Theoretical study of quantization of magnetic flux in a superconducting ring

Size: px
Start display at page:

Download "Theoretical study of quantization of magnetic flux in a superconducting ring"

Transcription

1 Thortial study of quantization of magnti flux in a supronduting ring DaHyon Kang Bagunmyon offi, Jinan , Kora -mail : samplmoon@hanmail.nt W rfind th onpts of ltri urrnt and fluxoid, and London s quation that spify quantum phnomna of moving ltrons and magnti flux in a losd iruit similar to a supronduting ring, so as not to violat th unrtainty prinipl. On this basi th rlation btwn th ltron motion and magnti flux in a suprondutor has bn thortially invstigatd by mans of Faraday s law and/or anonial momntum rlation. Th fat that minimum unit of th quantizd magnti flux is h/ dos not man th onurrnt motion of th two ltrons in a Coopr pair as is known so far. Howvr, it is shown to b rlatd with indpndnt motion of th ah ltron in a supronduting stat. Kywords : flux quantum, fluxoid, london s quation I. Rviw In 933, Missnr and Ohsnfld disovrd th phnomnon that th suprondutor xluds th magnti fild, and thn in 935, H. London and F. London thorizd Missnr Efft that ours in th suprondutor. v d th drift vloity of th ltron and E, th ltri fild ar rlatd as shown blow basd on th Nwton s sond law in th supronduting stat m dv d = E, () whr m and ar th ltron s mass and harg. If w substitut J = ρv d whr ρ is th numbr of ltrons pr unit volum, for v d th rarrangd formula is dj = ρ E. () m If w apply formula (), Ampr s Law ( B = 4π ) J and Faraday s Law w hav ( db ) = 4πρ db m ( E = db ) (3)

2 W know that B = 0, so Thrfor, answr for furmula (4) is db = 4πρ db m. (4) db = db 0 x λ B = B 0 x λ (5) whr x is th insid distan of th suprondutor, λ is London pnntration dpth, and B is th magnti fild. Formula (5) xplains that th suprondutor xluds th mangti fild, whr its strngth xponntially diminishs aording to th dpth of its prmiability into th magnti fild on th surfa of th suprondutor. Using formula (), A = B, and Faraday s Law, w hav J = ρ A, whih is known as m London Equation proposd by th London brothrs. In 950, F. London prsntd th onpt of fluxoid by prsnting P ds = mv d ds + A ds (6) whr th lft sid is floxoid and th first trm on th right is th ltri urrnt and th sond trm is th magnti flux. Bohr s quantum ondition an b applid to th lft sid of formula (6), thus P ds = nh, (7) whr n =,, 3,...and h is Plank s onstant. From this, th stimatd valu of th minimum unit of fluxoid is givn by φ = h. (8) Formula (6) an b indud in rlation to formula (). Th ltrons in th suprondutor rats th ltri urrnt whn alratd by th for gnratd by th ltri fild, E, thus, undr th assumption that th ltri fild E is produd by Faraday s Law, w hav m dv d = E = da. (9) If w rarrang this quation, w hav d [mv d + ] A = 0 (0) [mv d + ] A = P = onstant. ()

3 Formula (6) is indud by applying lin intgral on both sids of th formula (). Also, formula (6) shows that th xtrnal magnti flux boms quantizd going through th ring hol of suprondutor by applying th lin intgral on its insid path assuming that thr is no ltri urrnt in th dp insid of th rlativly thik suprondutor. nh =0+ A ds, () φ = h is indud from th formula (). Howvr, its masurd valu from th supronduting ring was φ = h = T m. (3) Currntly, w bliv that th suprurrnt is arrid by pairs of ltrons. II. Th problm of th fluxoid onpt ) From th fluxoid formula, P ds = mv d ds + A ds, P on th lft sid of th quation rprsnts th motion of ltrons and th first trm on th right sid, v d an b intrprtd as th drifting vloity of th ltron. This intrprtation is supportd by Bohr s Quantum Condition that is applid to P, whih oms from th appliation of th lin intgral on th momntum with its motion path. v d th ltri urnt of th suprondutor may b intrprtd as th drift vloity. Howvr, onsidring th drift vloity is mm pr sond and th vloity of th ltron is usually svral thousand km pr sond in th Frmi lvl rang, w an onlud that formula (6) an not haratriz th physial prinipl of th suprondutor du to th lak of orrspondn btwn two numbrs of both sids of th formula. ) Th formula, nh =0+ A ds an not provid authnti xplanation vn though it attmpts to indiat that th magnti flux boms quantizd undr th assumd ondition of no ltri urrnt in th dp insid of th suprondutor. To b spifi, by ombining J = ρ m A, Ampr s Law B = 4π J, and B = A, w hav ( A) = 4πρ m A. Rarranging this quation and using A = 0 yilds A = 4πρ m A, thn A = A 0 x λ. That is, from J 0 and A 0 in th dp insid of th suprondutor, th aurat dfinition of formula (3) is givn by nh = (4) 3

4 This formula shows that th xisting vidn that th xtrior magnti flux passing th ring hol of th suprondutor boms quantizd is inorrt. Sin thr is a flow of th xtrior magnti fild in th hol of suprondutor vn with J 0 and A 0 in th dp insid of th suprondutor, on an assrt that th sond trm on th right sid boms A ds = φ rathr than A ds =0. Howvr, this proof may show an altrnativ thory that th first trm on th right sid of th quation an not b mv d ds = 0 baus th magnti fild in th ring of th suprondutor rvals not only th xtrior magnti fild but also th magnti fild ratd by J, th suprfiial ltri urrnt. Thrfor, this shows that th vidn of th magnti flux quantum using th formula (3) aluating th xtrior magnti fild that passs th ring at th lin intgral path insid of th suprondutor is a fallay. 3) Currntly aptd fluxoid onpt dos not math th xprimntal rsult obtaind from Littl-park. To xplain th xprimntal rsult, n = 0 should b possibl on th lft sid of th formula (6). W an not dfin n = 0 as long as w us th Bohr s quantum ondition to dfin th fluxoid. If n =0,P = 0, whih ontradits th fat th any partil onfind in a rtain spa an not tak 0 valu aording to th Unrtainty Prinipl. III. A nw thory Th problm shown in th prsnt fluxoid onpt ssntially oms from th lak of undrstanding th Canonial Momntum Equation. Sin th partil onfind within limitd spa must tak othr than 0 valu, w nd to rstablish th onpt of th ltri urrnt of th suprondutor within th dfinition of th Unrtainty Prinipl. In normal irumstans, th ltri urrnt is onvrtd to th drift vloity of ltron within a ondutor. Th vloity sum boms 0 without th ltri urrnt. This mans thr is no th nt vloity or momntum. Th ltrons xist in multipl and gain its own vloity in as of no ltri urrnt in th ondutor. Howvr, If w total th vloity of all ltrons, th nt momntum is 0 as givn by mv k =0, (5) k whr th ltri urrnt in th solid is dlt undr this prmis lik fomula (5). Th ltrons mov as shown in formula (6) whn E, th onstant ltri fild is maintaind for th duration of t, th tim. mv f mv i = Et, (6) 4

5 whr mv f is th final momntum and mv i is th initial momntum, whih do not tak 0 valu aording to th Unrtainty Prinipl. If w sum up th vloity of all ltrons using th formula (6), (mv fk mv ik ) boms k mv fk mv ik, mv ik = 0 aording to th formula (5), thn, w hav th final mv fk = k k k k E k t. k If w sum it up, from formula (5) th sum of th bninning momntum boms 0, and rmain th sum of th vloity lmnt that ar in th sam dirtion in th ltri fild E within th ltron s nd momntum lmnts. Thrfor, w prsnt th drift vloity, v d that was usd by London brothrs lads to Using this formula, w hav Sin m dv i mv f mv i = mv d = Et. (7) m dv f mdv i = mdv d = E. (8) in formula (8) is not rlvant to th ltri fild, E, thn its valu boms m dv i = 0. Using Faraday s law E = m dv f da, w hav = m dv d = E = da. (9) Th diffrn btwn formula (9) and () is that thr ar mor alratd trms in th vloity of th ltron, ths trm ar thos of th drift vloity and quivaln. From th formula (9), w hav m dv f = da m dv d = (0) da. () Examining ths two formulas, w an spulat that F. London did not distinguish btwn (0) and () whil dvloping th fluxoid onpt. Formula (0) provids a formula that is similar to th rlational xprssion of th Canonial Momntum mv (initial) = mv(final) + A. () From formula (), w an find London Equation and a nw onpt of fluxoid onstant = mv d + A, (3) 5

6 whr th onstant inluds 0, v d is th drift vloity of th ltron, A is vtor potntial. Sin a onstant is aluatd by adding two trm, Bohr s quantum ondition an not b applid hr du to its irrlavan to th momntum of ltron. If a onstant is 0, it would oinid with London Equation, othrwis it indiats a nw fluxoid onpt. In formula (), mv and mv rprsnt th momntum that indiats th status of ah ltron, thus, Bohr s quantum ondition an b applid and an not tak 0 for thir vloity basd on th Unrtainty Prinipl. Th following is an attmpt to show that th magnti flux bom quantizd in th suprondutor with a hol lik th on in th ring of a suprondutor. For onvnin, w an substitut mv and mv for mv and mv into th formula (), so Apply dot produt on both sids of formula (4) with v, thn mv = mv + A. (4) mv v = mv v + A v. (5) By applying dot produt on both sids of formula (4) with v, thn w hav Th ombination of (5) and (6) boms mv v = mv v + A v. (6) mv v + mv v = mv v + A v + mv v + A v. (7) This shows that th sond trm of th lft sid of formula (7) and th first trm of th right ar idntial. If w rarrang (7), mv v = mv v + A v + A v. (8) Applying (intgral) alulus on formula (8), w hav mv v = mv v + A v + A v. (9) This an b simplifid to mv ds mv ds = A ds + A ds. (30) Bohr s quantum ondition an b applid to th two trm of th lft sid of formula (30) baus th momntum of ltrons boms quantizd. Thus, n h = n h + φ + φ, (3) 6

7 whr n and n ar intgr with vaus othr than 0. Sin th magnti flux in th ring of suprondutor is idntial rgardlss of th ltron s motion path, w know that (φ = φ = φ), so w hav φ = h (n n ). (3) I attmpt to alulat th xtrior magnti flux that passs th ring of a suprondutor by using Faraday s Law vn though it would b ssntially th sam proof as prsntd abov. Faraday s Law is E ds = dφ (33) W an substitut E = dp into th lft sid of th formula sin thr is no ltri rsistany in th suprondutor, thus, dp ds = dφ. (34) If w dvlop th formula (34), mv v mv v = dφ. (35) Applying alulus on both sids of (35) mv v mv v = mv ds mv ds = dφ (36) dφ (37) If magnti fild is dlivrd undr th ondition that magnti fild is missing in th ring of th suprondutor, w hav n h n h = (φ 0) (38) φ = h (n n ). (39) Th xtrior magnti flux boms quantizd in th ring of suprondutor as shown abov, thrfor, using formula () th fluxoid is givn by m dv d da = (40) d(mv d )= da. (4) 7

8 As shown in th xprimnt of Littl-park, assuming that vortx gts insrtd insid of th ring hol of th suprondutor, formula (4) volvs by using dfinit intgral [mv d 0] = [A A 0] (4) mv d + A = A 0. (43) Applying ontour intgral on both sids of formula (43) mv d ds + A ds = A 0 ds. (44) Using formula (39) w an rarrang th right sid of th formula (44) into m ρ J ds + A ds = nφ 0, (45) whr φ 0 = h and J = ρv d. As a nw fluxoid onpt, formula (45) oinids with th Littl-park xprimnt, whr n is intgr inluding 0 valu, and is fr of problms that may aus a onflit with th Unrtainty Prinipl. IV. Conlusion Th xisting fluxoid onpt ontaind a problm that ontradits th Unrtainty Prinipl by using th Canonial Momntum formula baus of no spifid distintion btwn th vloity and th drift vloity of th ltron. To rsolv this problm, w stritly dfind th ltri urrnt in th supronduting ring and th fluxoid onpt to dvlop an outom that two ltrons do not aompany in th supronduting stat. This rsult is basd on th fat that th minimum valu of xtrior magnti flux,φ is thortially h/ indud from th Canonial Momntum Equation and Faraday s Law and th prmiss of Bohr s Quantum Condition must b satisfid bfor and aftr th ltron s momntum in th suprondutor taks its fft on th magnti fild. This outom may b a usful rfrn in rsarh rlatd to th supronduting phnomnon. 8

9 Rfrns [] A. C. Ros-Inns and E. H. Rhodrik, Introdution to Suprondutivity, nd d. (prgamon, nwyork, 978), pp [] Mihal Tinkham, Introdution to Suprondutivity, nd d. (Dovr, nwyork, 004), p. 4 pp [3] J. B. Kttrson and S. N. Song, Suprondutivity, (ambrig univrity prss 999), pp [4] P. G. D Gnns, P. A. Pinus, Suprondutivity of Mtals and alloys, (W.A Bn jamin, in 966), pp

Lecture 14 (Oct. 30, 2017)

Lecture 14 (Oct. 30, 2017) Ltur 14 8.31 Quantum Thory I, Fall 017 69 Ltur 14 (Ot. 30, 017) 14.1 Magnti Monopols Last tim, w onsidrd a magnti fild with a magnti monopol onfiguration, and bgan to approah dsribing th quantum mhanis

More information

Problem 22: Journey to the Center of the Earth

Problem 22: Journey to the Center of the Earth Problm : Journy to th Cntr of th Earth Imagin that on drilld a hol with smooth sids straight through th ntr of th arth If th air is rmod from this tub (and it dosn t fill up with watr, liquid rok, or iron

More information

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals AP Calulus BC Problm Drill 6: Indtrminat Forms, L Hopital s Rul, & Impropr Intrgals Qustion No. of Instrutions: () Rad th problm and answr hois arfully () Work th problms on papr as ndd () Pik th answr

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Physics 506 Winter 2006 Homework Assignment #12 Solutions. Textbook problems: Ch. 14: 14.2, 14.4, 14.6, 14.12

Physics 506 Winter 2006 Homework Assignment #12 Solutions. Textbook problems: Ch. 14: 14.2, 14.4, 14.6, 14.12 Physis 56 Wintr 6 Homwork Assignmnt # Solutions Ttbook problms: Ch. 4: 4., 4.4, 4.6, 4. 4. A partil of harg is moving in narly uniform nonrlativisti motion. For tims nar t = t, its vtorial position an

More information

Layer construction of threedimensional. String-String braiding statistics. Xiao-Liang Qi Stanford University Vienna, Aug 29 th, 2014

Layer construction of threedimensional. String-String braiding statistics. Xiao-Liang Qi Stanford University Vienna, Aug 29 th, 2014 Layr onstrution of thrdimnsional topologial stats and String-String braiding statistis Xiao-Liang Qi Stanford Univrsity Vinna, Aug 29 th, 2014 Outlin Part I 2D topologial stats and layr onstrution Gnralization

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Fr Carrir : Carrir onntrations as a funtion of tmpratur in intrinsi S/C s. o n = f(t) o p = f(t) W will find that: n = NN i v g W want to dtrmin how m

Fr Carrir : Carrir onntrations as a funtion of tmpratur in intrinsi S/C s. o n = f(t) o p = f(t) W will find that: n = NN i v g W want to dtrmin how m MS 0-C 40 Intrinsi Smiondutors Bill Knowlton Fr Carrir find n and p for intrinsi (undopd) S/Cs Plots: o g() o f() o n( g ) & p() Arrhnius Bhavior Fr Carrir : Carrir onntrations as a funtion of tmpratur

More information

Introduction to the quantum theory of matter and Schrödinger s equation

Introduction to the quantum theory of matter and Schrödinger s equation Introduction to th quantum thory of mattr and Schrödingr s quation Th quantum thory of mattr assums that mattr has two naturs: a particl natur and a wa natur. Th particl natur is dscribd by classical physics

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

Brief Introduction to Statistical Mechanics

Brief Introduction to Statistical Mechanics Brif Introduction to Statistical Mchanics. Purpos: Ths nots ar intndd to provid a vry quick introduction to Statistical Mchanics. Th fild is of cours far mor vast than could b containd in ths fw pags.

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

Why is a E&M nature of light not sufficient to explain experiments?

Why is a E&M nature of light not sufficient to explain experiments? 1 Th wird world of photons Why is a E&M natur of light not sufficint to xplain xprimnts? Do photons xist? Som quantum proprtis of photons 2 Black body radiation Stfan s law: Enrgy/ ara/ tim = Win s displacmnt

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Assignment 4 Biophys 4322/5322

Assignment 4 Biophys 4322/5322 Assignmnt 4 Biophys 4322/5322 Tylr Shndruk Fbruary 28, 202 Problm Phillips 7.3. Part a R-onsidr dimoglobin utilizing th anonial nsmbl maning rdriv Eq. 3 from Phillips Chaptr 7. For a anonial nsmbl p E

More information

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory Ch. 4 Molcular Raction Dynamics 1. Collision Thory Lctur 16. Diffusion-Controlld Raction 3. Th Matrial Balanc Equation 4. Transition Stat Thory: Th Eyring Equation 5. Transition Stat Thory: Thrmodynamic

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Chapter 37 The Quantum Revolution

Chapter 37 The Quantum Revolution Chaptr 37 Th Quantum Rvolution Max Plank Th Nobl Priz in Physis 1918 "in rognition of th srvis h rndrd to th advanmnt of Physis by his disovry of nrgy quanta" Albrt Einstin Th Nobl Priz in Physis 191 "for

More information

Junction Tree Algorithm 1. David Barber

Junction Tree Algorithm 1. David Barber Juntion Tr Algorithm 1 David Barbr Univrsity Collg London 1 Ths slids aompany th book Baysian Rasoning and Mahin Larning. Th book and dmos an b downloadd from www.s.ul.a.uk/staff/d.barbr/brml. Fdbak and

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

Classical Magnetic Dipole

Classical Magnetic Dipole Lctur 18 1 Classical Magntic Dipol In gnral, a particl of mass m and charg q (not ncssarily a point charg), w hav q g L m whr g is calld th gyromagntic ratio, which accounts for th ffcts of non-point charg

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

NON-SINGULAR MAGNETIC MONOPOLES

NON-SINGULAR MAGNETIC MONOPOLES THE PUBISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY Sris A OF THE ROMANIAN ACADEMY Volu 8 Nubr 3/2007 pp 000-000 NON-SINGUAR MAGNETIC MONOPOES S KHADEMI * M SHAHSAVARI ** and A M SAEED ** * Dpartnt

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information

Lecture 16: Bipolar Junction Transistors. Large Signal Models.

Lecture 16: Bipolar Junction Transistors. Large Signal Models. Whits, EE 322 Ltur 16 Pag 1 of 8 Ltur 16: Bipolar Juntion Transistors. Larg Signal Modls. Transistors prform ky funtions in most ltroni iruits. This is rtainly tru in RF iruits, inluding th NorCal 40A.

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

GEOMETRICAL PHENOMENA IN THE PHYSICS OF SUBATOMIC PARTICLES. Eduard N. Klenov* Rostov-on-Don, Russia

GEOMETRICAL PHENOMENA IN THE PHYSICS OF SUBATOMIC PARTICLES. Eduard N. Klenov* Rostov-on-Don, Russia GEOMETRICAL PHENOMENA IN THE PHYSICS OF SUBATOMIC PARTICLES Eduard N. Klnov* Rostov-on-Don, Russia Th articl considrs phnomnal gomtry figurs bing th carrirs of valu spctra for th pairs of th rmaining additiv

More information

surface of a dielectric-metal interface. It is commonly used today for discovering the ways in

surface of a dielectric-metal interface. It is commonly used today for discovering the ways in Surfac plasmon rsonanc is snsitiv mchanism for obsrving slight changs nar th surfac of a dilctric-mtal intrfac. It is commonl usd toda for discovring th was in which protins intract with thir nvironmnt,

More information

Integral Calculus What is integral calculus?

Integral Calculus What is integral calculus? Intgral Calulus What is intgral alulus? In diffrntial alulus w diffrntiat a funtion to obtain anothr funtion alld drivativ. Intgral alulus is onrnd with th opposit pross. Rvrsing th pross of diffrntiation

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian Drivation of Elctron-Elctron Intraction Trms in th Multi-Elctron Hamiltonian Erica Smith Octobr 1, 010 1 Introduction Th Hamiltonian for a multi-lctron atom with n lctrons is drivd by Itoh (1965) by accounting

More information

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c.

MA1506 Tutorial 2 Solutions. Question 1. (1a) 1 ) y x. e x. 1 exp (in general, Integrating factor is. ye dx. So ) (1b) e e. e c. MA56 utorial Solutions Qustion a Intgrating fator is ln p p in gnral, multipl b p So b ln p p sin his kin is all a Brnoulli quation -- st Sin w fin Y, Y Y, Y Y p Qustion Dfin v / hn our quation is v μ

More information

Some Results on Interval Valued Fuzzy Neutrosophic Soft Sets ISSN

Some Results on Interval Valued Fuzzy Neutrosophic Soft Sets ISSN Som Rsults on ntrval Valud uzzy Nutrosophi Soft Sts SSN 239-9725. rokiarani Dpartmnt of Mathmatis Nirmala ollg for Womn oimbator amilnadu ndia. R. Sumathi Dpartmnt of Mathmatis Nirmala ollg for Womn oimbator

More information

EXPLANATION OF DYNAMICAL BIEFELD-BROWN EFFECT FROM THE STANDPOINT OF ZPF FIELD

EXPLANATION OF DYNAMICAL BIEFELD-BROWN EFFECT FROM THE STANDPOINT OF ZPF FIELD Explanation of Dynamial Bifld-Brown Efft from JBIS, th Vol. Standpoint 61, pp.379-384, of ZPF Fild 8 EXPLANATION OF DYNAMICAL BIEFELD-BROWN EFFECT FROM THE STANDPOINT OF ZPF FIELD TAKAAKI MUSHA 3-11-7-61,

More information

Homework #3. 1 x. dx. It therefore follows that a sum of the

Homework #3. 1 x. dx. It therefore follows that a sum of the Danil Cannon CS 62 / Luan March 5, 2009 Homwork # 1. Th natural logarithm is dfind by ln n = n 1 dx. It thrfor follows that a sum of th 1 x sam addnd ovr th sam intrval should b both asymptotically uppr-

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

4037 ADDITIONAL MATHEMATICS

4037 ADDITIONAL MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Lvl MARK SCHEME for th Octobr/Novmbr 0 sris 40 ADDITIONAL MATHEMATICS 40/ Papr, maimum raw mark 80 This mark schm is publishd as an aid to tachrs and candidats,

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7.

Chapter 1. Chapter 10. Chapter 2. Chapter 11. Chapter 3. Chapter 12. Chapter 4. Chapter 13. Chapter 5. Chapter 14. Chapter 6. Chapter 7. Chaptr Binomial Epansion Chaptr 0 Furthr Probability Chaptr Limits and Drivativs Chaptr Discrt Random Variabls Chaptr Diffrntiation Chaptr Discrt Probability Distributions Chaptr Applications of Diffrntiation

More information

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark.

Note If the candidate believes that e x = 0 solves to x = 0 or gives an extra solution of x = 0, then withhold the final accuracy mark. . (a) Eithr y = or ( 0, ) (b) Whn =, y = ( 0 + ) = 0 = 0 ( + ) = 0 ( )( ) = 0 Eithr = (for possibly abov) or = A 3. Not If th candidat blivs that = 0 solvs to = 0 or givs an tra solution of = 0, thn withhold

More information

Calculus II Solutions review final problems

Calculus II Solutions review final problems Calculus II Solutions rviw final problms MTH 5 Dcmbr 9, 007. B abl to utiliz all tchniqus of intgration to solv both dfinit and indfinit intgrals. Hr ar som intgrals for practic. Good luck stuing!!! (a)

More information

Magnetic vector potential. Antonio Jose Saraiva ; -- Electric current; -- Magnetic momentum; R Radius.

Magnetic vector potential. Antonio Jose Saraiva ; -- Electric current; -- Magnetic momentum; R Radius. Magnti vtor potntial Antonio Jos araiva ajps@hotail.o ; ajps137@gail.o A I.R A Magnti vtor potntial; -- auu prability; I -- ltri urrnt; -- Magnti ontu; R Radius. un agnti ronntion un tru surfa tpratur

More information

INTEGRATION BY PARTS

INTEGRATION BY PARTS Mathmatics Rvision Guids Intgration by Parts Pag of 7 MK HOME TUITION Mathmatics Rvision Guids Lvl: AS / A Lvl AQA : C Edcl: C OCR: C OCR MEI: C INTEGRATION BY PARTS Vrsion : Dat: --5 Eampls - 6 ar copyrightd

More information

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by: Elctromagntic Induction. Lorntz forc on moving charg Point charg moving at vlocity v, F qv B () For a sction of lctric currnt I in a thin wir dl is Idl, th forc is df Idl B () Elctromotiv forc f s any

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Chapter 1 Late 1800 s Several failures of classical (Newtonian) physics discovered

Chapter 1 Late 1800 s Several failures of classical (Newtonian) physics discovered Chaptr 1 Lat 1800 s Svral failurs of classical (Nwtonian) physics discovrd 1905 195 Dvlopmnt of QM rsolvd discrpancis btwn xpt. and classical thory QM Essntial for undrstanding many phnomna in Chmistry,

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condnsd Mattr Physics pcific hat M.P. Vaughan Ovrviw Ovrviw of spcific hat Hat capacity Dulong-Ptit Law Einstin modl Dby modl h Hat Capacity Hat capacity h hat capacity of a systm hld at

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

15. Stress-Strain behavior of soils

15. Stress-Strain behavior of soils 15. Strss-Strain bhavior of soils Sand bhavior Usually shard undr draind conditions (rlativly high prmability mans xcss por prssurs ar not gnratd). Paramtrs govrning sand bhaviour is: Rlativ dnsity Effctiv

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

Total Wave Function. e i. Wave function above sample is a plane wave: //incident beam

Total Wave Function. e i. Wave function above sample is a plane wave: //incident beam Total Wav Function Wav function abov sampl is a plan wav: r i kr //incidnt bam Wav function blow sampl is a collction of diffractd bams (and ): r i k r //transmittd bams k ks W nd to know th valus of th.

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

DIFFERENTIAL EQUATION

DIFFERENTIAL EQUATION MD DIFFERENTIAL EQUATION Sllabus : Ordinar diffrntial quations, thir ordr and dgr. Formation of diffrntial quations. Solution of diffrntial quations b th mthod of sparation of variabls, solution of homognous

More information

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12 Enginring Bautiful HW #1 Pag 1 of 6 5.1 Two componnts of a minicomputr hav th following joint pdf for thir usful liftims X and Y: = x(1+ x and y othrwis a. What is th probability that th liftim X of th

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

The failure of the classical mechanics

The failure of the classical mechanics h failur of th classical mchanics W rviw som xprimntal vidncs showing that svral concpts of classical mchanics cannot b applid. - h blac-body radiation. - Atomic and molcular spctra. - h particl-li charactr

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

On the Hamiltonian of a Multi-Electron Atom

On the Hamiltonian of a Multi-Electron Atom On th Hamiltonian of a Multi-Elctron Atom Austn Gronr Drxl Univrsity Philadlphia, PA Octobr 29, 2010 1 Introduction In this papr, w will xhibit th procss of achiving th Hamiltonian for an lctron gas. Making

More information

1 General boundary conditions in diffusion

1 General boundary conditions in diffusion Gnral boundary conditions in diffusion Πρόβλημα 4.8 : Δίνεται μονοδιάτατη πλάκα πάχους, που το ένα άκρο της κρατιέται ε θερμοκραία T t και το άλλο ε θερμοκραία T 2 t. Αν η αρχική θερμοκραία της πλάκας

More information

Hydrogen Atom and One Electron Ions

Hydrogen Atom and One Electron Ions Hydrogn Atom and On Elctron Ions Th Schrödingr quation for this two-body problm starts out th sam as th gnral two-body Schrödingr quation. First w sparat out th motion of th cntr of mass. Th intrnal potntial

More information

MCE503: Modeling and Simulation of Mechatronic Systems Discussion on Bond Graph Sign Conventions for Electrical Systems

MCE503: Modeling and Simulation of Mechatronic Systems Discussion on Bond Graph Sign Conventions for Electrical Systems MCE503: Modling and Simulation o Mchatronic Systms Discussion on Bond Graph Sign Convntions or Elctrical Systms Hanz ichtr, PhD Clvland Stat Univrsity, Dpt o Mchanical Enginring 1 Basic Assumption In a

More information

Optimal environmental policies in a heterogeneous product market under research and development competition and cooperation

Optimal environmental policies in a heterogeneous product market under research and development competition and cooperation Optimal nvironmntal poliis in a htrognous produt markt undr rsarh and dvlopmnt omptition and oopration By Olusgun Oladunjoy Univrsity of Gulph, Ontario, Canada Sptmbr 0, 005 Introdution Pollution xtrnality

More information

Electron energy in crystal potential

Electron energy in crystal potential Elctron nry in crystal potntial r r p c mc mc mc Expand: r r r mc mc mc r r p c mc mc mc r pc m c mc p m m m m r E E m m m r p E m r nr nr whr: E V mc E m c Wav quation Hamiltonian: Tim-Indpndnt Schrodinr

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

Electrodynamics in Accelerated Frames as Viewed from an Inertial Frame

Electrodynamics in Accelerated Frames as Viewed from an Inertial Frame Copriht IJPOT, All Rihts Rsrvd Intrnational Journal of Photonis and Optial Thnolo Vol. 3, Iss. 1, pp: 57-61, Marh 17 ltrodnamis in Alratd Frams as Viwd from an Inrtial Fram Adrian Sfarti Univrsit of California,

More information

1997 AP Calculus AB: Section I, Part A

1997 AP Calculus AB: Section I, Part A 997 AP Calculus AB: Sction I, Part A 50 Minuts No Calculator Not: Unlss othrwis spcifid, th domain of a function f is assumd to b th st of all ral numbrs for which f () is a ral numbr.. (4 6 ) d= 4 6 6

More information

Utilizing exact and Monte Carlo methods to investigate properties of the Blume Capel Model applied to a nine site lattice.

Utilizing exact and Monte Carlo methods to investigate properties of the Blume Capel Model applied to a nine site lattice. Utilizing xat and Mont Carlo mthods to invstigat proprtis of th Blum Capl Modl applid to a nin sit latti Nik Franios Writing various xat and Mont Carlo omputr algorithms in C languag, I usd th Blum Capl

More information

Coupled Pendulums. Two normal modes.

Coupled Pendulums. Two normal modes. Tim Dpndnt Two Stat Problm Coupld Pndulums Wak spring Two normal mods. No friction. No air rsistanc. Prfct Spring Start Swinging Som tim latr - swings with full amplitud. stationary M +n L M +m Elctron

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information

SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS

SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS It is not possibl to find flu through biggr loop dirctly So w will find cofficint of mutual inductanc btwn two loops and thn find th flu through biggr loop Also rmmbr M = M ( ) ( ) EDT- (JEE) SOLUTIONS

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016

Self-Adjointness and Its Relationship to Quantum Mechanics. Ronald I. Frank 2016 Ronald I. Frank 06 Adjoint https://n.wikipdia.org/wiki/adjoint In gnral thr is an oprator and a procss that dfin its adjoint *. It is thn slf-adjoint if *. Innr product spac https://n.wikipdia.org/wiki/innr_product_spac

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

Calculus Revision A2 Level

Calculus Revision A2 Level alculus Rvision A Lvl Tabl of drivativs a n sin cos tan d an sc n cos sin Fro AS * NB sc cos sc cos hain rul othrwis known as th function of a function or coposit rul. d d Eapl (i) (ii) Obtain th drivativ

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

2. Laser physics - basics

2. Laser physics - basics . Lasr physics - basics Spontanous and stimulatd procsss Einstin A and B cofficints Rat quation analysis Gain saturation What is a lasr? LASER: Light Amplification by Stimulatd Emission of Radiation "light"

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

MCB137: Physical Biology of the Cell Spring 2017 Homework 6: Ligand binding and the MWC model of allostery (Due 3/23/17)

MCB137: Physical Biology of the Cell Spring 2017 Homework 6: Ligand binding and the MWC model of allostery (Due 3/23/17) MCB37: Physical Biology of th Cll Spring 207 Homwork 6: Ligand binding and th MWC modl of allostry (Du 3/23/7) Hrnan G. Garcia March 2, 207 Simpl rprssion In class, w drivd a mathmatical modl of how simpl

More information

Sensors and Actuators Sensor Physics

Sensors and Actuators Sensor Physics Snsors and Atuators Snsor Physis Sandr Stuijk (s.stuijk@tu.nl) Dpartmnt of ltrial ninrin ltroni Systms PN-JUNCON SNSOS (Chaptr 6.5) 3 mpratur snsors plamnt xitation physial fft matrial thrmal snsor ontat

More information

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS

PHYSICS 489/1489 LECTURE 7: QUANTUM ELECTRODYNAMICS PHYSICS 489/489 LECTURE 7: QUANTUM ELECTRODYNAMICS REMINDER Problm st du today 700 in Box F TODAY: W invstigatd th Dirac quation it dscribs a rlativistic spin /2 particl implis th xistnc of antiparticl

More information

University of Illinois at Chicago Department of Physics. Thermodynamics & Statistical Mechanics Qualifying Examination

University of Illinois at Chicago Department of Physics. Thermodynamics & Statistical Mechanics Qualifying Examination Univrsity of Illinois at Chicago Dpartmnt of hysics hrmodynamics & tatistical Mchanics Qualifying Eamination January 9, 009 9.00 am 1:00 pm Full crdit can b achivd from compltly corrct answrs to 4 qustions.

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

The pn junction: 2 Current vs Voltage (IV) characteristics

The pn junction: 2 Current vs Voltage (IV) characteristics Th pn junction: Currnt vs Voltag (V) charactristics Considr a pn junction in quilibrium with no applid xtrnal voltag: o th V E F E F V p-typ Dpltion rgion n-typ Elctron movmnt across th junction: 1. n

More information

High Energy Physics. Lecture 5 The Passage of Particles through Matter

High Energy Physics. Lecture 5 The Passage of Particles through Matter High Enrgy Physics Lctur 5 Th Passag of Particls through Mattr 1 Introduction In prvious lcturs w hav sn xampls of tracks lft by chargd particls in passing through mattr. Such tracks provid som of th most

More information

What are those βs anyway? Understanding Design Matrix & Odds ratios

What are those βs anyway? Understanding Design Matrix & Odds ratios Ral paramtr stimat WILD 750 - Wildlif Population Analysis of 6 What ar thos βs anyway? Undrsting Dsign Matrix & Odds ratios Rfrncs Hosmr D.W.. Lmshow. 000. Applid logistic rgrssion. John Wily & ons Inc.

More information

4 x 4, and. where x is Town Square

4 x 4, and. where x is Town Square Accumulation and Population Dnsity E. A city locatd along a straight highway has a population whos dnsity can b approimatd by th function p 5 4 th distanc from th town squar, masurd in mils, whr 4 4, and

More information

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved.

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved. 6.1 Intgration by Parts and Prsnt Valu Copyright Cngag Larning. All rights rsrvd. Warm-Up: Find f () 1. F() = ln(+1). F() = 3 3. F() =. F() = ln ( 1) 5. F() = 6. F() = - Objctivs, Day #1 Studnts will b

More information

Title: Vibrational structure of electronic transition

Title: Vibrational structure of electronic transition Titl: Vibrational structur of lctronic transition Pag- Th band spctrum sn in th Ultra-Violt (UV) and visibl (VIS) rgions of th lctromagntic spctrum can not intrprtd as vibrational and rotational spctrum

More information

SCHUR S THEOREM REU SUMMER 2005

SCHUR S THEOREM REU SUMMER 2005 SCHUR S THEOREM REU SUMMER 2005 1. Combinatorial aroach Prhas th first rsult in th subjct blongs to I. Schur and dats back to 1916. On of his motivation was to study th local vrsion of th famous quation

More information

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration Mathmatics Compl numbr Functions: sinusoids Sin function, cosin function Diffrntiation Intgration Quadratic quation Quadratic quations: a b c 0 Solution: b b 4ac a Eampl: 1 0 a= b=- c=1 4 1 1or 1 1 Quadratic

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information