2.7 The periodic table groups 2 and 7

Size: px
Start display at page:

Download "2.7 The periodic table groups 2 and 7"

Transcription

1 2.7 The periodic table groups 2 and 7 Students will be assessed on their ability to: 1 Properties down group 2 a. explain the trend in the first ionization energy down group 2 b. recall the reaction of the elements in group 2 with oxygen, chlorine and water c. recall the reactions of the oxides of group 2 elements with water and dilute acid, and their hydroxides with dilute acid d. recall the trends in solubility of the hydroxides and sulfates of group 2 elements e. recall the trends in thermal stability of the nitrates and the carbonates of the elements in groups 1 and 2 and explain these in terms of size and charge of the cations involved f. recall the characteristic flame colours formed by group 1 and 2 compounds and explain their origin in terms of electron transitions g. describe and carry out the following: i. experiments to study the thermal decomposition of group 1 and 2 nitrates and carbonates ii. flame tests on compounds of group 1 and 2 iii. simple acid-base titrations using a range of indicators, acids and alkalis, to calculate solution concentrations in g dm -3 and mol dm -3, eg measuring the residual alkali present after skinning fruit with potassium hydroxide h. demonstrate an understanding of how to minimise the sources of measurement uncertainty in volumetric analysis and estimate the overall uncertainty in the calculated result.

2 a. explain the trend in the first ionization energy down group 2

3 Explanation of this trend Definition: The first ionisation energy is the enthalpy change when one mole of gaseous atoms loses one mole of electrons to form one mole of gaseous mono-positive ions: Going down Group 2: Nuclear charge increases. The radius of the atom increases, so the distance between the nucleus and the outer electron increases. There are more filled energy levels between the nucleus and the outer electron these shield the outer electron from the attraction of the nucleus. The first factor is not as important as the other two, therefore the force of attraction between the nucleus and outer electron is reduced, and less energy is needed to remove the outer electron.

4 With regard to successive IEs, the big jump here is between IE(2) and IE(3). Why? IEs (kjmol-1) With regard to successive IEs, the big jump here is between IE(2) and IE(3). Be 1st nd rd Why? Mg Ca Sr Ba

5 Reaction of Groups 2 #Except Be, whose oxide is amphoteric *The energy required to overcome IEs is recovered in the EAs and the lattice enthalpies. The compounds formed are almost completely ionic, except with Be. The ions formed correspond to the +2 oxidation state, simply because of energetics more stable compounds are formed with a larger net energy release*. With O2 Group 2 (except Ba) react to form the expected simple, basic oxide.# The colour of the flame on combustion is dealt with later. 2M (s) + O2 (g) 2MO (s) White solid b. recall the reaction of the elements in group 2 with oxygen, chlorine and water

6 Ba 2Ba (s) + O2 (g) solid 2BaO (s) White Ba (s) + O2 (g) BaO2 (s) White solid Both the simple oxide and the peroxide are formed.

7 REACTIONS OF THE GROUP 2 ELEMENTS WITH WATER Beryllium has no reaction with water or steam even at red heat. Magnesium burns in steam to produce magnesium oxide and hydrogen. Very clean magnesium has a very slight reaction with cold water. The reaction soon stops because the magnesium hydroxide formed is almost insoluble in water and forms a barrier on the magnesium preventing further reaction. Note: As a general rule, if a metal reacts with cold water, you get the metal hydroxide. If it reacts with steam, the metal oxide is formed. This is because the metal hydroxides thermally decompose (split up on heating) to give the oxide and water.

8 Calcium, strontium and barium These all react with cold water with increasing vigour to give the metal hydroxide and hydrogen. Strontium and barium have reactivities similar to lithium in Group 1 of the Periodic Table. The equation for the reactions of any of these metals would be: Summary of the trend in reactivity The reactions become easier as the energy needed to form positive ions falls. This is mainly due to a decrease in ionisation energy as you go down the Group. This leads to lower activation energies, and therefore faster reactions.

9 Reactions with Cl2 All react on heating to form predominantly ionic chlorides (except Be): Ca(s) + Cl2(g) CaCl2(s) Na(s) + Cl2(g) NaCl(s) MgCl2 shows some covalent character, due to the high charge density of the Mg2+ ion. BeCl2 is covalent, and forms a solid polymer via dative covalent bonds to give the Be an octet of electrons:

10 Solubility of Group 2 Sulphates and Hydroxides Sulphates (and carbonates) become less soluble as you go down the Group; hydroxides become more soluble. Be Mg Ca Sr Ba Sulphates More soluble Hydroxides Easy to remember, as you know that BaSO4 is a white ppt. used to identify sulphates, NB1. The ph of magnesium hydroxide NB2. Limewater d. recall the trends in solubility of the hydroxides and sulfates of group 2 elements

11 Thermal stability of the s-block carbonates and nitrates You will need to know: - the trends - the reactions - the explanation In all cases, for Gp1 or Gp2 carbonates and nitrates, the thermal stability increases down the group as the ionic radius of the cation increases, and so its polarising power decreases. For the same reason, the thermal stability decreases from Gp1 to Gp2 across a period. The carbonates of Li, and the Gp2 metals decompose according to the general equation: MCO3 MO (s) + CO2 (g) You try the Lithium eqn. The other Gp1 metal carbonates (and barium carbonate) do not decompose at bunsen temperatures. e. recall the trends in thermal stability of the nitrates and the carbonates of the elements in groups 1 and 2 and explain these in terms of size and charge of the cations involved

12 The same pattern is observed for the s-block nitrates. The nitrates of Li, and the Gp2 metals decompose according to the general equation: 2M(NO3)2 2MO (s) + 4NO2 (g) + O2(g) Brown gas is evolved Eg Again, you try the Lithium eqn. The other Gp1 metal nitrates decompose to form the nitrites: Eg 2MNO3(s) 2MNO2(s) + O2(g) The nitrates are white solids, the nitrites yellow.

13 Explanation of the thermal stability trends One view is that thermal stability increases as polarising power of the cation decreases. Basically, large polarisable anions (CO3 2-, NO3 - ) will be more stable with nonpolarising cations, but small cations with a large polarising power (high charge density) will pull the oxygen in the anion towards them, thus favouring the decomposition of the anion to form the oxide.

14 The flame test The distinctive colours that appear when we heat metals or their compounds can be used to identify them. You need to learn them metal barium calcium strontium copper potassium sodium lithium flame colour light (apple) green brick red crimson red blue/green lilac bright orange carmine red f. recall the characteristic flame colours formed by group 1 and 2 compounds and explain their origin in terms of electron transitions

15 The energy from the bunsen flame causes electrons to jump up to higher energy levels. When they return to their original ground state, they release a certain characteristic amount of energy.

16

17 Observation can be qualitative or via a spectrometer. The latter method gives a series of lines of frequencies that correspond to the differences in the energy levels for a particular atom (ion). See p180. These are called line spectra. Sodium and sodium compounds emit almost monochromatic light used for distinguishing optical isomers. Other uses: Analysing body fluids, astronomy. Expt: Flame tests P Questions

18

19 g. describe and carry out the following: i. experiments to study the thermal decomposition of group 1 and 2 nitrates and carbonates ii. flame tests on compounds of group 1 and 2 iii. simple acid-base titrations using a range of indicators, acids and alkalis, to calculate solution concentrations in g dm -3 and mol dm -3, eg measuring the residual alkali present after skinning fruit with potassium hydroxide h. demonstrate an understanding of how to minimise the sources of measurement uncertainty in volumetric analysis and estimate the overall uncertainty in the calculated result.

20 Group 7: The Halogens Physical properties Not surprisingly, with the addition of an extra shell, the atomic radii increase down the group. The ionic radii are much larger than the atomic radii due to the increased repulsion forces of the extra electron in the now complete valence shell. Atomic and ionic radii The only intermolecular forces are weak dispersion forces. These increase as the halogen molecules increase in size and the greater number of electrons make the momentary dipoles more significant. What do the halogens look like? What do they look like dissolved in water and organic solvents?

21 Inorganic chemistry of group 7 (limited to chlorine, bromine and iodine) a. recall the characteristic physical properties of the elements limited to the appearance of solutions of the elements in water and hydrocarbon solvents b. describe and carry out the following chemical reactions of halogens: i. oxidation reactions with metal and non-metallic elements and ions such as iron(ii) and iron(iii) ions in solution ii. disproportionation reactions with cold and hot alkali, eg hot potassium hydroxide with iodine to produce potassium iodate(v) c. carry out an iodine/thiosulfate titration, including calculation of the results and evaluation of the procedures involved, eg determination of the purity of potassium iodate(v) by liberation of iodine and titration with standard sodium thiosulfate solution d. describe and carry out the following reactions: i. potassium halides with concentrated sulfuric acid, halogens and silver nitrate solution ii. silver halides with sunlight and their solubilities in aqueous ammonia solution iii. hydrogen halides with ammonia and with water (to produce acids) e. make predictions about fluorine and astatine and their compounds based on the trends in the physical and chemical properties of halogens.

22 Ionisation Energy Look at your table of the halogens. Sketch a graph of the first ionisation energies. Explain the pattern. On your graph, predict where the graphs for IE(2) and IE(3) would be. On your graph, predict where the graph for Group 0 would be.

23 Tests for Cl 2, Br 2 and I 2 *used to extract bromine from sea water. Cl2 tests make use of the oxidising power of chlorine Bleaches damp litmus paper (damp blue litmus paper momentarily turns red before white). Oxidises Br- and I- to Br2* and I2 respectively. Write the observations and the colour changes for the latter of these tests. More distinctive colours are seen if an organic solvent is added.

24 Br2 Bleaches damp litmus paper, but slowly. Oxidises I - (aq) I2 No change with litmus paper Blue/black colour with starch solution Purple in organic solvents (in the absence of O2) Extra: Amylose in starch is responsible for the formation of a deep blue color in the presence of iodine. The iodine molecule slips inside of the amylose coil. Iodine - KI Reagent: Iodine is not very soluble in water, therefore the iodine reagent is made by dissolving iodine in water in the presence of potassium iodide. This makes a linear triiodide ion complex which is soluble. The triiodide ion ion slips into the coil of the starch causing an intense blue-black colour.

25 H-X The hydrogen halides all are c-less gases. give misty fumes in moist air (why?) are very water soluble (large enthalpy of hydration of the ions compensates for the energy required to break the H-X bond). form strong acids with water*, stronger as the H-X bond becomes weaker (Hydroiodic acid, however, is prone to oxidation). HX(g) + H2O(l) H3O+(aq) + X-(aq) *except H-F

26 H-F again the exception Forms a weak acid with water due to the greater bond enthalpy HX(g) + H2O(l) H3O + (aq) + X - (aq) and due to the hydrogen bonds formed between the water molecules and the H-F molecules, and between dissociated fluoride ions and H-F molecules: H-F(aq) + F - (aq) [F H-F] - (aq) The production of H3O + (aq) is inhibited, whichever way you look at it. l

27 Testing for aqueous halide ions STAGE 1 The solution is acidified by adding dilute nitric acid (nitric acid reacts with, and removes, other ions such as carbonate ions that might also give a confusing precipitate with silver nitrate). 2. Silver nitrate solution is then added to give: ion present F - Cl - Br - I - observation no precipitate white precipitate very pale cream precipitate very pale yellow precipitate

28 Ionic Equations: STAGE 2: Confirmation Add aqueous ammonia solution: original precipitate AgCl AgBr AgI observation precipitate dissolves to give a colourless solution precipitate is almost unchanged using dilute ammonia solution, but dissolves in concentrated ammonia solution (or in XS dilute NH3(aq)) to give a colourless solution precipitate is insoluble in ammonia solution of any concentration

29 Explanation The silver halides are only very slightly soluble (see p69). In aqueous solution, rather than the above equations showing precipitation, the following equilibrium is set up: Ag + (aq) + Cl - (aq) AgCl(s) The addition of NH 3 (aq) results in the following equilibrium: By Le Chatelier, if we remove Ag + ions from solution, the top equilibrium will shift to the left and the ppt. Redissolves. This happens readily with chloride ions, less with bromide ions and not at all with iodide ions. Reactions of the silver halides with sunlight...investigate!!

30 Halide salts with concentrated sulphuric acid An alternative test for halide ions is adding concentrated sulphuric acid to the solid salt. You see: ion present F - Cl - Br - observation steamy acidic fumes (of HF) steamy acidic fumes (of HCl) steamy acidic fumes (of HBr) contaminated with brown bromine vapour I - Some steamy fumes (of HI), but lots of purple iodine vapour (plus various red colours in the tube) The concentrated sulphuric acid can act both as an acid and as an oxidising agent, depending on how easy it is to oxidise the halide ion. With all of the salts, a proton is donated to the halide ion to form the hydrogen halide gas: NaCl(s) + H2SO4(l) NaHSO4(s) + HCl(g)

31 With fluorides and chlorides the reaction stops here, but bromides and iodides are better reducing agents and redox takes place: With Br- Overall ionic eqn:

32 With I - The sulphuric acid is reduced in 3 different ways. The iodide ions are powerful enough reducing agents to reduce it: first to sulphur dioxide (sulphur oxidation state = +4) then to sulphur itself (oxidation state = 0) and all the way to hydrogen sulphide (sulphur oxidation state = -2) Bad eggs aroma Try the other reduction 1/2 eqns and try to deduce the overall ionic equations for the 3 reactions. The brown colour is due to the formation of the tri-iodide ion: I - + I2 I3 -

33 Reactions of the Hydrogen Halides: with Ammonia: with Water

34 disproportionation reactions with cold and hot alkali, eg hot potassium hydroxide with iodine to produce potassium iodate(v) Redox and Group VII: Positive oxidation states of the halides Although the syllabus only mentions chlorate(i) and chlorate(v), it is possible that a question could refer to the equivalent ions of bromine and iodine. Give the oxidation states of chlorine in its common forms and in the above 2 ions: Everyday bleach sodium chlorate(i) is prepared by reacting chlorine water with sodium hydroxide solution: 2NaOH(aq) + Cl2(aq) NaOCl(aq) + NaCl(aq) + H2O(l) Write the ionic eqn and indicate the oxidation states of the chlorine. When the same species in a chemical reaction is both oxidised and reduced, we say that disproportionation has taken place.

35 With chlorine and hot concentrated NaOH solution: 3Cl2(aq) + 6NaOH(aq) 5NaCl(aq) + NaClO3(aq) + 3H2O(l) Ionic eqn? Oxidation states? Chlorate(I) ions on heating in solution will disproportionate: 3 OCl - (aq) ClO 3- (aq) + 2Cl (aq) Full eqn? Show the oxidation states. Full eqn? Show the oxidation states. Chlorine with water ( chlorine water ): Cl 2 (g) + H 2 O HCl(aq) + HClO(aq) Write the ionic equation and consider the effects of adding acid or alkali to the mixture.

36 Redox and Group VII: Iodine with Sodium Thiosulphate c. carry out an iodine/thiosulfate titration, including calculation of the results and evaluation of the procedures involved, eg determination of the purity of potassium iodate(v) by liberation of iodine and titration with standard sodium thiosulfate solution

Fluorine Gas. Chlorine Gas. Bromine Liquid. Iodine Solid

Fluorine Gas. Chlorine Gas. Bromine Liquid. Iodine Solid Halogens Fluorine (F 2 ): very pale yellow gas. It is highly reactive Chlorine : ( ) greenish, reactive gas, poisonous in high concentrations Bromine ( ) : red liquid, that gives off dense brown/orange

More information

For the element X in the ionic compound MX, explain the meaning of the term oxidation state.

For the element X in the ionic compound MX, explain the meaning of the term oxidation state. 1. (a) By referring to electrons, explain the meaning of the term oxidising agent.... For the element X in the ionic compound MX, explain the meaning of the term oxidation state.... (c) Complete the table

More information

2.3 Group 7 The Halogens

2.3 Group 7 The Halogens 2.3 Group 7 The Halogens Physical properties of the Halogens: The melting and boiling point of the halogens increases with atomic number due to increased van der Waals (from increased number of electrons).

More information

CHEM 122 Unit 1 Introduction to Group Chemistry

CHEM 122 Unit 1 Introduction to Group Chemistry DEPARTMENT OF CHEMISTRY FOURAH BAY COLLEGE UNIVERSITY OF SIERRA LEONE CHEM 122 Unit 1 Introduction to Group Chemistry CREDIT HOURS 2.0 MINIMUM REQUIREMENTS C6 in WASSCE Chemistry or equivalent Pass in

More information

(09) WMP/Jun10/CHEM1

(09) WMP/Jun10/CHEM1 Group 2 and Group 7 9 5 The alkane butane is used as a fuel. 5 (a) (i) Write an equation for the complete combustion of butane. 5 (a) (ii) State a condition which may cause carbon to be formed as a product

More information

4 Inorganic chemistry and the periodic table Answers to Exam practice questions

4 Inorganic chemistry and the periodic table Answers to Exam practice questions Pages 116 118 Exam practice questions 1 a) Atomic radius increases down the group [1] because of the increasing number of inner full shells of electrons. [1] The more full shells the larger the atom. [1]

More information

FACTFILE: GCE CHEMISTRY

FACTFILE: GCE CHEMISTRY FACTFILE: GCE CHEMISTRY HALOGENS Halogens Students should be able to: 1.8.1 recall the colours of the elements and explain the trends within the Group, limited to physical state at room temperature, melting

More information

9.3 Group VII. Content

9.3 Group VII. Content 9.3 Group VII Content 9.3.1 The similarities and trends in the physical and chemical properties of chlorine, bromine and iodine (i) Characteristic physical properties (ii) The relative reactivity of the

More information

The Periodic Table consists of blocks of elements

The Periodic Table consists of blocks of elements The Periodic Table consists of blocks of elements s block d block p block There is a clear link between the Periodic Table and the electronic configuration of an element 1s 2s 2p 3s 3p 4s 3d 4p 1s ATOMIC

More information

4. Inorganic Chemistry and the Periodic Table 4A: Group 2

4. Inorganic Chemistry and the Periodic Table 4A: Group 2 4. Inorganic Chemistry and the Periodic Table 4A: Group 2 Atomic radius Atomic radius increases down the Group. As one goes down the group, the atoms have more shells of electrons making the atom bigger.

More information

Summary Term 2 Chemistry STPM Prepared by Crystal Goh AI Tuition Centre

Summary Term 2 Chemistry STPM Prepared by Crystal Goh AI Tuition Centre Summary Term Chemistry STPM Prepared by Crystal Goh AI Tuition Centre 017713136 Period 3 elements property Na Mg Al Si P (P 4 ) Type of element Metal Metalloid Non-metal Structure Giant metallic lattice

More information

TOPIC 11 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 PHYSICAL PROPERTIES OF THE HALOGENS

TOPIC 11 ANSWERS & MARK SCHEMES QUESTIONSHEET 1 PHYSICAL PROPERTIES OF THE HALOGENS QUESTIONSHEET 1 PHYSICAL PROPERTIES OF THE HALOGENS a) (i) F 2 gas (½) yellow (½) Cl 2 gas (½) green / yellow-green (½) Br 2 liquid (½) dark red / brown (½) I 2 solid (½) violet-black / black (½) (ii)

More information

3.2.5 Group VII. Trends in oxidising abilities. 167 minutes. 167 marks. Page 1 of 19

3.2.5 Group VII. Trends in oxidising abilities. 167 minutes. 167 marks. Page 1 of 19 3..5 Group VII Trends in oxidising abilities 167 minutes 167 marks Page 1 of 19 Q1. (a) Samples of solid sodium fluoride, sodium chloride, sodium bromide and sodium iodide are each warmed separately with

More information

3.2.5 Group VII. Trends in reducing abilities. 222 minutes. 218 marks. Page 1 of 21

3.2.5 Group VII. Trends in reducing abilities. 222 minutes. 218 marks. Page 1 of 21 3..5 Group VII Trends in reducing abilities minutes 18 marks Page 1 of 1 Q1. (a) Samples of solid sodium fluoride, sodium chloride, sodium bromide and sodium iodide are each warmed separately with concentrated

More information

10. Group 2. N Goalby chemrevise.org. Group 2 reactions. Reactions with oxygen. Reactions with water.

10. Group 2. N Goalby chemrevise.org. Group 2 reactions. Reactions with oxygen. Reactions with water. 10. Group 2 Atomic radius Atomic radius increases down the Group. As one goes down the group, the atoms have more shells of electrons making the atom bigger. Melting points Down the group the melting points

More information

AS Paper 1 Group VII: The Halogens

AS Paper 1 Group VII: The Halogens AS Paper 1 Group VII: The Halogens South Axholme School Q1.Which one of the following statements is true? A B C D Bromine liberates iodine from aqueous sodium iodide. Chlorine liberates fluorine from aqueous

More information

sodium carbonate. sodium hydrogencarbonate. sodium nitrate. D sodium sulfate. (Total for Question 9 = mark)

sodium carbonate. sodium hydrogencarbonate. sodium nitrate. D sodium sulfate. (Total for Question 9 = mark) 1 ompound X is an anhydrous, white solid which decomposes on heating to form a white solid residue, a colourless gas, and a colourless vapour which condenses to a colourless liquid. ompound X is sodium

More information

Answer Marks Guidance. therefore there is weaker attraction by nucleus on bonding pair of electrons in the covalent bond

Answer Marks Guidance. therefore there is weaker attraction by nucleus on bonding pair of electrons in the covalent bond 0 Group 7(7), the halogens Question number (a) Decreases Answer Marks Guidance number of levels increases or the shielding increases or the atomic size increases Learn the trend since you will lose the

More information

Elements in the Periodic Table show a periodic trend in atomic radius. In your answer you should use appropriate technical terms, spelled correctly.

Elements in the Periodic Table show a periodic trend in atomic radius. In your answer you should use appropriate technical terms, spelled correctly. 1 The Periodic Table is arranged in periods and groups (a) Elements in the Periodic Table show a periodic trend in atomic radius State and explain the trend in atomic radius from Li to F In your answer

More information

Content. Halogen vs. Halide. Halogen Family. 2 Cl - Cl e - l e - 2 l - p-block ELEMENTS. 9.1 The Halogens 9.2 Group IV Elements

Content. Halogen vs. Halide. Halogen Family. 2 Cl - Cl e - l e - 2 l - p-block ELEMENTS. 9.1 The Halogens 9.2 Group IV Elements Content p-block ELEMENTS 9.1 The Halogens 9.2 Group IV Elements Halogen Family Halogen vs. Halide The entire family consists of the Elements, X 2 Fluorine Chlorine Bromine CHLORINE Iodine their Compounds

More information

Chem!stry. Assignment on Redox

Chem!stry. Assignment on Redox Chem!stry Name: ( ) Class: Date: / / Assignment on Redox Question 1: Which one of the following elements is the most powerful reducing agent? A Aluminium B Copper C Lead D Potassium Question 2: Which of

More information

I regard section 3.1 as so basic and thus am not giving you notes on it.

I regard section 3.1 as so basic and thus am not giving you notes on it. Section 3 :periodicity : review notes I regard section 3.1 as so basic and thus am not giving you notes on it. 3.2 atomic radius: half the distance between the nuclei of 2 covalently bonded atoms. Note

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *9763634822* CHEMISTRY 9701/36 Paper 3 Advanced Practical Skills 2 October/November 2014 2 hours Candidates

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level CHEMISTRY 9701/31 Paper 3 Advanced Practical Skills 1 May/June 2014 2 hours Candidates answer on the

More information

PRACTICAL QUESTIONS TEST TUBE REACTIONS 4&11 Questions. Dr Chris Clay

PRACTICAL QUESTIONS TEST TUBE REACTIONS 4&11 Questions. Dr Chris Clay PRACTICAL QUESTIONS TEST TUBE REACTIONS 4&11 Questions Dr Chris Clay http://drclays-alevelchemistry.com/ Q1.(a) A sample of solid chromium(iii) hydroxide displays amphoteric character when treated separately

More information

Acid, Bases and Salts (IGCSE Chemistry Syllabus )

Acid, Bases and Salts (IGCSE Chemistry Syllabus ) Acid, Bases and Salts (IGCSE Chemistry Syllabus 2016-2018) Acid o A compound when dissolved in water produces hydrogen ions (H + ) ; proton (H + ) donor o It turns blue damp litmus paper to red o ph 1

More information

Chemistry Assessment Unit AS 1

Chemistry Assessment Unit AS 1 Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education January 2008 Chemistry Assessment Unit AS 1 assessing Module 1: General Chemistry ASC11 [ASC11] THURSDAY 17 JANUARY,

More information

flame test acidified silver nitrate solution added

flame test acidified silver nitrate solution added 1 The results of two tests on solid X are shown. test aqueous sodium hydroxide added acidified silver nitrate added observation green precipitate formed yellow precipitate formed What is X? copper(ii)

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level *4827396477* CHEMISTRY 9701/35 Advanced Practical Skills October/November

More information

Identification of ions and gases

Identification of ions and gases For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Identification Of ions nd Gases Question Paper Level Subject Exam oard Topic Sub-Topic ooklet O Level hemistry ambridge International

More information

CIE Chemistry A-Level Practicals for Papers 3 and 5

CIE Chemistry A-Level Practicals for Papers 3 and 5 CIE Chemistry A-Level Practicals for Papers 3 and 5 Ion Identification Group 2 Ions Identification Example -3 1. Place 10 drops of 0.1 mol dm barium chloride in a clean test tube. Must be clean to ensure

More information

TIME 1 hour 30 minutes, plus your additional time allowance.

TIME 1 hour 30 minutes, plus your additional time allowance. Centre Number 71 Candidate Number ADVANCED SUBSIDIARY (AS) General Certificate of Education 2012 Chemistry Assessment Unit AS 1 assessing Basic Concepts in Physical and Inorganic Chemistry [AC112] WEDNESDAY

More information

F321: Atoms, Bonds and Groups Group 7

F321: Atoms, Bonds and Groups Group 7 F321: Atoms, Bonds and Groups Group 7 93 Marks 1. Chlorine and bromine are elements in Group 7 of the Periodic Table. Chlorine is used in water treatment. State one advantage and one disadvantage of using

More information

UNIT F321: ATOMS, BONDS AND GROUPS REVISION CHECKLIST. Miscellaneous Questions

UNIT F321: ATOMS, BONDS AND GROUPS REVISION CHECKLIST. Miscellaneous Questions UNIT F321: ATOMS, BONDS AND GROUPS REVISION CHECKLIST Miscellaneous Questions 1.1 Module 1: Atoms and Reactions 1.1.1 Atoms Candidates should be able to: Atomic structure (a) describe protons, neutrons

More information

WJEC England GCSE Chemistry. Topic 4: The periodic table and properties of elements. Notes. (Content in bold is for Higher Tier only)

WJEC England GCSE Chemistry. Topic 4: The periodic table and properties of elements. Notes. (Content in bold is for Higher Tier only) WJEC England GCSE Chemistry Topic 4: The periodic table and properties of elements Notes (Content in bold is for Higher Tier only) Reactions of elements Elements react in order to gain a stable arrangement

More information

... [1] (ii) Draw a dot-and-cross diagram to show the bonding in NH 3

... [1] (ii) Draw a dot-and-cross diagram to show the bonding in NH 3 1 Chemists have developed models for bonding and structure which are used to explain different properties. (a) Ammonia, NH 3, is a covalent compound. Explain what is meant by a covalent bond. Draw a dot-and-cross

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03 UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03 Paper 3 Practical Test Candidates answer on the Question

More information

AQA Chemistry A-level

AQA Chemistry A-level AQA Chemistry A-level Required Practical 4 Carry out simple test-tube reactions to identify cations and anions + Cations: Group 2 ions, NH 4 Test for group 2 ions: sodium hydroxide -3 1. Place 10 drops

More information

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4 APPARATUS Page 2 APPARATUS Page 3 Reducing Copper(III) Oxide to Copper EXPERIMENTS Page 4 Testing products of combustion: EXPERIMENTS Showing that oxygen and water is needed for rusting iron Page 5 Showing

More information

Chemical Families. Group 0 The Noble Gases

Chemical Families. Group 0 The Noble Gases Chemical Families Elements in the same Group have the same number of outer shell electrons. The same number of outer shell electrons means similar chemical properties so each Group is a chemical family.

More information

GCE. Chemistry. Support Material. Acceptable Colour Changes and Observations. Revised GCE

GCE. Chemistry. Support Material. Acceptable Colour Changes and Observations. Revised GCE GCE Revised GCE Support Material Chemistry Acceptable Colour Changes and Observations AS and A2 Effective from September 2016 N.B. It should be noted that the exact colour of a solution often depends

More information

1 Two white powders, A and B, known to be Group 2 carbonates, are investigated.

1 Two white powders, A and B, known to be Group 2 carbonates, are investigated. 1 Two white powders, A and B, known to be Group 2 carbonates, are investigated. (a) (i) The presence of the carbonate ion is usually confirmed using a simple test carried out in two stages at room temperature.

More information

sodium ions have a larger charge density than magnesium ions. the repulsion between the ions in sodium is less than in magnesium.

sodium ions have a larger charge density than magnesium ions. the repulsion between the ions in sodium is less than in magnesium. 1 The melting temperature of sodium is lower than the melting temperature of magnesium. The best explanation for this is sodium atoms are smaller than magnesium atoms. sodium ions have a larger charge

More information

Qualitative Analysis Part Two Anions & Gases

Qualitative Analysis Part Two Anions & Gases Qualitative Analysis Part Two Anions & Gases Qualitative Tests for Anions Which anions must I know the tests for? Describe tests to identify the following anions: Carbonate CO 3 2 (by the addition of dilute

More information

Please hand your completed booklet to your Chemistry tutor when you begin A Level Chemistry in September

Please hand your completed booklet to your Chemistry tutor when you begin A Level Chemistry in September #THIS I S TH E P L AC E A-LEVEL CHEMSITRY NAME: You should complete this work ready for starting Year 1 A Level Chemistry. If there are any questions that you cannot do, even after using your GCSE notes

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level *7382672438* CHEMISTRY 9701/33 Advanced Practical Skills October/November

More information

9.1 Qualitative Analysis

9.1 Qualitative Analysis Chemistry Form 4 Page 44 Ms. R. Buttigieg Test for positive Ions (Cations) 9.1 Qualitative Analysis 1) Flame Tests Nichrome wire is dipped in concentrated hydrochloric acid, then in the salt being tested.

More information

Group 2: The Alkaline Earth Metals

Group 2: The Alkaline Earth Metals Group 2: The Alkaline Earth Metals Atomic radius Atomic Radii nm Atomic radius increases down Group 2. As one goes down the group, the atoms have more shells of electrons making the atom bigger and there

More information

Exam Style Questions

Exam Style Questions Calderglen High School Chemistry Department CfE Higher Chemistry Unit 1: Chemical Changes and Structure Exam Style Questions Page 2 1.1 Periodicity (25 marks) Page 6 1.2 Bonding and Structure part 1 (25

More information

Inorganic Chemistry Standard answers

Inorganic Chemistry Standard answers Inorganic Chemistry Standard answers 2.1 Periodicity Atomic radius a) Across a Period, atomic radius decreases: Shells: Same number of electron shells Shielding: Similar amount of shielding Protons: Number

More information

Group 2: The Alkaline Earth Metals

Group 2: The Alkaline Earth Metals Group 2: The Alkaline Earth Metals Atomic radius Atomic Radii nm Atomic radius increases down Group 2. As one goes down the group, the atoms have more shells of electrons making the atom bigger and there

More information

THE s- BLOCK ELEMENTS General electronic configuration- [ noble gas] ns 1-2

THE s- BLOCK ELEMENTS General electronic configuration- [ noble gas] ns 1-2 THE s- BLOCK ELEMENTS General electronic configuration- [ noble gas] ns 1-2 GROUP 1 ELEMENTS : ALKALI METALS General electronic configuration- [ noble gas] ns 1 Members- Li, Na, K, Rb, Cs, Fr Atomic and

More information

eg. Zn, Cl 2, e.g. Zn 2+ = +2 Cl - = -1 ) where it is 1 and in compounds with fluorine.

eg. Zn, Cl 2, e.g. Zn 2+ = +2 Cl - = -1 ) where it is 1 and in compounds with fluorine. 8A. Redox oxidation is the process of electron loss: Zn Zn 2+ + 2e - It involves an increase in oxidation number reduction is the process of electron gain: Cl 2 + 2e - 2Cl - It involves a decrease in oxidation

More information

4.4. Revision Checklist: Chemical Changes

4.4. Revision Checklist: Chemical Changes 4.4. Revision Checklist: Chemical Changes Reactivity of metals When metals react with other substances the metal atoms form positive ions. The reactivity of a metal is related to its tendency to form positive

More information

3.2.6 Group II. Trends in Chemical properties. 164 minutes. 161 marks. Page 1 of 19

3.2.6 Group II. Trends in Chemical properties. 164 minutes. 161 marks. Page 1 of 19 3.2.6 Group II Trends in Chemical properties 164 minutes 161 marks Page 1 of 19 Q1. (a) A small sample of barium metal was added to water in a flask. When the reaction had ceased, the contents of the flask

More information

International Advanced Level Chemistry Advanced Subsidiary Unit 2: Application of Core Principles of Chemistry

International Advanced Level Chemistry Advanced Subsidiary Unit 2: Application of Core Principles of Chemistry Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Candidate Number Chemistry Advanced Subsidiary Unit 2: Application of Core Principles of Chemistry Friday

More information

Anhydrous strontium chloride is not used in toothpaste because it absorbs water from the atmosphere. The hexahydrate, SrCl 2.6H 2O, is preferred.

Anhydrous strontium chloride is not used in toothpaste because it absorbs water from the atmosphere. The hexahydrate, SrCl 2.6H 2O, is preferred. Q1.(a) Anhydrous strontium chloride is not used in toothpaste because it absorbs water from the atmosphere. The hexahydrate, SrCl 2.6H 2O, is preferred. A chemist was asked to determine the purity of a

More information

A.M. THURSDAY, 19 June hour 40 minutes

A.M. THURSDAY, 19 June hour 40 minutes Candidate Name Centre Number 2 Candidate Number GCE A level 335/01 CHEMISTRY CH5 A.M. THURSDAY, 19 June 2008 1 hour 40 minutes JD*(S08-335-01) 4 B 5 ADDITIONAL MATERIALS TOTAL MARK In addition to this

More information

Page 2. Q1.Which of these species is the best reducing agent? A Cl 2 C I 2

Page 2. Q1.Which of these species is the best reducing agent? A Cl 2 C I 2 Q1.Which of these species is the best reducing agent? l 2 l I 2 I Q2.Which of these substances reacts most rapidly to produce a silver halide precipitate with acidified silver nitrate? H 3r H 3l H 3F H

More information

12A Entropy. Entropy change ( S) N Goalby chemrevise.org 1. System and Surroundings

12A Entropy. Entropy change ( S) N Goalby chemrevise.org 1. System and Surroundings 12A Entropy Entropy change ( S) A SPONTANEOUS PROCESS (e.g. diffusion) will proceed on its own without any external influence. A problem with H A reaction that is exothermic will result in products that

More information

YEAR 10- Chemistry Term 1 plan

YEAR 10- Chemistry Term 1 plan YEAR 10- Chemistry Term 1 plan 2016-2017 Week Topic Learning outcomes 1 1. The particulate nature of matter State the distinguishing properties of solids, liquids and gases. Describe the structure of solids,

More information

Describe the structure and bonding in a metallic element. You should include a labelled diagram in your answer. ... [3] ...

Describe the structure and bonding in a metallic element. You should include a labelled diagram in your answer. ... [3] ... 3 Gallium is a metallic element in Group III. It has similar properties to aluminium. (a) (i) Describe the structure and bonding in a metallic element. You should include a labelled diagram in your answer.

More information

London Examinations IGCSE

London Examinations IGCSE Centre No. Candidate No. Paper Reference 4 3 3 5 2 H Paper Reference(s) 4335/2H London Examinations IGCSE Chemistry Paper 2H Higher Tier Wednesday 21 May 2008 Afternoon Time: 2 hours Surname Signature

More information

Identification of Ions and Gases

Identification of Ions and Gases Identification of Ions and Gases Question Paper 1 Level IGSE Subject hemistry (0620/0971) Exam oard ambridge International Examinations (IE) Topic cids, bases and salts Sub-Topic Identification of ions

More information

QUESTIONSHEETS GROUPS 1 AND 2 REACTIONS OF THE ELEMENTS WITH WATER REACTIONS OF THE ELEMENTS WITH DILUTE ACIDS

QUESTIONSHEETS GROUPS 1 AND 2 REACTIONS OF THE ELEMENTS WITH WATER REACTIONS OF THE ELEMENTS WITH DILUTE ACIDS CHEMISTRY QUESTIONSHEETS AS Level AS TOPIC 10 GROUPS 1 AND 2 Questionsheet 1 Questionsheet 2 Questionsheet 3 Questionsheet 4 Questionsheet 5 Questionsheet 6 Questionsheet 7 Questionsheet 8 Questionsheet

More information

SIR MICHELANGELO REFALO

SIR MICHELANGELO REFALO SIR MICELANGELO REFALO SIXT FORM alf-yearly Exam 2014 Name: CEMISTRY ADV 1 ST 3 hrs ANSWER ANY 7 QUESTIONS. All questions carry equal marks. You are reminded of the importance of clear presentation in

More information

Chapter 4. The Major Classes of Chemical Reactions 4-1

Chapter 4. The Major Classes of Chemical Reactions 4-1 Chapter 4 The Major Classes of Chemical Reactions 4-1 The Major Classes of Chemical Reactions 4.1 The Role of Water as a Solvent 4.2 Writing Equations for Aqueous Ionic Reactions 4.3 Precipitation Reactions

More information

Periodicity SL (answers) IB CHEMISTRY SL

Periodicity SL (answers) IB CHEMISTRY SL (answers) IB CHEMISTRY SL Syllabus objectives 3.1 Periodic table Understandings: The periodic table is arranged into four blocks associated with the four sublevels s, p, d, and f. The periodic table consists

More information

4.4. Revision Checklist: Chemical Changes

4.4. Revision Checklist: Chemical Changes 4.4. Revision Checklist: Chemical Changes Reactivity of metals When metals react with other substances the metal atoms form positive ions. The reactivity of a metal is related to its tendency to form positive

More information

A-level CHEMISTRY 7405/1. Paper 1: Inorganic and Physical Chemistry. SPECIMEN MATERIAL v1.2

A-level CHEMISTRY 7405/1. Paper 1: Inorganic and Physical Chemistry. SPECIMEN MATERIAL v1.2 SPECIMEN MATERIAL v1.2 Please write clearly in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature A-level CHEMISTRY Paper 1: Inorganic and Physical Chemistry Specimen

More information

Assessment Schedule 2014 Scholarship Chemistry (93102) Evidence Statement

Assessment Schedule 2014 Scholarship Chemistry (93102) Evidence Statement Assessment Schedule 2014 Scholarship Chemistry (93102) Evidence Statement Scholarship Chemistry (93102) 2014 page 1 of 10 Question ONE (a)(i) Evidence Na(s) to Na(g) will require less energy than vaporisation

More information

States of matter

States of matter 3.1.3.4 States of matter 261 minutes 257 marks Page 1 of 30 Q1. (a) Describe the bonding in a metal. Explain why magnesium has a higher melting point than sodium. (4) (b) Why do diamond and graphite both

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level *0014911874* UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/33 Advanced Practical Skills 1 May/June 2012

More information

3.2.5 Group VII. Trends in Physical Processes. 70 minutes. 70 marks. Page 1 of 7

3.2.5 Group VII. Trends in Physical Processes. 70 minutes. 70 marks. Page 1 of 7 3.2.5 Group VII Trends in Physical Processes 70 minutes 70 marks Page 1 of 7 Q1. (a) State and explain the trend in electronegativity down Group VII from fluorine to iodine. Trend... Explanation... (i)

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level *0926172746* CHEMISTRY 9701/33 Advanced Practical Skills 1 October/November

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03 Centre Number Candidate Number Name UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/03 Paper 3 Practical

More information

CHAPTER 10: Chemical Periodicity

CHAPTER 10: Chemical Periodicity CHAPTER 10: Chemical Periodicity 10.1 Periodicity in Physical Properties 10.2 Periodicity in Chemical Properties 10.3 Period 3 Oxides 10.4 Period 3 Chlorides Learning outcomes: (a) describe qualitatively

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level *1863307025* CHEMISTRY 9701/34 Advanced Practical Skills October/November

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level *0974901356* UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certifi cate of Education Advanced Subsidiary Level and Advanced Level CHEMISTRY 9701/31 Advanced Practical Skills 1 May/June 2013

More information

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education Centre Number Candidate Number Name CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education CHEMISTRY 0620/05 Paper 5 Practical Test Candidates answer on the Question

More information

PRACTICAL NUMBER 1 TESTS FOR METAL IONS IN SOLUTION

PRACTICAL NUMBER 1 TESTS FOR METAL IONS IN SOLUTION PRACTICAL NUMBER 1 TESTS FOR METAL IONS IN SOLUTION INTRODUCTION Most common metals have insoluble hydroxides. They can be precipitated from solution by the addition of either ammonia solution (often referred

More information

ICSE Chemistry Board Paper 2016

ICSE Chemistry Board Paper 2016 2015 Time: 2 hours; Max. Marks: 80 General Instructions: Answers to this Paper must be written on the paper provided separately. You will not be allowed 10 write during the first 15 minutes. This time

More information

PRACTICE EXAMINATION QUESTIONS FOR 1.2 AMOUNT OF SUBSTANCE

PRACTICE EXAMINATION QUESTIONS FOR 1.2 AMOUNT OF SUBSTANCE PRACTICE EXAMINATION QUESTIONS FOR 1.2 AMOUNT OF SUBSTANCE 1. Nitroglycerine, C 3 H 5 N 3 O 9, is an explosive which, on detonation, decomposes rapidly to form a large number of gaseous molecules. The

More information

Chap. 4 AQUEOUS RXNS. O H δ+ 4.1 WATER AS A SOLVENT 4.2 AQUEOUS IONIC REACTIONS. Page 4-1. NaOH(aq) + HCl(g) NaCl(aq) +H 2 O

Chap. 4 AQUEOUS RXNS. O H δ+ 4.1 WATER AS A SOLVENT 4.2 AQUEOUS IONIC REACTIONS. Page 4-1. NaOH(aq) + HCl(g) NaCl(aq) +H 2 O Chap. AQUEOUS RXNS.1 WATER AS A SOLVENT Describe solution composition in terms of molarity Describe strong and weak electrolyte solutions, including acids and bases Use ionic equations to describe neutralization

More information

*8733689660* www.onlineexamhelp.com Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level CHEMISTRY 9701/35 Paper 3 Advanced Practical Skills 1 October/November

More information

1 Sulfur, atomic number 16, is found within the Earth s crust. Sulfur is released into the atmosphere at times of volcanic activity.

1 Sulfur, atomic number 16, is found within the Earth s crust. Sulfur is released into the atmosphere at times of volcanic activity. 1 Sulfur, atomic number 16, is found within the Earth s crust. Sulfur is released into the atmosphere at times of volcanic activity. A sample of sulfur from a volcano was analysed to give the following

More information

4 Examiner SECTION B. Answer all questions in the spaces provided. 5. (a) The Solvay process is used to make sodium compounds from sodium chloride.

4 Examiner SECTION B. Answer all questions in the spaces provided. 5. (a) The Solvay process is used to make sodium compounds from sodium chloride. 4 SECTION B Answer all questions in the spaces provided. 5. (a) The Solvay process is used to make sodium compounds from sodium chloride. (i) The first step in the process requires ammonia, which can be

More information

Qualitative Analysis Part One: Cations

Qualitative Analysis Part One: Cations Qualitative Analysis Part One: Cations Qualitative analysis is a structured set of methods used to determine the identities (but not the amounts) of the components that make up a mixture. Qualitative

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *7278217255* CHEMISTRY 9701/34 Paper 3 Advanced Practical Skills 2 October/November 2014 2 hours Candidates

More information

SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO

SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO Page 1 of 7 Half Yearly Exam 2013 Subject: Chemistry 1 st Year Level: Advanced Time: 3 hrs Answer SEVEN (7) questions. All questions carry

More information

ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. Sunday, August 18, 13

ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. Sunday, August 18, 13 ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. A solution is a homogenous mixture of 2 or more substances at the molecular level The solute(s) is(are)

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level *5947007489* CHEMISTRY 9701/31 Paper 31 Advanced Practical Skills May/June

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level * 5803539249 * CHEMISTRY 9701/35 Paper 31 Advanced Practical Skills May/June

More information

CHEMISTRY 135 REVISION OF NAMES, FORMULAE AND EQUATIONS

CHEMISTRY 135 REVISION OF NAMES, FORMULAE AND EQUATIONS CHEMISTRY 135 REVISION OF NAMES, FORMULAE AND EQUATIONS Answer the following questions as if you were going to hand them in for marking. You will be tested on them in class time. 1) Give the correct chemical

More information

YEAR 10 CHEMISTRY TIME: 1h 30min

YEAR 10 CHEMISTRY TIME: 1h 30min YEAR 10 CHEMISTRY TIME: 1h 30min NAME: CLASS: Useful data: Q = It. Faraday Constant = 96,500 C mol -1. Use the Periodic table, given below, where necessary. Marks Grid [For Examiners use only] Question

More information

Part A Unit-based exercise

Part A Unit-based exercise Topic 2 Microscopic World I / Microscopic World (Combined Science) Part A Unit-based exercise Unit 5 Atomic structure Fill in the blanks 1 atoms 2 solids; liquids; gases 3 metals; metalloids; non-metals

More information

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill Chapter 4 Reactions in Aqueous Solutions Copyright McGraw-Hill 2009 1 4.1 General Properties of Aqueous Solutions Solution - a homogeneous mixture Solute: the component that is dissolved Solvent: the component

More information

ICSE Chemistry Model Paper-9

ICSE Chemistry Model Paper-9 ICSE Chemistry Model Paper-9 Answers to this Paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes. This time is to be spent in reading the

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level UNVERSTY OF CAMBRDGE NTERNATONAL EXAMNATONS General Certificate of Education Advanced Subsidiary Level and Advanced Level *7779336909* CHEMSTRY 9701/35 Advanced Practical Skills May/June 2011 2 hours Candidates

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level * 8 2 6337145 4* CHEMISTRY 9701/33 Paper 31 Advanced Practical Skills May/June

More information