmetal. Covalent bonds occur between two or more nonmetals. Metallic bonds occur between metal atoms only.

Ionic bonds occur between a metal and a nonmetal. Covalent bonds occur between two or more nonmetals. Metallic bonds occur between metal atoms only. Ionic bonds occur between a metal and a nonmetal. Covalent bonds occur between two or more nonmetals. Metallic bonds occur between metal atoms only. Using chemical equations to show ionization: Na Na +

More information

Valence Electrons. 1. The electrons responsible for the chemical properties of atoms, and are those in the outer energy level, the valence level.

Valence Electrons. 1. The electrons responsible for the chemical properties of atoms, and are those in the outer energy level, the valence level. Valence Electrons 1. The electrons responsible for the chemical properties of atoms, and are those in the outer energy level, the valence level. 2. Electrons that make bonds are called valence electrons.

More information

SNC1D CHEMISTRY 2/9/2013. ATOMS, ELEMENTS, & COMPOUNDS L How Compounds Form (P ) Putting Atoms Together. Putting Atoms Together

SNC1D CHEMISTRY 2/9/2013. ATOMS, ELEMENTS, & COMPOUNDS L How Compounds Form (P ) Putting Atoms Together. Putting Atoms Together SNC1D CHEMISTRY ATOMS, ELEMENTS, & COMPOUNDS L How Compounds Form (P.210-214) Most substances are not made up of individual atoms. Instead, they are made up of molecules. A molecule is a group of atoms

More information

Chapter 5 BONDING AND MOLECULES

Chapter 5 BONDING AND MOLECULES Chapter 5 BONDING AND MOLECULES How Do Atoms Combine to Form Compounds? (5.1) Chemical bonds: a force of attraction between atoms or ions. Octet Rule: atoms tend to gain, lose, or share electrons in order

More information

Ch 6 Chemical Bonding

Ch 6 Chemical Bonding Ch 6 Chemical Bonding What you should learn in this section (objectives): Define chemical bond Explain why most atoms form chemical bonds Describe ionic and covalent bonding Explain why most chemical bonding

More information

Unit 3: Chemical Bonds. IB Chemistry SL Ms. Kiely Coral Gables Senior High

Unit 3: Chemical Bonds. IB Chemistry SL Ms. Kiely Coral Gables Senior High Unit 3: Chemical Bonds IB Chemistry SL Ms. Kiely Coral Gables Senior High Bell Ringer What is the name of Ag₂SO₃? Quiz next class! Answer Silver(I) sulfite Physical Properties of Ionic Compounds 1. Ionic

More information

Covalent & Metallic Bonding

Covalent & Metallic Bonding Covalent & Metallic Bonding Metallic Bonding Metals are made of closely packed cations. These cations have a number of valence electrons floating around them as what we call a sea of electrons. Metallic

More information

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B Covalent Bonding 1. Obtain the number of valence electrons for each of the following atoms from its group number and draw the correct Electron Dot Notation (a.k.a. Lewis Dot Structures). a. K b. N c. Cl

More information

Forming Chemical Bonds

Forming Chemical Bonds Forming Chemical Bonds Why do atoms form chemical bonds? so that the system can achieve the lowest possible potential energy Example covalent bonding in H 2 H H Potential energy 0 Distance of separation

More information

Unit 3 - Chemical Bonding and Molecular Structure

Unit 3 - Chemical Bonding and Molecular Structure Unit 3 - Chemical Bonding and Molecular Structure Chemical bond - A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together 6-1 Introduction

More information

Physical Science Study Guide

Physical Science Study Guide Name: Class: Date: Physical Science Study Guide Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Mendeleev arranged the known chemical elements in a table

More information

Unit 3 Lesson 4 Ionic, Covalent, and Metallic Bonding. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 3 Lesson 4 Ionic, Covalent, and Metallic Bonding. Copyright Houghton Mifflin Harcourt Publishing Company Opposites Attract What is an ion? An atom has a neutral charge because it has an equal number of electrons and protons. An ion is a particle with a positive or negative charge. An ion forms when an atom

More information

Elements,Compounds and Mixtures

Elements,Compounds and Mixtures BASIC CONCEPTS: Elements,s and s 1. The smallest fundamental particle of an element that retains the chemical properties of the element is called an atom. 2. A pure substance that cannot be split up into

More information

Ionic Bonding and Ionic Compounds

Ionic Bonding and Ionic Compounds Main Ideas Ionic bonds form from attractions between positive and negative ions Differences in attraction strength give ionic and molecular compounds different properties Multiple atoms can bond covalently

More information

Chapter 7 Ionic and Metallic Bonding

Chapter 7 Ionic and Metallic Bonding Chapter 7 Ionic and Metallic Bonding 7.1 Ions 7.2 Ionic Bonds and Ionic 7.3 Bonding in Metals 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU Where does table

More information

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds

Chemical Bonding. Section 1 Introduction to Chemical Bonding. Section 2 Covalent Bonding and Molecular Compounds Chemical Bonding Table of Contents Section 1 Introduction to Chemical Bonding Section 2 Covalent Bonding and Molecular Compounds Section 3 Ionic Bonding and Ionic Compounds Section 4 Metallic Bonding Section

More information

Chapter 6. Chemical Bonding

Chapter 6. Chemical Bonding Chapter 6 Chemical Bonding Section 6.1 Intro to Chemical Bonding 6.1 Objectives Define chemical bond. Explain why most atoms form chemical bonds. Describe ionic and covalent bonding. Explain why most chemical

More information

Chapter 7. Ionic Compounds and Metals

Chapter 7. Ionic Compounds and Metals Chapter 7 Ionic Compounds and Metals Periodic Trends Metals O Hate electrons O Give electrons away. O Have a low ionization energy. O Ions are always postive. O Cations (meow) Non-Metals O Love electrons

More information

5.1 How Atoms Form Compounds. compound chemical formula molecule chemical bond ionic bond valence covalent bond

5.1 How Atoms Form Compounds. compound chemical formula molecule chemical bond ionic bond valence covalent bond 5.1 How Atoms Form Compounds compound chemical formula molecule chemical bond ionic bond valence covalent bond What is a compound? 5.1 How Atoms Form Compounds A compound is a pure substance that contains

More information

Chapter 8 Notes. Covalent Bonding

Chapter 8 Notes. Covalent Bonding Chapter 8 Notes Covalent Bonding Molecules and Molecular Compounds Helium and Neon are monoatomic, meaning they exist as single atoms Some compounds exist as crystalline solids, such as NaCl Others exist

More information

Chapter 6. Preview. Objectives. Molecular Compounds

Chapter 6. Preview. Objectives. Molecular Compounds Section 2 Covalent Bonding and Molecular Compounds Preview Objectives Molecular Compounds Formation of a Covalent Bond Characteristics of the Covalent Bond The Octet Rule Electron-Dot Notation Lewis Structures

More information

UNIT 5.1. Types of bonds

UNIT 5.1. Types of bonds UNIT 5.1 Types of bonds REVIEW OF VALENCE ELECTRONS Valence electrons are electrons in the outmost shell (energy level). They are the electrons available for bonding. Group 1 (alkali metals) have 1 valence

More information

Unit 4. Bonding and Nomenclature

Unit 4. Bonding and Nomenclature Unit 4 Bonding and Nomenclature A. Vocabulary Chemical Bond attractive force between atoms or ions that binds them together as a unit bonds form in order to decrease potential energy (PE) increase stability

More information

Chapter 8 Covalent Boding

Chapter 8 Covalent Boding Chapter 8 Covalent Boding Molecules & Molecular Compounds In nature, matter takes many forms. The noble gases exist as atoms. They are monatomic; monatomic they consist of single atoms. Hydrogen chloride

More information

Chapter 6 and 15 Ionic Compounds

Chapter 6 and 15 Ionic Compounds Chapter 6 and 15 Ionic Compounds Chapter 6 Ionic compounds 6.3, 6.4 6.1: Intro to Chemical Bonding A chemical bond is a mutual electrical attraction between the nuclei and valence electrons of different

More information

Chemical Bonding. Comparison of Properties Ionic Compounds Covalent Compounds Metals

Chemical Bonding. Comparison of Properties Ionic Compounds Covalent Compounds Metals Chemical Bonding Comparison of Properties Ionic Compounds Covalent Compounds Metals Essential Questions Why/How do atoms combine with one another to form the vast array of chemical substances that exist?

More information

Chemical Bonding. Chemical Bonds. Metals, Ions, or Molecules. All Matter Exists as Atoms,

Chemical Bonding. Chemical Bonds. Metals, Ions, or Molecules. All Matter Exists as Atoms, Chemical Bonding Valence electrons (the outer most electrons) are responsible for the interaction between atoms when forming chemical compounds. Another way to say that is that valence electrons are the

More information

Atoms and Bonding. Chapter 18 Physical Science

Atoms and Bonding. Chapter 18 Physical Science Atoms and Bonding Chapter 18 Physical Science 2017-2018 Atoms and Bonding: Chemical Bonding The combining of atoms of elements to form new substances. Bonding of atoms determine a compound s properties.

More information

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS

CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS CHEMICAL BONDING IONIC BONDS COVALENT BONDS HYDROGEN BONDS METALLIC BONDS IONIC BONDING When an atom of a nonmetal takes one or more electrons from an atom of a metal so both atoms end up with eight valence

More information

Chapter 5. Table of Contents. Section 1 Simple Ions. Section 2 Ionic Bonding and Salts. Section 3 Names and Formulas of Ionic Compounds

Chapter 5. Table of Contents. Section 1 Simple Ions. Section 2 Ionic Bonding and Salts. Section 3 Names and Formulas of Ionic Compounds Ions and Ionic Compounds Table of Contents Section 1 Simple Ions Section 2 Ionic Bonding and Salts Section 3 Names and Formulas of Ionic Compounds Section 1 Simple Ions Objectives Relate the electron configuration

More information

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond Preview Lesson Starter Objectives Chemical Bond Section 1 Introduction to Chemical Bonding Lesson Starter Imagine getting onto a crowded elevator. As people squeeze into the confined space, they come in

More information

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond

Chapter 6. Preview. Lesson Starter Objectives Chemical Bond Preview Lesson Starter Objectives Chemical Bond Section 1 Introduction to Chemical Bonding Lesson Starter Imagine getting onto a crowded elevator. As people squeeze into the confined space, they come in

More information

Chapter 1 Section 1- Pages 4-7: Electrons and Chemical Bonding COMBINING ATOMS THROUGH CHEMICAL BONDING

Chapter 1 Section 1- Pages 4-7: Electrons and Chemical Bonding COMBINING ATOMS THROUGH CHEMICAL BONDING Study Guide Chapter 1 and 2 Interactions of Matter Chapter 1 Section 1- Pages 4-7: Electrons and Chemical Bonding COMBINING ATOMS THROUGH CHEMICAL BONDING 1. Which of these substances is a combination

More information

Unit 3 - Part 1: Bonding. Objective - to be able to understand and name the forces that create chemical bonds.

Unit 3 - Part 1: Bonding. Objective - to be able to understand and name the forces that create chemical bonds. Unit 3 - Part 1: Bonding Objective - to be able to understand and name the forces that create chemical bonds. Bonding: Key Terms to Know 1. Chemical formula 2. Molecular formula 3. Bond Energy 4. Bond

More information

Ionic and Covalent Bonds

Ionic and Covalent Bonds Ionic and Covalent Bonds Section #2 Downloadable at: http://tekim.undip.ac.id/staf/istadi Compounds: Introduction to Bonding The noble gases - helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe),

More information

Ionic and Covalent Bonds

Ionic and Covalent Bonds Ionic and Covalent Bonds Downloaded at http://www.istadi.net Section #2 1 2 1 Compounds: Introduction to Bonding The noble gases - helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and radon

More information

Ch(3)Matter & Change. John Dalton

Ch(3)Matter & Change. John Dalton Ch(3)Matter & Change John Dalton What is Matter? Matter is anything that contains mass & volume (takes up space) Energy, such as light, heat, and sound, is NOT matter. The Particle Theory of Matter 1.

More information

Do Now. 2. Why do atoms bond with each other?

Do Now. 2. Why do atoms bond with each other? Do Now 1. How many valence electrons are transferred from the nitrogen atom to potassium in the formation of the ionic compound potassium nitride? a. 0 b. 1 c. 2 d. 3 2. Why do atoms bond with each other?

More information

Lesson Plan. 24. Describe the influence of intermolecular forces on the physical and chemical properties of covalent compounds (PS-H-C5).

Lesson Plan. 24. Describe the influence of intermolecular forces on the physical and chemical properties of covalent compounds (PS-H-C5). Lesson Plan GLE Physical Science 22. Predict the kind of bond that will form between two elements based on electronic structure and electronegativity of the elements (e.g., ionic, polar, nonpolar) (PS-H-C5).

More information

Chapter 6 Chemistry Review

Chapter 6 Chemistry Review Chapter 6 Chemistry Review Multiple Choice Identify the choice that best completes the statement or answers the question. Put the LETTER of the correct answer in the blank. 1. The electrons involved in

More information

Noble gases do not join other atoms to form compounds. They seem to be most stable just as they are.

Noble gases do not join other atoms to form compounds. They seem to be most stable just as they are. UNIT 3: TE NATURE MATTER: MLECULES There are fewer than one hundred naturally occurring elements on the earth, but there are billions of compounds made of those elements. In this unit, we will examine

More information

Chemical Bonding Ionic Bonding. Unit 1 Chapter 2

Chemical Bonding Ionic Bonding. Unit 1 Chapter 2 Chemical Bonding Ionic Bonding Unit 1 Chapter 2 Valence Electrons The electrons responsible for the chemical properties of atoms are those in the outer energy level. Valence electrons - The s and p electrons

More information

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS

CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS CHEMICAL BONDING COVALENT BONDS IONIC BONDS METALLIC BONDS Metallic Bonds How atoms are held together in solid metals. Metals hold onto their valence electrons very weakly. Think of them as positive ions

More information

SG 4 Elements and Chemical Bonds 5 States of Matter

SG 4 Elements and Chemical Bonds 5 States of Matter Name Date Period SG 4 Elements and Chemical Bonds 5 States of Matter 4.1 Electrons and Energy Levels Directions: On the line before each definition, write the term that matches it correctly. Each term

More information

Ionic, covalent chemical bonds and metallic bonds

Ionic, covalent chemical bonds and metallic bonds Ionic, covalent chemical bonds and metallic bonds The type of bond formed depends on the electronegativity of the element, that is, the attraction the element has for an electron, and the fact that the

More information

Bonding Unit III

Bonding Unit III Bonding Unit III I. Bond A. What is a bond? Attraction of an electron by two nuclei B. What electrons are involved in bonding Valence electrons Electrons in the outermost energy level Represented by an

More information

Chapter #3 Chemical Bonding

Chapter #3 Chemical Bonding Chapter #3 Chemical Bonding Valence Electrons electrons in the last energy level of an atom. Lewis dot symbols Consists of the symbol of an element and one dot for each valence electron in the atom of

More information

1. Demonstrate knowledge of the three subatomic particles, their properties, and their location within the atom.

1. Demonstrate knowledge of the three subatomic particles, their properties, and their location within the atom. 1. Demonstrate knowledge of the three subatomic particles, their properties, and their location within the atom. 2. Define and give examples of ionic bonding (e.g., metal and non metal) and covalent bonding

More information

IONIC BONDS & IONIC FORMULAS

IONIC BONDS & IONIC FORMULAS IONIC BONDS & IONIC FORMULAS BONDING CHEMICAL BONDING Chemical bond an attraction between 2 atoms involving their valence electrons Ionic bond -chemical bond resulting from the electrostatic attraction

More information

Elements and Chemical Bonds. Chapter 11

Elements and Chemical Bonds. Chapter 11 Elements and Chemical Bonds Chapter 11 Essential Question How does understanding periodic trends allow us to predict properties of different elements? Vocabulary Ionic bond Covalent bond Compounds, Chemical

More information

National 5 Chemistry

National 5 Chemistry St Ninian s High School Chemistry Department National 5 Chemistry Unit 1: Chemical Changes & Structure Section 3: Bonding & Properties of Substances Summary Notes Name Learning Outcomes After completing

More information

CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM)

CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM) CHEMICAL BONDING [No one wants to be alone] The Marrying of Atoms (AIM) Associate Degree in Engineering Prepared by M. J. McNeil, MPhil. Department of Pure and Applied Sciences Portmore Community College

More information

Crystalline Solids. Amorphous Solids

Crystalline Solids. Amorphous Solids Crystal Structure Crystalline Solids Possess rigid and long-range order; atoms, molecules, or ions occupy specific positions the tendency is to maximize attractive forces Amorphous Solids lack long-range

More information

Bonding. Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms

Bonding. Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms Chemical Bonding Bonding Chemical Bond: mutual electrical attraction between nuclei and valence electrons of different atoms Type of bond depends on electron configuration and electronegativity Why do

More information

Octet rule: atoms tend to gain, lose or share electrons so as to have eight electrons in their outer electron shell

Octet rule: atoms tend to gain, lose or share electrons so as to have eight electrons in their outer electron shell Forma&on of Ions Forma&on of Ions Elements tend to lose or gain electrons to fill their outermost energy levels with eight electrons depending on their electron affinity As a general rule, metals will

More information

[2]... [1]

[2]... [1] 1 Carbon and silicon are elements in Group IV. Both elements have macromolecular structures. (a) Diamond and graphite are two forms of the element carbon. (i) Explain why diamond is a very hard substance....

More information

Periodic Table & Families

Periodic Table & Families Periodic Table & Families Mendeleev s Table (1871) While it was the first periodic table, Mendeleev had very different elements, such as the very reactive potassium and the very stable copper, in the same

More information

Also see lattices on page 177 of text.

Also see lattices on page 177 of text. Chemistry Ch 6 sect 3 «F_Name» «L_Name» Period «Per» «num» 6-3-1 Compare and contrast a chemical formula for a molecular compound with one for an ionic compound. Bond: Attraction between 2 or more atoms

More information

Chapter 3-1. proton positive nucleus 1 amu neutron zero nucleus 1 amu electron negative on energy levels around the nucleus very small

Chapter 3-1. proton positive nucleus 1 amu neutron zero nucleus 1 amu electron negative on energy levels around the nucleus very small Chapter 3-1 Sub-atomic Charge Location Mass Particle proton positive nucleus 1 amu neutron zero nucleus 1 amu electron negative on energy levels around the nucleus very small The most mass of the atom

More information

alloys (p. 203) chemical formula (p. 195) coordination number (p. 198) electron dot structure (p. 188) formula unit (p. 195) halide ion (p.

alloys (p. 203) chemical formula (p. 195) coordination number (p. 198) electron dot structure (p. 188) formula unit (p. 195) halide ion (p. 7 Study Guide 7 Study Guide Study Tip Write and answer questions about the content of the chapter. For Chapter 7, you might ask the following questions, which require you to summarize the information contained

More information

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds Chapter 8 : Covalent Bonding Section 8.1: Molecular Compounds What is a molecule? A molecular compound? A molecule is a neutral group of atoms joined together by covalent bonds A molecular compound is

More information

Covalent Bonding H 2. Using Lewis-dot models, show how H2O molecules are covalently bonded in the box below.

Covalent Bonding H 2. Using Lewis-dot models, show how H2O molecules are covalently bonded in the box below. Covalent Bonding COVALENT BONDS occur when atoms electrons. When atoms combine through the sharing of electrons, are formed. What is a common example of a covalently bonded molecule? When hydrogen atoms

More information

Na Cl Wants to lose ONE electron! Na Cl Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding.

Na Cl Wants to lose ONE electron! Na Cl Ionic Bond TRANSFER of electrons between atoms. Ionic Bonding. Ionic Bonding. BONDING Chemical Bond Attraction that holds atoms together Types include IONIC, METALLIC, or COVALENT Differences in electronegativity determine the bond type Ionic Bond TRANSFER of electrons between atoms

More information

CHEMICAL BONDS How can atoms form a molecule? Let s watch the video: Bond types CHEMICAL BONDING Ionic bonding

CHEMICAL BONDS How can atoms form a molecule? Let s watch the video: Bond types CHEMICAL BONDING Ionic bonding CHEMICAL BONDS How can atoms form a molecule? Let s watch the video: Bond types http://www.kentchemistry.com/links/bonding/bondingflashes/bond_types.swf CHEMICAL BONDING In 1916, the American chemist Gilbert

More information

Solid- has definite shape and volume and is not compressible. Liquid- (fluid) Flows; it has a fixed volume, and takes the shape of its container.

Solid- has definite shape and volume and is not compressible. Liquid- (fluid) Flows; it has a fixed volume, and takes the shape of its container. 1 Chemistry 2. Matter is anything that occupies space and has mass. Examples: Air Oxygen Table Chair Water. Find mass using Find the volume of Find the volume of a a balance a liquid and an irregular regular

More information

Chemistry B11 Chapter 3 Atoms

Chemistry B11 Chapter 3 Atoms Chapter 3 Atoms Element: is a substance that consists of identical atoms (hydrogen, oxygen, and Iron). 116 elements are known (88 occur in nature and chemist have made the others in the lab). Compound:

More information

Valence electrons are the electrons in the highest occupied energy level of an element s atoms.

Valence electrons are the electrons in the highest occupied energy level of an element s atoms. 7.1 Periodic Trends > Valence Electrons Valence electrons are the electrons in the highest occupied energy level of an element s atoms. 1 of 31 Periodic Trends > 2 of 31 Periodic Trends > 3 of 31 7.1 Periodic

More information

UNIT 2 ATOMIC STRUCTURE AND THE PERIODIC TABLE

UNIT 2 ATOMIC STRUCTURE AND THE PERIODIC TABLE UNIT 2 ATOMIC STRUCTURE AND THE PERIODIC TABLE PHYSICAL SCIENCE MRS. VALENTINE OBJECTIVE: 2.1 ATOMIC STRUCTURE AND MODELS I will be able to label/draw an atom. I will understand the progression of the

More information

Chapter 7 & 8 Nomenclature Notes/Study Guide. Properties of ionic bonds & compounds. Section 7-2

Chapter 7 & 8 Nomenclature Notes/Study Guide. Properties of ionic bonds & compounds. Section 7-2 Objectives Properties of ionic bonds & compounds Section 72 Define chemical bond. Describe formation of ionic bonds structure of ionic compounds. Generalize of ionic bonds based on Main Idea of ionic compounds

More information

Chemistry Review Unit 4 Chemical Bonding

Chemistry Review Unit 4 Chemical Bonding Chemistry Review The Nature of Chemical Bonding, Directional Nature of Covalent Bonds, Intermolecular Forces Bonding 1. Chemical compounds are formed when atoms are bonded together. Breaking a chemical

More information

Unit 3: Chemical Bonding. Section 1: Bond Types and Properties

Unit 3: Chemical Bonding. Section 1: Bond Types and Properties Unit 3: Chemical Bonding Section 1: Bond Types and Properties Chemical Bonds Chemical Bond force that holds atoms or ions together to make a molecule or other chemical structure Molecule - two or more

More information

UNIT 8: CHEMICAL FORMULAS AND NOMENCLATURE CHEMISTRY 215, DUFFEY

UNIT 8: CHEMICAL FORMULAS AND NOMENCLATURE CHEMISTRY 215, DUFFEY UNIT 8: CHEMICAL FORMULAS AND NOMENCLATURE CHEMISTRY 215, DUFFEY BIG IDEAS o 7.1 Ion formation - o 7.2 Ionic bonding - o 7.4 Metallic bonding - o 8.1 & 8.2 Covalent bonding - CHEMICAL BONDING o The purpose

More information

7.1 Ions > Chapter 7 Ionic and Metallic Bonding. 7.1 Ions. 7.2 Ionic Bonds and Ionic Compounds 7.3 Bonding in Metals

7.1 Ions > Chapter 7 Ionic and Metallic Bonding. 7.1 Ions. 7.2 Ionic Bonds and Ionic Compounds 7.3 Bonding in Metals Chapter 7 Ionic and Metallic Bonding 7.1 Ions 7.2 Ionic Bonds and Ionic Compounds 7.3 Bonding in Metals 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU What

More information

Ionic and Covalent Bonding

Ionic and Covalent Bonding 1. Define the following terms: a) valence electrons Ionic and Covalent Bonding the electrons in the highest occupied energy level always electrons in the s and p orbitals maximum of 8 valence electrons

More information