Electrochemistry in Nanometer-Wide Electrochemical Cells

Size: px
Start display at page:

Download "Electrochemistry in Nanometer-Wide Electrochemical Cells"

Transcription

1 2850 Langmuir 2008, 24, Electrochemistry in Nanometer-Wide Electrochemical Cells Ryan J. White and Henry S. White* Department of Chemistry, UniVersity of Utah, 315 South 1400 East, Salt Lake City, Utah ReceiVed October 12, In Final Form: NoVember 29, 2007 The electrochemical properties of an electrochemical cell defined by two concentric spherical electrodes, separated by a 1 to 20-nm-wide gap, and a freely diffusing electrochemically active molecule (e.g., ferrocene) have been investigated by coupling of Brownian dynamics simulations with long-range electron-transfer probability values. The simulation creates a trajectory of a single molecule and calculates the likelihood that the molecule undergoes a redox reaction during each time interval based on a probability-distance function derived from literature first-order kinetic data for a surface-bound ferrocene. Steady-state voltammograms for the single-molecule concentric spherical electrochemical cell are computed and are used to extract a heterogeneous electron-transfer rate for the freely diffusing molecule redox reaction. The Brownian dynamics simulations also indicate that long-range electron transfer, between the redox molecule and electrode, leads to nonsigmoidal-shaped i-e characteristics when the distance between electrodes approaches the characteristic redox tunneling decay length. The long-range electron transfer generates a tunneling depletion layer that results in a potential-dependent diffusion-limited current. Introduction The application of nanometer-scaled electrodes (radii e 20 nm) in experimental investigations of very fast heterogeneous electron-transfer (ET) kinetics and mass-transfer (MT) has been of fundamental interest in modern electroanalytical chemistry A schematic depicting the sequential nature of an electrode reaction is shown in Figure 1, where mass transfer of the molecule to the electrode surface is followed by electron transfer at the electrode surface. To experimentally evaluate a heterogeneous electron-transfer rate constant (k ), the electron-transfer rate must be slower than the mass transfer rate (D/a, where D is the diffusion coefficient and a is the electrode radius), 14 i.e., the condition D/a g k must be fulfilled. This can often be achieved using nanometer-scale electrodes, as D/a scales inversely with the electrode radius, leading to diffusion rates as large as 100 cm/s for a 1-nm-radius electrode. Thus, it is possible to measure heterogeneous rate constants of comparable magnitude, although the difficulty in characterizing such small electrodes limits measurements to values of 10 cm/s or less. Nanometer-scaled electrodes positioned in close proximity to conductive substrates using a scanning electrochemical microscope (SECM), are also * Corresponding author. white@chem.utah.edu. Current address: Department of Chemistry and Biochemistry, University of CaliforniasSanta Barbara, Santa Barbara, CA (1) Smith, C. P.; White, H. S. Anal. Chem. 1993, 65, (2) He, R.; Chen, D.; Yang, F.; Wu, B. J. Phys. Chem. B 2006, 110, (3) Morris, R. B.; Franta, D. J.; White, H. S. J. Phys. Chem. 1987, 91, (4) Watkins, J. J.; Chen, J.; White, H. S.; Abruña, H. D.; Maisonhaute, E.; Amatore, C. Anal. Chem. 2003, 75, (5) Watkins, J. J.; White, H. S. Langmuir 2004, 20, (6) Shao, Y.; Mirkin, M. V.; Fish, G.; Kokotov, S.; Palanker, D.; Lewis, A. Anal. Chem. 1997, 69, (7) Heller, I.; Kong, J.; Heering, H. A.; Williams, K. A.; Lemay, S. G.; Dekker, C. Nano Lett. 2005, 5, (8) Penner, R. Μ.; Ηeben, M.; Longin, T. L.; Lewis, N. S. Science 1990, 250, (9) Sun, P.; Mirkin, M. V. Anal. Chem. 2006, 78, (10) Tsirlina, G. A.; Petrii, O. A. Russ. Chem. ReV. 2001, 70, (11) Menon, V. P.; Martin, C. R. Anal. Chem. 1995, (12) Krapf, D.; Wu, M.; Smeets, R. M. M.; Zandbergen, H. W.; Dekker, C.; Lemay, S. G. Nano Lett. 2006, 6, (13) Bond, A. M.; Henderson, T. L. E.; Mann, D. R.; Mann, T. F.; Thormann, W.; Zoski C. Anal. Chem. 1988, 60, (14) Gardiner, W. C. Rates and Mechanisms of Chemical Reactions; Benjamin/ Cummings Publishing: Menlo Park, CA, Figure 1. A schematic representation of the sequential process of diffusion and electron transfer at an electrode surface. The curved line illustrates the dependence of electron-transfer probability, P ET, on the distance from the electrode surface. D is the diffusion coefficient of the molecule (cm 2 /s), a is the electrode radius (cm), and k is the electron-transfer rate constant (cm/s). D/a describes the diffusion rate. advantageous in kinetic studies of fast ET reactions, due to the inverse relationship between mass-transfer rate and separation distance. 15,16 A survey of the current literature suggests that the largest reliable experimental heterogeneous ET rate constants are on the order of 10 cm/s. 3,4,6-8,13 This value corresponds to experimental data for a range of compounds including aromatic organics, 17,18 ferrocene, 13 ferrocenylmethyltrimethylammonium (FcTMA +/0 ), 4 Ru(NH 3 ) 6 3+/2+, 19 and IrCl 6 3-/2-. 5 This apparent experimental (15) Mirkin, M. V.; Richards, T. C.; Bard, A. J. Anal. Chem. 1992, 64, (16) Mirkin, M. V.; Richards, T. C.; Bard, A. J. J. Phys. Chem. 1993, 97, (17) Kojima, H.; Bard, A. J. J. Am. Chem. Soc. 1975, 97, (18) Russel, A.; Repka, K.; Dibble, T.; Ghoroghchian, J.; Smith, J. J.; Fleischmann, M.; Pitt, C. H.; Pons, S. Anal. Chem. 1986, 58, /la CCC: $ American Chemical Society Published on Web 02/02/2008

2 Nanometer-Wide Electrochemical Cells Langmuir, Vol. 24, No. 6, upper limit is 10 3 times smaller than that predicted by Marcus 20 from heterogeneous collision theory and assuming thermal molecule velocities Recently, we reported the use of Brownian dynamics simulations to examine the collision frequency between a redox molecule and a nanometer-sized electrode and described the role that collision frequency plays in determining when an electrochemical reaction becomes kinetically limited. 24 As the electrode radius is reduced, the average number of collisions between a redox molecule and the electrode also decreases, thereby reducing the probability that a successful ET event occurs when the molecule diffuses in vicinity of the electrode. For instance, the average number of collisions that a small molecule, e.g., ferrocene, undergoes each time it visits the electrode surface decreases from at a 100-nm-radius electrode to 30 at a 4-nmradius electrode. This result, coupled with a finite probability of ET during each collision, leads to the ET rate limitation at the small electrodes. For example, a rate constant of 5 cm/s requires, on average, 2000 collisions at room temperature for the electron to transfer. Thus, the ET should appear reversible for ferrocene oxidation at a 100-nm radius, where there are many more collisions than required ( ), and quasireversible at a 4-nmradius electrode, where there are fewer than required (30 < 2000). These predictions are in good agreement with recent experimental findings. 5 Herein, we report Brownian dynamics simulations of an electrochemical cell in which diffusion of a single molecule between two closely spaced electrodes (<20 nm) is coupled to long-range ET between the redox molecule and one electrode surface. This simulation closely mimics the single-molecule SECM experiment reported by Fan et al. 25 Since ET occurs over distances up to few nanometers, it is anticipated that the comparable dimensions of mass transport and ET may influence the overall behavior of such a small electrochemical cell. To include the influence of a finite ET rate, we employ experimental values of first-order electron-transfer rates for surface-bound redox molecules. The measurement of first-order ET rates associated with redox molecules at a well-defined distance from the electrode surface was pioneered by Chidsey 26 in the early 1990s. The Chidsey experiment and related experiments typically employ the self-assembly of redox molecules (e.g., ferrocene-terminated alkylthiols) to produce a well-ordered monolayer with all redox sites located at a specified distance from the electrode. This experiment was further developed by measuring electron-transfer rates as a function of the distance between the electrode and molecule, as reported by Smalley et al. 30 Electron-transfer rates decrease roughly exponentially with increasing distance between the molecule and the electrode, a distance dependence characterized by the decay coefficient for electronic tunneling, β. Typically, β values from the above experiments are 1Å The distance dependence of ET rates (19) Wipf, D. O.; Kristensen, E. W.; Deakin, M. R.; Wightman, R. M. Anal. Chem. 1988, 60, (20) Marcus, R. J. Chem. Phys. 1965, 43, (21) Einstein, A. Ann. Phys. 1905, 17, (22) Einstein, A. Z. Elektrochem. 1907, 13, (23) English translations of refs 18 and 19: Einstein, A. InVestigations on the Theory of the Brownian MoVement; Dover Publications: Mineola, NY, (24) White, R. J.; White, H. S. Anal. Chem. 2005, 77, 214A-220A. (25) (a) Fan, F. F.; Bard, A. J. Science 1995, 267, (b) Fan, F. F.; Kwak, J.; Bard, A. J. J. Am. Chem. Soc. 1996, 118, (26) Chidsey, C. E. D. Science 1991, 251, (27) Summer, J. J.; Creager, S. E. J. Phys. Chem. B 2001, 105, (28) Smalley, J. F.; Finklea, H. O.; Chidsey, C. E. D.; Linford, M. R.; Creager, S. E.; Ferraris, J. P.; Chalfant, K.; Zawodzinsk, T.; Feldberg, S. W.; Newton, M. D. J. Am. Chem. Soc. 2003, 125, (29) Creager, S. E.; Wooster, T. T. Anal. Chem. 1998, 70, (30) Smalley, J. F.; Feldberg, S. W.; Chidsey, C. E. D.; Linford, M. R.; Newton, M. D.; Liu, Y. J. Phys. Chem. 1995, 99, Figure 2. A schematic representation of the electrochemical cell geometry used in the simulations. R 1 and R 2 indicate the radii of the inner and outer electrodes, respectively. The simulations assume that the probability of electron transfer at the inner electrode is a function of distance and potential. The outer electrode is held at a constant potential sufficiently positive to reduce the molecule with unit probability upon collision. reported by Smalley et al. is used in the simulations reported below to compute the ET probability of a molecule as it moves along its random trajectory. Feldberg presented a conceptually similar finite-difference simulation of coupled diffusion and long-range ET for macroscopic electrochemical systems defined by a semi-infinite volume condition (i.e., the counter electrode is placed at an infinite distance). 31 As shown below, the influence of ET on the redox reaction is greatly enhanced when the diffusion length scale approaches ET distances, as occurs at nanometer-scale electrodes. We show, for instance, that the qualitative shape of the steadystate i-e curve of an electrochemical cell is strongly dependent on the ET rate and cell thickness. Methods Simulations. The simulation geometry is two concentric spherical electrodes, as schematically depicted in Figure 2. The solution volume between the two concentric spheres defines the space in which the molecule is able to diffuse. Simulations track the trajectory of the random motion of a single molecule over the course of several microseconds. The simulations were performed using an in-house code written for MatLab (version 6, The MathWorks), which is a text-based mathematical programming language. The diffusion coefficient of the molecule is defined by the Einstein relationship, 21 D ) δ 2 /2τ, where δ and τ are the step distance and step time, respectively. This definition of D is consistent with a three-dimensional random walk, where the net displacement, r ) (δ x2 + δ y2 + δ z2 ) 1/2, for uncorrelated motion in the x, y, and z directions is given by r 2 ) 6Dτ. The values of step time (τ ) 0.2 ps) and length (δ ) 0.02 nm) used in the simulation uniquely satisfy the realistic values of diffusivity, D ) 10-5 cm 2 s -1, and thermal velocity, V 1/2 ) (d/t) 1/2 ) (kt/m) 1/2 ) 10 4 cm/s (k is the Boltzmann constant, T is temperature, and m is the mass ) g), corresponding approximately to measurements using a molecule of mass equal to ferrocene at room temperature. 32,33 (31) Feldberg, S. W., J. Electroanal. Chem. 1986, 198, (32) Bard, A. J.; Faulkner, L. R. Electrochemical Methods, 2nd ed.; Wiley & Sons: New York, 2001.

3 2852 Langmuir, Vol. 24, No. 6, 2008 White and White The probability of ET, either reduction or oxidation, between the redox molecule and the inner electrode is finite and computed during each time step based upon the literature ET rate data. These dependencies are outlined below. Potential- and Distance-Dependent Electron-Transfer Kinetics. The ET system is modeled as a chemically reversible, oneelectron reaction, eq 1 Ox + e - T kox k red Red (1) where k ox and k red are the potential-dependent oxidation and reduction rate constants. These rates are based on the standard ET rate constant (k r,s -1 ) and are described by the expressions and In eqs 2 and 3, F is Faraday s constant, n is the number of electrons transferred, R is the transfer coefficient, and E and E are, respectively, the potential applied at the electrode and the standard reduction potential of the electroactive molecule. Values of n ) 1, R) 0.5, and E ) 0 are employed in the simulations. 32 The above equations are consistent with anodic currents having positive value. Equations 2 and 3 are presented in this section in context of first-order redox kinetics of a molecule located at a specified position within the cell at each time step of the simulation. The value of k r in eqs 2 and 3 is described by eq 4 34 where β and r are the exponential tunneling decay coefficient (cm -1 ) and the distance (cm) from the electrode surface, respectively, and k 0 is the standard ET rate constant (s -1 )atr ) 0. Equation 4 describes the distance-dependent ET rate. Substituting eq 4 into eqs 2 and 3 gives k ox and k red as a function of distance (r) and potential (E). The experimental values of k 0 and β reported by Smalley et al. 30 for surface-bound ferrocene molecules were used to compute ET rates in the simulations. Values of cm -1 (1 Å -1 ) and s -1 for β and k 0, respectively, were reported by Smalley et al. by fitting eq 4 to a plot of ln(k r )vsr. Smalley et al. also estimated the heterogeneous electron-transfer rate constant (k ) between a freely diffusing ferrocene molecule and an electrode by integration of eq 4 from the plane of closest approach to an infinite distance from the electrode, yielding a value of 6 cm/s. This value is in good agreement with experimental values for soluble ferrocene 14 and is consistent with the value obtained from our simulations. Probability of Electron Transfer. At each time step, τ, throughout the simulation, a statistical evaluation of the probability of the occurrence of an ET event was performed. The rate of ET was calculated using the oxidation and reduction rate constants as defined by eqs 2-4 at various potentials and distances from the electrode surface. The dimensionless probability of electron transfer (P ET )is derived using first-order rate kinetics. 35 The probability of a molecule undergoing reduction or oxidation during a simulation time step, τ, is given by eqs 5 and 6: and (1 -R)nF k ox ) k r exp[ (E - RT E )] (2) k red ) k r exp [ -RnF RT (E - E ) ] (3) k r ) k 0 exp(-βr) (4) P red ET ) 1 - exp{-k red τ} (5) P ox ET ) 1 - exp{-k ox τ} (6) (33) Rabinowitch, E.; Wood, W. C. Trans. Faraday Soc. 1936, 32, (34) Li, T. T.; Weaver, M. J. J. Am. Chem. Soc. 1984, 106, (35) Petrucci, R. H.; Harwood, W. S. General Chemistry, 7th ed.; Prentice Hall: New York, Figure 3. Plot of P ox. ET (solid lines) as a function of distance from the electrode surface as calculated by eq 6 at various potentials. A τ value of 0.2 ps was used for the calculations. Figure 4. Example Brownian trajectory of a single molecule diffusing between concentric spherical electrodes of 20- and 100- nm radii. Figure 3 shows plots of P ox ET for τ ) 0.2 ps as a function of distance from the electrode surface for different electrode potentials. The plots indicate that, at potentials significantly more positive than E, the probability of electron transfer is essentially unity at distances close to the electrode surface. If the molecule is in the reduced form, there is a finite probability of being oxidized and vice versa. During each given simulation time increment, the probability of either oxidation or reduction was calculated using a subset of eqs 2-6 contingent on the redox state of the molecule. Current Resulting from ET and Diffusion of a Single Molecule. The current through the electrochemical system was computed by counting the number of ET events per unit time. The outer-electrode rate constants were set to k red ) and k ox ) 0 to ensure that the oxidized molecule (e.g., ferrocenium) is reduced immediately when it reaches the outer electrode (thus, conversely, no reaction occurs when the reduced molecule collides with the outer electrode). Longrange electron transfer is ignored at the outer electrode for simplicity. An ET event is defined as an oxidation at the inner electrode that is followed by diffusion of the molecule across the cell and then by reduction at the outer electrode. This definition is consistent with the fact that not every oxidation reaction at the inner electrode will immediately result in a reduction reaction at the outer electrode, for the oxidized molecule can instead be rereduced at the inner electrode before diffusing to the outer electrode. The steady-state electrochemical cell current at a potential E is defined as the product of the number of successful ET events and the elementary charge of an electron ( C), divided by the total simulation time [) the number of steps step time (τ)]. The current was computed as a function of applied potential to produce current-voltage (i-e) plots. Figure 4 shows an example Brownian trajectory of a single molecule over a period of 1 ns. In this particular example, the molecule is randomly moving within the volume between 20- and 100-nm-radius spherical surfaces. The molecule s trajectory is plotted

4 Nanometer-Wide Electrochemical Cells Langmuir, Vol. 24, No. 6, as the displacement (or position) of the molecule from the center of the inner electrode. As is clearly evident from the plot, in this particular example, the molecule collides many times with the outer electrode over the initial 700 ps before eventually diffusing in the vicinity of the inner electrode. Of course, each trip between the inner and outer electrodes, and vice versa, occurs by a unique and random trajectory. An analytical solution, eq 7, for the voltammetric response for the concentric spherical electrode system is readily derived from Fick s laws and the Butler-Volmer equation, for comparison to the simulated values. i ) D k red R 1( R 2 Here, R 1 and R 2 are the inner and outer sphere electrode radii, respectively. In eq 7, k ox and k red represent potential-dependent heterogeneous rate constants described by expressions analogous to eqs 2 and 3, where the standard rate constant, k r, in these expressions is replaced by the standard heterogeneous rate constant, k. The diffusion-limited current (i lim ) is given by eq 8. Results and Discussion Heterogeneous ET Kinetic Rate Constants from Simulated Voltammetric Waves. When using sufficiently small electrodes to experimentally evaluated ET rates, a shift of the half-wave potential, E 1/2, of the voltammetric steady-state response is observed at the onset of kinetic control. 4 The E 1/2 potential is defined as the potential where the voltammetric current is 50% of the diffusion-limited current, and for a chemically and thermodynamically reversible reaction, i.e., large k, E 1/2 is approximately equal to E. The shift in E 1/2 away from E, as the electrode size is reduced, results from the increased energy necessary to drive the reaction at the electrode surface as the number of collisions between the redox molecule and electrode decrease. 32 In general, by fitting kinetic model equations (e.g., the Butler-Volmer equation) to the voltammogram or to the dependence of E 1/2 on radius, a heterogeneous ET rate constant, k, can be extracted from the data. By analogy to real experimental analysis, the voltammetric response of the nanometer-wide electrochemical cell was simulated using experimental first-order rate constants (as described above). The Butler-Volmer based equation describing the overall i-e wave (eq 7) was then fit to the resulting simulated data to obtain the corresponding heterogeneous ET rate constant, k. The simulated steady-state voltammetric response of an electrochemical cell with a 20-nm-radius inner electrode and 30-nm-radius outer electrode is shown in Figure 5. Values for current are calculated from the simulated three-dimensional random motion of a single molecule between the two concentric spheres, taking into account the probability of electron transfer at distances away from the electrode surface. As described above, literature values for the kinetic ET rates for surface-bound ferrocene moieties were employed to calculate P red ox ET and P ET during each step of the simulation. The inner electrode potential, E - E, was varied from to 0.5, and k ox and k red were computed using eqs 2 and 3. In Figure 5, each data point represents 10 individual simulations comprising 10 7 steps, and the error bars represent an uncertainty of 1σ. This i-e plot exhibits steadystate sigmoidal behavior expected for the concentric sphere geometry in which the electrodes are separated by nanometer i lim R 2 - R 1) + k ox /k red + 1 i lim ) ( 4πnFCD R 2 - R 1 R 2 R 1 ) (7) (8) Figure 5. A steady-state voltammetric current-voltage (i-e) response at a 20-nm-radius inner electrode. The data points represent simulated current values using a thermal molecular velocity of cm/s and D ) cm 2 s -1. The solid line represents the best-fit voltammetric curve for k ) 7 cm/s determined by a χ 2 test. The dashed line represents the voltammetric wave for a reversible reaction with k ) cm/s. Table 1. Simulated Limiting Current (i lim) at an Overpotential of 0.5 V as a Function of Gap Distance Compared to the Analytical Solution Described by Eq 8 i lim (A) gap distance (nm) simulated calculated (( 1.2) (( 1.2) (( 0.2) (( 0.3) (( 0.2) (( 0.4) (( 0.06) (( 0.04) (( 0.02) dimensions. The limiting current arises from the diffusion-limited motion of the molecule between the inner and outer electrodes. For comparison to the simulated i-e curve, eq 7 is plotted in Figure 5 using k ) 10 4 cm/s (dashed line), which is sufficiently large that it corresponds to the reversible or Nernstian i-e response. 15,16 As discussed above, a shift in the E 1/2 value from E is observed when the reaction becomes partially controlled by the ET kinetics. A 50 mv shift in E 1/2 is observed in the simulated data for this particular geometry (R 1 ) 20 and R 2 ) 30 nm), indicating an ET kinetic limitation, D/a > k. 6,32,36 At low overpotentials, the molecule does not undergo electron transfer every time it visits the electrode surface, resulting in the kinetic overpotential. The solid line in Figure 4 was obtained using eq 7 by varying k until the optimal fit was found, as determined by a weighted χ 2 analysis. The best fit is found using k ) 7.0 cm/s, in good agreement with the value of 6 cm/s from the work by Smalley et al. 30 (the latter was computed from the analytical integration of eq 4 from the plane of closest approach to an infinite distance from the electrode surface). The small discrepancy between the two values may be a consequence of the fact that the simulation treats Ox and Red as point molecules. Also, a value of 10-5 cm 2 /s was used for the diffusion coefficient in the simulations, when the actual value is cm 2 /s in acetonitrile. 32 Voltammetric Response at Small Gap Distances. The cell geometry used to acquire simulation data for Figure 5 comprises two concentric spherical electrodes separated by a 10-nm gap. In this case, the 10-nm separation distance is sufficiently large that any effect of long-range ET on the voltammetric limiting current is negligible. Table 1 shows tabulated results of i lim obtained from the analytical solution (eq 8) and from the simulations for E - E ) 0.5 V at varying gap distances. The (36) Zoski, C. G. Steady-State Voltammetry at Microelectrodes. In Modern Techniques in Electroanalysis; Vanysek, P., Ed.; John Wiley & Sons, Inc.: New York, 1996, pp

5 2854 Langmuir, Vol. 24, No. 6, 2008 White and White simulation is in good agreement with the predicted values for gap distances ranging from 20 to 7 nm. However, when the gap distance is 7 nm or smaller, the current from the simulation is significantly larger than the value computed by eq 8. Figure 6 shows four simulated voltammograms for electrochemical cells consisting of a 20-nm-radius inner electrode separated by gap distances of 10, 3, 1, and 0.5 nm. Each data point of the voltammogram is calculated as an average of step simulations, using eqs 2 and 3 to incorporate the potentialand spatial-dependent rate constants. The solid lines represent the analytical expression (eq 7) using k ) 7 cm/s. A significant increase in current relative to the diffusion-limited plateau current is apparent at potentials (E - E ) greater than 0.2 V, for separation distances less than 5 nm. Figure 7B presents histograms showing the spatial dependency of the state of oxidation of the molecule (Ox or Red) at steady state. The histograms were constructed using the data from a single step simulation of a 20-nm-radius inner electrode with a gap distance of 1 nm at E - E ) 0.5 V. In essence, the histogram represents the time-averaged concentration profiles of the molecule in the oxidized and reduced states. Figure 7a is the corresponding voltammogram for this particular geometry. From Figure 7B, it is apparent that the probability of the molecule being in the reduced state (i.e., ferrocene) at distances less than 0.3 nm from the inner electrode is negligibly small. This indicates that long-range electron-transfer efficiently depletes Red at distances up to 0.3 nm from the electrode surface. At this distance, P ox ET ) and P red ET ) 10-9 as calculated from eqs 6 and 5. Thus, if the molecule is in the Red state, it has a 10% chance of undergoing electron transfer (being reduced) during a given time step. Due to the nature of random walks, a 10% ET probability during one time step results in a very high probability that ET will occur within a few time steps, since the redox molecule has a tendency to explore the small volume of space centered at about 0.3 nm before wandering away. 37 After being oxidized, the probability of the molecule being rereduced at this distance and overpotential is negligibly small. The nearly exponential rise of i at overpotentials (E - E ) greater than 0.2 V is a consequence of the exponential dependence of k ox on E - E.AsE - E increases, P ox ET increases (see Figure 3), resulting in Red being depleted at distances further away from the inner electrode surface. The consequence of this tunneling depletion layer is that the distance that the molecule is required to diffuse, in order to carry charge back and forth between the inner and outer electrode, is reduced. This shortening of the transport distance is the origin of the potential dependence of the diffusion-limited current. Conclusions Using experimentally measured values of first-order ET rate constants for surface-bound molecules, we have simulated the voltammetric response of a single molecule electrochemical cell in which the thickness approaches the characteristic length of electron tunneling. By coupling the random motion of a molecule with long-range ET probabilities, the simulated voltammetric response displays a shift in E 1/2 that is characteristic of a kinetic limitation. We did not consider the influences of the electric field between the electrode surfaces, 1 near-surface solvent ordering, or the finite size of the molecules, all of which may exert a significant influence on the i-e behavior. 3 Even in the absence of these factors, our results indicate that nonsigmoidal (37). Berg, H. C. Random Walks in Biology; Princeton University Press: Princeton, NJ, 1983 Figure 6. Steady-state voltammetric response using gap distances (A) 11 nm, (B) 3 nm, (C) 1 nm, and (D) 0.5 nm. In each case, the inner electrode radius is 20 nm. The plotted lines represents the best-fit voltammetric response with k ) 7 cm/s for each gap distance. Each current data point is from 10 simulations at 10 7 steps per simulation. Figure 7. Simulations at an electrochemical cell with a 1-nm separation distance. (A) A plot of the steady-state voltammetric response for a 20-nm-radius electrode encapsulated by an outer electrode with a gap distance of 1 nm. The solid line represents the best-fit voltammetric response at the electrode with a k ) 7 cm/s. Each current point is calculated from 10 iterations of a step simulation. (B) Histograms of counts of the spatial position of Ox and Red, i.e., concentration profiles, as a function of distance at E - E of 0.5 V. The data comes from one simulation of 10 7 steps at a 20-nm-radius inner-electrode separated by a gap distance of 1 nm from the outer electrode. steady-state i-e characteristics result from electron transfer over distances that are comparable to the cell thickness. As noted in the Introduction, our simulations mimic the singlemolecule SECM experiment reported by Fan et al., 25 although the simulation is an obvious oversimplification of the experiment. As noted by a reviewer of this paper, as a sharp SECM tip is brought within a few nanometers of a conductive electrode surface, the tip current increases above the diffusion-limited current that is expected from the normal oxidation/reduction cycling of the molecule between the tip and electrode. The current that is in excess of the diffusion-limited value has been interpreted as corresponding to direct electron tunneling between the tip and

6 Nanometer-Wide Electrochemical Cells Langmuir, Vol. 24, No. 6, conductive surface. 38 Our simulations suggest that tunneling from the conductive surface to the redox molecule occurs in parallel with direct tunneling between tip and conductive substrate. At intermediate distances, where direct tip-to-conductive-substrate tunneling is small, long-distant tunneling to the redox molecule remains operative and may represent the more significant (38) Fan, F.-R. F.; Mirkin, M. V.; Bard, A. J. J. Phys. Chem. 1994, 98, tunneling pathway that leads to observations of tip currents in excess of the diffusion limit. Acknowledgment. This work was supported by the National Sciences Foundation (CHE ) and the DoD Multidisciplinary University Research Initiative (MURI) program administered by the Office of Naval Research under Grant N and the Office of Naval Research. LA

Supporting Information. The Study of Multireactional Electrochemical Interfaces Via a Tip Generation/Substrate

Supporting Information. The Study of Multireactional Electrochemical Interfaces Via a Tip Generation/Substrate Supporting Information The Study of Multireactional Electrochemical Interfaces Via a Tip Generation/Substrate Collection Mode of Scanning Electrochemical Microscopy The Hydrogen Evolution Reaction for

More information

The Effect of the Interfacial Potential Distribution on the. Measurement of the Rate Constant for Electron Transfer between

The Effect of the Interfacial Potential Distribution on the. Measurement of the Rate Constant for Electron Transfer between The Effect of the Interfacial Potential Distribution on the Measurement of the Rate Constant for Electron Transfer between Electrodes and Redox Adsorbates Michael J. Honeychurch* Department of Chemistry,

More information

FUEL CELLS in energy technology (4)

FUEL CELLS in energy technology (4) Fuel Cells 1 FUEL CELLS in energy technology (4) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU Munich summer term 213 Fuel Cells 2 Nernst equation and its application to fuel

More information

Cyclic Voltammetry. Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system

Cyclic Voltammetry. Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system Cyclic Voltammetry Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system Introduction Cyclic voltammetry (CV) is a popular electroanalytical technique for its relative simplicity

More information

Nanoscale electrochemistry

Nanoscale electrochemistry Electrical characterisation of nanoscale samples & biochemical interfaces: methods and electronic instrumentation Nanoscale electrochemistry Giorgio Ferrari Dipartimento di elettronica, informazione e

More information

Single Nanoparticle Electrocatalysis: Effect of Monolayers on Particle and Electrode on Electron Transfer

Single Nanoparticle Electrocatalysis: Effect of Monolayers on Particle and Electrode on Electron Transfer 14978 J. Phys. Chem. C 2009, 113, 14978 14982 Single Nanoparticle Electrocatalysis: Effect of Monolayers on Particle and Electrode on Electron Transfer Xiaoyin Xiao, Shanlin Pan, Jum Suk Jang, Fu-Ren F.

More information

Electron exchange between two electrodes mediated by two electroactive adsorbates

Electron exchange between two electrodes mediated by two electroactive adsorbates Electron exchange between two electrodes mediated by two electroactive adsorbates W. Schmickler,* a Maria Anita Rampi, b E. Tran c and G. M. Whitesides c a Abteilung Elektrochemie, University of Ulm, D-89069

More information

Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale

Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale NANO LETTERS 2006 Vol. 6, No. 11 2531-2535 Diego Krapf, Bernadette M. Quinn, Meng-Yue Wu, Henny W. Zandbergen, Cees Dekker,

More information

Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes

Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes Presented at the COMSOL Conference 2010 China Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes Zhang Qianfan, Liu Yuwen, Chen Shengli * College of Chemistry and Molecular Science,

More information

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Supplemental Materials for Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Wenchao Sheng, a MyatNoeZin Myint, a Jingguang G.

More information

Electrode kinetics, finally!

Electrode kinetics, finally! 1183 Q: What s in this set of lectures? A: B&F Chapter 3 main concepts: Sections 3.1 & 3.6: Homogeneous Electron-Transfer (ET) (Arrhenius, Eyring, TST (ACT), Marcus Theory) Sections 3.2, 3.3, 3.4 & 3.6:

More information

Collision and Oxidation of Silver Nanoparticles on a Gold Nanoband Electrode

Collision and Oxidation of Silver Nanoparticles on a Gold Nanoband Electrode Supporting Information for: Collision and Oxidation of Silver Nanoparticles on a Gold Nanoband Electrode Fan Zhang, Martin A. Edwards, Rui Hao, Henry S. White, * and Bo Zhang * Department of Chemistry,

More information

Supporting Information. In-Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of

Supporting Information. In-Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of Supporting Information In-Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of Magnetite Electrodeposition by Scanning Electrochemical Microscopy Mohsin A Bhat, #, Nikoloz Nioradze,

More information

Supporting Information: Reaction Layer Imaging Using Fluorescence Electrochemical Microscopy

Supporting Information: Reaction Layer Imaging Using Fluorescence Electrochemical Microscopy Supporting Information: Reaction Layer Imaging Using Fluorescence Electrochemical Microscopy Minjun Yang 1, Christopher Batchelor-McAuley 1, Enno Kätelhön 1, Richard G. Compton 1 () 1 Department of Chemistry,

More information

Scanning Electrochemical Microscopy. 45. Study of the Kinetics of Oxygen Reduction on Platinum with Potential Programming of the Tip

Scanning Electrochemical Microscopy. 45. Study of the Kinetics of Oxygen Reduction on Platinum with Potential Programming of the Tip J. Phys. Chem. B 2002, 106, 12801-12806 12801 Scanning Electrochemical Microscopy. 45. Study of the Kinetics of Oxygen Reduction on Platinum with Potential Programming of the Tip Biao Liu and Allen J.

More information

Hydrodynamic Electrodes and Microelectrodes

Hydrodynamic Electrodes and Microelectrodes CHEM465/865, 2004-3, Lecture 20, 27 th Sep., 2004 Hydrodynamic Electrodes and Microelectrodes So far we have been considering processes at planar electrodes. We have focused on the interplay of diffusion

More information

The Study of Multiple Electron Transfer Reactions by Cyclic Voltammetry

The Study of Multiple Electron Transfer Reactions by Cyclic Voltammetry The Study of ultiple Electron Transfer Reactions by Cyclic Voltammetry Adrian W. Bott, Ph.D. Bioanalytical Systems West Lafayette, IN 47906-1382 Phone: 765-463-4527 FAX: 765-497-1102 E-ail: awb@bioanalytical.com

More information

Lecture 12: Electroanalytical Chemistry (I)

Lecture 12: Electroanalytical Chemistry (I) Lecture 12: Electroanalytical Chemistry (I) 1 Electrochemistry Electrochemical processes are oxidation-reduction reactions in which: Chemical energy of a spontaneous reaction is converted to electricity

More information

Scanning Electrochemical Microscopy. 59. Effect of Defects and Structure on Electron Transfer through Self-Assembled Monolayers

Scanning Electrochemical Microscopy. 59. Effect of Defects and Structure on Electron Transfer through Self-Assembled Monolayers Langmuir 2008, 24, 2841-2849 2841 Scanning Electrochemical Microscopy. 59. Effect of Defects and Structure on Electron Transfer through Self-Assembled Monolayers Abolfazl Kiani,, Mario A. Alpuche-Aviles,

More information

Mobility and Reactivity of Oxygen Adspecies on Platinum Surface

Mobility and Reactivity of Oxygen Adspecies on Platinum Surface Mobility and Reactivity of Oxygen Adspecies on Platinum Surface Wei Wang, Jie Zhang, Fangfang Wang, Bing-Wei Mao, Dongping Zhan*, Zhong-Qun Tian State Key Laboratory of Physical Chemistry of Solid Surfaces,

More information

690 Lecture #10 of 18

690 Lecture #10 of 18 Lecture #10 of 18 690 691 Q: What s in this set of lectures? A: B&F Chapters 4 & 5 main concepts: Section 4.4.2: Section 5.1: Section 5.2: Section 5.3 & 5.9: Fick s Second Law of Diffusion Overview of

More information

Electrocatalytic Currents from Single Enzyme Molecules

Electrocatalytic Currents from Single Enzyme Molecules Supporting Information Electrocatalytic Currents from Single Enzyme Molecules Alina N. Sekretaryova, * Mikhail Yu. Vagin,, Anthony P.F. Turner, and Mats Eriksson Department of Physics, Chemistry and Biology,

More information

Square-wave Voltammetry of Two-step Electrode Reaction

Square-wave Voltammetry of Two-step Electrode Reaction Int. J. Electrochem. Sci., 9 (2014) 435-444 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Square-wave Voltammetry of Two-step Electrode Reaction Šebojka Komorsky-Lovrić and Milivoj

More information

Impact of Adsorption on Scanning Electrochemical Microscopy. Voltammetry and Implications for Nanogap Measurements

Impact of Adsorption on Scanning Electrochemical Microscopy. Voltammetry and Implications for Nanogap Measurements Supporting Information Impact of Adsorption on Scanning Electrochemical Microscopy Voltammetry and Implications for Nanogap Measurements Sze-yin Tan,, Jie Zhang, Alan M. Bond, Julie V. Macpherson, Patrick

More information

Investigation of the diffusion of ferricyanide through porous membranes using the SECM150

Investigation of the diffusion of ferricyanide through porous membranes using the SECM150 Investigation of the diffusion of ferricyanide through porous membranes using the SECM150 I INTRODUCTION Scanning ElectroChemical Microscopy (SECM) has the ability to provide spatially resolved, rather

More information

Evaluation of Uncompensated Solution Resistance for Electrodes with Spherical-Cap Geometry

Evaluation of Uncompensated Solution Resistance for Electrodes with Spherical-Cap Geometry Anal. Chem. 2000, 72, 454-458 Evaluation of Uncompensated Solution Resistance for Electrodes with Spherical-Cap Geometry Sun Hee Hong, Charoenkwan Kraiya, Mark W. Lehmann, and Dennis H. Evans* Department

More information

1298 Lecture #18 of 18

1298 Lecture #18 of 18 Lecture #18 of 18 1298 1299 Q: What s in this set of lectures? A: B&F Chapters 9, 10, and 6 main concepts: Sections 9.1 9.4: Sections 10.1 10.4: Rotating (Ring-)Disk Electrochemistry Electrochemical Impedance

More information

Scanning Electrochemical Microscopy. 57. SECM Tip Voltammetry at Different Substrate Potentials under Quasi-Steady-State and Steady-State Conditions

Scanning Electrochemical Microscopy. 57. SECM Tip Voltammetry at Different Substrate Potentials under Quasi-Steady-State and Steady-State Conditions Anal. Chem. 2007, 79, 4957-4966 Scanning Electrochemical Microscopy. 57. SECM Tip Voltammetry at Different Substrate Potentials under Quasi-Steady-State and Steady-State Conditions Cynthia G. Zoski,*,

More information

Single Molecule Electrochemistry on a Porous Silica-Coated Electrode

Single Molecule Electrochemistry on a Porous Silica-Coated Electrode Supporting information for Single Molecule Electrochemistry on a Porous Silica-Coated Electrode Jin Lu, Yunshan Fan, Marco Howard, Joshua C. Vaughan, and Bo Zhang* Department of Chemistry, University of

More information

Charge Percolation in Redox-Active Thin Membrane Hybrids of Mesoporous Silica and Poly(viologens)

Charge Percolation in Redox-Active Thin Membrane Hybrids of Mesoporous Silica and Poly(viologens) Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2019 Electronic Supplementary Information for Charge Percolation in Redox-Active Thin

More information

Proton-Coupled Electron Transfer Kinetics for the Hydrogen Evolution Reaction of Hangman Porphyrins

Proton-Coupled Electron Transfer Kinetics for the Hydrogen Evolution Reaction of Hangman Porphyrins Electronic Supplementary Information Proton-Coupled Electron Transfer Kinetics for the Hydrogen Evolution Reaction of Hangman Porphyrins Manolis M. Roubelakis, D. Kwabena Bediako, Dilek K. Dogutan and

More information

m, so the study of fast reactions requires measurements at az2 ar2 a2c, a2c, ac, =:o

m, so the study of fast reactions requires measurements at az2 ar2 a2c, a2c, ac, =:o 7672 J. Phys. Chem. 1993,97, 7672-7677 Scanning Electrochemical Microscopy. 20. Steady-State Measurements of the Fast Heterogeneous Kinetics in the Ferrocene/Acetonitrile System Michael V. Mirkin, Thomas

More information

Effect of strength of gravitational field on electrode processes. Mirza Wasif Baig 1. CZ Prague 8, Czech Republic

Effect of strength of gravitational field on electrode processes. Mirza Wasif Baig 1. CZ Prague 8, Czech Republic Effect of strength of gravitational field on electrode processes Mirza Wasif Baig 1 1 J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, CZ-18223 Prague 8, Czech Republic

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

Contents. Publisher s Foreword. Glossary of Symbols and Abbreviations

Contents. Publisher s Foreword. Glossary of Symbols and Abbreviations Publisher s Foreword Glossary of Symbols and Abbreviations v xiii 1 Equilibrium Electrochemistry and the Nernst Equation 1 1.1 Cell Thermodynamics....................... 1 1.2 The Nernst Equation........................

More information

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious Goals 41 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

Subject: A Review of Techniques for Electrochemical Analysis

Subject: A Review of Techniques for Electrochemical Analysis Application Note E-4 Subject: A Review of Techniques for Electrochemical Analysis INTRODUCTION Electrochemistry is the study of the chemical response of a system to an electrical stimulation. The scientist

More information

DETECTION OF VOCS IN AIR USING MICROELECTRODE SENSORS

DETECTION OF VOCS IN AIR USING MICROELECTRODE SENSORS JPACSM 62 DETECTION OF VOCS IN AIR USING MICROELECTRODE SENSORS P.A. Mosier-Boss and S.H. Lieberman SPAWAR System Center-San Diego San Diego, CA ABSTRACT The use of microelectrode sensors to detect volatile

More information

Fundamental molecular electrochemistry - potential sweep voltammetry

Fundamental molecular electrochemistry - potential sweep voltammetry Fundamental molecular electrochemistry - potential sweep voltammetry Potential (aka voltammetric) sweep methods are the most common electrochemical methods in use by chemists today They provide an efficient

More information

Probing into the Electrical Double Layer Using a Potential Nano-Probe

Probing into the Electrical Double Layer Using a Potential Nano-Probe A3 Foresight Program, 2. 27-3. 1, 26 Probing into the Electrical Double Layer Using a Potential Nano-Probe Heon Kang ( 姜憲 ) Department of Chemistry, Seoul National University, Republic of Korea (E-mail:

More information

Single-Molecule Fluorescence Imaging of. Nanocatalytic Processes

Single-Molecule Fluorescence Imaging of. Nanocatalytic Processes Single-Molecule Fluorescence Imaging of Nanocatalytic Processes Da Huang Catalyst is a substance that could change the rate of a chemical reaction and it plays important roles in daily lives, such as in

More information

Scanning Electrochemical Microscopy: Theory and Characterization of Electrodes of Finite Conical Geometry

Scanning Electrochemical Microscopy: Theory and Characterization of Electrodes of Finite Conical Geometry Anal. Chem. 2004, 76, 3646-3654 Scanning Electrochemical Microscopy: Theory and Characterization of Electrodes of Finite Conical Geometry Cynthia G. Zoski,*, Biao Liu, and Allen J. Bard Department of Chemistry,

More information

Overview of electrochemistry

Overview of electrochemistry Overview of electrochemistry 1 Homogeneous Heterogeneous Equilibrium electrochemistry (no current flows) Thermodynamics of electrolyte solutions: electrolytic dissociation thermodynamics and activities

More information

8 Phenomenological treatment of electron-transfer reactions

8 Phenomenological treatment of electron-transfer reactions 8 Phenomenological treatment of electron-transfer reactions 8.1 Outer-sphere electron-transfer Electron-transfer reactions are the simplest class of electrochemical reactions. They play a special role

More information

The Electrochemical Isotope Effect Redox driven stable isotope fractionation

The Electrochemical Isotope Effect Redox driven stable isotope fractionation The Electrochemical Isotope Effect Redox driven stable isotope fractionation Redox reactions (involving an electron transfer) drive many chemical transformations in the environment and are vital in biological

More information

A High-Speed Multipass Coulter Counter with Ultra-High Resolution

A High-Speed Multipass Coulter Counter with Ultra-High Resolution Supporting Information A High-Speed Multipass Coulter Counter with Ultra-High Resolution Martin A Edwards, Sean R German, Jeffrey E Dick, Allen J Bard, Henry S White * Department of Chemistry, University

More information

Cyclic voltammetry at a regular microdisc electrode array

Cyclic voltammetry at a regular microdisc electrode array Journal of Electroanalytical Chemistry 502 (2001) 138 145 www.elsevier.nl/locate/jelechem Cyclic voltammetry at a regular microdisc electrode array Hye Jin Lee, Carine Beriet, Rosaria Ferrigno, Hubert

More information

Supporting Information

Supporting Information Supporting Information 1 The influence of alkali metal cations upon AQ redox system Figure 1 depicts the anthraquinone-2-sulfonate (AQ) redox signals in aqueous solutions supported with various alkali

More information

Experimental test of an expression for the decay of an autocorrelation function

Experimental test of an expression for the decay of an autocorrelation function Supplemental Material for: Experimental test of an expression for the decay of an autocorrelation function Journal: Physical Review Letters Authors: Zach Haralson and J. Goree I. Experimental setup The

More information

Introduction to Cyclic Voltammetry Measurements *

Introduction to Cyclic Voltammetry Measurements * OpenStax-CNX module: m34669 1 Introduction to Cyclic Voltammetry Measurements * Xianyu Li Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

Temperature effects on the potential window of water and acetonitrile and heterogeneous electron transfer rates of outer sphere redox probes

Temperature effects on the potential window of water and acetonitrile and heterogeneous electron transfer rates of outer sphere redox probes University of Iowa Iowa Research Online Theses and Dissertations Fall 2014 Temperature effects on the potential window of water and acetonitrile and heterogeneous electron transfer rates of outer sphere

More information

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2 Goals 43 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

Charge and mass transfer across the metal-solution interface. E. Gileadi School of Chemistry Tel-Aviv University, ISRAEL

Charge and mass transfer across the metal-solution interface. E. Gileadi School of Chemistry Tel-Aviv University, ISRAEL Charge and mass transfer across the metal-solution interface E. Gileadi School of Chemistry Tel-Aviv University, ISRAEL gileadi@post.tau.ac.il 1 Time-Resolved Kinetics The idea of different time scales

More information

Gabriel Ybarra Instituto Nacional de Tecnología Industrial San Martín, Argentina

Gabriel Ybarra Instituto Nacional de Tecnología Industrial San Martín, Argentina An Approach Based on Random Walks to Simulate Concentration Profiles and Current Transients in Electrochemical Processes Controlled by Mixed Diffusion- Migration Uma Abordagem Baseada em Caminhos Randômicos

More information

Disk-Generation/Ring-Collection Scanning Electrochemical Microscopy: Theory and Application

Disk-Generation/Ring-Collection Scanning Electrochemical Microscopy: Theory and Application Anal. Chem. 2002, 74, 1972-1978 Disk-Generation/Ring-Collection Scanning Electrochemical Microscopy: Theory and Application Peter Liljeroth, Christoffer Johans, Christopher J. Slevin, Bernadette M. Quinn,*

More information

Cyclic Voltammetric Simulation for Electrochemically Mediated Enzyme Reaction and Determination of Enzyme Kinetic Constants

Cyclic Voltammetric Simulation for Electrochemically Mediated Enzyme Reaction and Determination of Enzyme Kinetic Constants Anal. Chem. 1998, 70, 3368-3376 Cyclic Voltammetric Simulation for Electrochemically Mediated Enzyme Reaction and Determination of Enzyme Kinetic Constants Kenji Yokoyama* and Yoshihiro Kayanuma School

More information

Guanosine oxidation explored by pulse radiolysis coupled with transient electrochemistry. Electronic Supplementary Information

Guanosine oxidation explored by pulse radiolysis coupled with transient electrochemistry. Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Guanosine oxidation explored by pulse radiolysis coupled with transient electrochemistry. A. Latus,

More information

CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY

CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY Page No. 175-187 5.1 Introduction 5.2 Theoretical 5.3 Experimental 5.4 References 5. 1 Introduction Electrochemical

More information

Chemistry 12 - Learning Outcomes

Chemistry 12 - Learning Outcomes Chemistry 12 - Learning Outcomes A: Chapt 1. Reaction Kinetics - (Introduction) A1. give examples of reactions proceeding at different rates A2. describe rate in terms of some quantity (produced or consumed)

More information

Keysight Technologies Introduction to SECM and Combined AFM-SECM. Application Note

Keysight Technologies Introduction to SECM and Combined AFM-SECM. Application Note Keysight Technologies Introduction to SECM and Combined AFM-SECM Application Note Introduction Scanning electrochemical microscopy (SECM) is a powerful scanning probe technique, which is suitable for investigating

More information

Calorimetric Principles and Problems in Pd-D 2 O Electrolysis

Calorimetric Principles and Problems in Pd-D 2 O Electrolysis The Third International Conference on Cold Fusion. 1991. Nagoya, Japan:, Universal Academy Press, Inc., Tokyo: p. 113. Calorimetric Principles and Problems in Pd-D 2 O Electrolysis Melvin H. MILES and

More information

Basic Concepts of Electrochemistry

Basic Concepts of Electrochemistry ELECTROCHEMISTRY Electricity-driven Chemistry or Chemistry-driven Electricity Electricity: Chemistry (redox): charge flow (electrons, holes, ions) reduction = electron uptake oxidation = electron loss

More information

Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA)

Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA) Electrochemistry - Application note n 2 Protocols for studying intercalation electrodes materials: Part II: Potentiodynamic Cycling with Galvanostatic Acceleration (PCGA) Available instruments for the

More information

Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure

Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure Supporting Information Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure Tina D. Dolidze, Dimitri E. Khoshtariya,* Peter Illner and Rudi van Eldik* a)

More information

Amperometric biosensors

Amperometric biosensors Electrochemical biosensors II: Amperometric biosensors Lecture 2 Amperometric Sensors: Problem formulation amperometric techniques have some selectivity as every RedOx reaction has it s own characteristic

More information

Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model

Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model Journal of Power Sources 165 (2007 880 886 Short communication Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model Qi Zhang, Ralph E. White Center

More information

Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid

Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid Supporting Information: Formic acid electro-synthesis from carbon dioxide in a room temperature ionic liquid Benjamin C. M. Martindale and Richard G. Compton a * Department of Chemistry, Physical and Theoretical

More information

CHEMISTRY 12 SYLLABUS Online 2010

CHEMISTRY 12 SYLLABUS Online 2010 CHEMISTRY 12 SYLLABUS Online 2010 Mr. Lockwood Email: plockwood@sd43.bc.ca Personal: https://my43.sd43.bc.ca/schools/pinetreesecondary/classes/plockwood/default.aspx UserName: Password: WebCT: http://bb.etc.bc.ca/webct/entrypageins.dowebct

More information

239 Lecture #4 of 18

239 Lecture #4 of 18 Lecture #4 of 18 239 240 Q: What s in this set of lectures? A: Introduction, Review, and B&F Chapter 1, 15 & 4 main concepts: Section 1.1: Redox reactions Chapter 15: Electrochemical instrumentation Section

More information

Supporting Information

Supporting Information Supporting Information Electrogenerated Chemiluminescence of Single Conjugated Polymer Nanoparticles Ya-Lan Chang, Rodrigo E. Palacios, Fu-Ren F. Fan, Allen J. Bard, and Paul F. Barbara Department of Chemistry

More information

ELECTRODES PART i MOD. - U) UTAH UNIV SALT LAKE CITY DEPT OF CHEMISTRY A S HINMAN ET AL. 28 NOV 84 TR-38 UNCLASSIFIED N14-83-K-0478F/G 7/4 NL I..EE...

ELECTRODES PART i MOD. - U) UTAH UNIV SALT LAKE CITY DEPT OF CHEMISTRY A S HINMAN ET AL. 28 NOV 84 TR-38 UNCLASSIFIED N14-83-K-0478F/G 7/4 NL I..EE... ELECTRODES PART i MOD. - U) UTAH UNIV SALT LAKE CITY DEPT OF CHEMISTRY A S HINMAN ET AL. 28 NOV 84 TR-38 UNCLASSIFIED N14-83-K-0478F/G 7/4 NL I..EE... Kr L-, - S1..o --I ' o ' -- 4 -IONAL M IlIRCP RESLION--

More information

In all electrochemical methods, the rate of oxidation & reduction depend on: 1) rate & means by which soluble species reach electrode surface (mass

In all electrochemical methods, the rate of oxidation & reduction depend on: 1) rate & means by which soluble species reach electrode surface (mass Voltammetry Methods based on an electrolytic cell Apply potential or current to electrochemical cell & concentrations change at electrode surface due to oxidation & reduction reactions Can have 2 or 3

More information

Components of output signal in Chronoamperometry

Components of output signal in Chronoamperometry Chronoamperometry Stationary electrode Unstirred = mass transport by diffusion Constant potential Measure current vs time Theory assume Ox + n e - Red - both Ox and Red are soluble - reversible reaction

More information

The development of algebraic methods to compute

The development of algebraic methods to compute Ion Energy in Quadrupole Mass Spectrometry Vladimir Baranov MDS SCIEX, Concord, Ontario, Canada Application of an analytical solution of the Mathieu equation in conjunction with algebraic presentation

More information

Special Lecture Series Biosensors and Instrumentation

Special Lecture Series Biosensors and Instrumentation !1 Special Lecture Series Biosensors and Instrumentation Lecture 2: Introduction to Electrochemistry Electrochemistry Basics Electrochemistry is the study of electron transfer processes that normally occur

More information

Supporting Information: Ultra-Sensitive Potentiometric Measurements of Dilute Redox Molecule

Supporting Information: Ultra-Sensitive Potentiometric Measurements of Dilute Redox Molecule Supporting Information: Ultra-Sensitive Potentiometric Measurements of Dilute Redox Molecule Solutions and Determination of Sensitivity Factors at Platinum Ultramicroelectrodes Stephen J. Percival and

More information

Supplemental Information (SI): Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of

Supplemental Information (SI): Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of Supplemental Information (SI: Cobalt-iron (oxyhydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism Michaela S. Burke, Matthew G. Kast,

More information

Scanning electrochemical microscopy (SECM) is a wellestablished

Scanning electrochemical microscopy (SECM) is a wellestablished pubs.acs.org/ac Electrophoretic Migration and Particle Collisions in Scanning Electrochemical Microscopy Aliaksei Boika and Allen J. Bard* Center for Electrochemistry, Department of Chemistry and Biochemistry,

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Advanced Analytical Chemistry Lecture 19. Chem 4631

Advanced Analytical Chemistry Lecture 19. Chem 4631 Advanced Analytical Chemistry Lecture 19 Chem 4631 Organic Electrochemistry is a multidisciplinary science overlapping the fields of organic chemistry, biochemistry, physical chemistry and electrochemistry.

More information

Current Rectification at Quartz Nanopipet Electrodes

Current Rectification at Quartz Nanopipet Electrodes Anal. Chem. 1997, 69, 4627-4633 Current Rectification at Quartz Nanopipet Electrodes Chang Wei and Allen J. Bard* Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas

More information

Effect of the Inner-Zone Vibrations on the Dynamics of Collision-Induced Intramolecular Energy Flow in Highly Excited Toluene

Effect of the Inner-Zone Vibrations on the Dynamics of Collision-Induced Intramolecular Energy Flow in Highly Excited Toluene Notes Bull. Korean Chem. Soc. 2005, Vol. 26, No. 8 1269 Effect of the Inner-Zone Vibrations on the Dynamics of Collision-Induced Intramolecular Energy Flow in Highly Excited Toluene Jongbaik Ree, * Yoo

More information

Chapter 6 Potential Sweep Methods

Chapter 6 Potential Sweep Methods Chapter 6 Potential Sweep Methods Linear Sweep Voltammetry E Perturbation signal: E(t) E i + υt E i E f υ = scan rate = ± V/s Time Ox + e - Red i p α C o i 0 /2 i p E (vs. ref) Macroelectrodes: max. 1000

More information

Supporting Information

Supporting Information Supporting Information Metal to Halide Perovskite )HaP(: an Alternative Route to HaP Coating Directly from Pb (0) or Sn (0) films Yevgeny Rakita, Satyajit Gupta, David Cahen*, Gary Hodes* Department of

More information

EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics

EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics EMA4303/5305 Electrochemical Engineering Lecture 03 Electrochemical Kinetics Dr. Junheng Xing, Prof. Zhe Cheng Mechanical & Materials Engineering Florida International University 2 Electrochemical Kinetics

More information

Supporting Information for: Dependence and Quantitative Modeling

Supporting Information for: Dependence and Quantitative Modeling Supporting Information for: Tip-Enhanced Raman Voltammetry: Coverage Dependence and Quantitative Modeling Michael Mattei, Gyeongwon Kang, Guillaume Goubert, Dhabih V. Chulhai, George C. Schatz, Lasse Jensen,

More information

t = no of steps of length s

t = no of steps of length s s t = no of steps of length s Figure : Schematic of the path of a diffusing molecule, for example, one in a gas or a liquid. The particle is moving in steps of length s. For a molecule in a liquid the

More information

Self-discharge of electrochemical capacitors based on soluble or grafted quinone

Self-discharge of electrochemical capacitors based on soluble or grafted quinone Electronic Supplementary Material (ESI for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Electronic Supplementary Information Self-discharge of electrochemical capacitors

More information

N. Borisenko, J. Sytchev, G. Kaptay

N. Borisenko, J. Sytchev, G. Kaptay Journal of Mining and Metallurgy, 39 (1 2) B (2003) 269-381. ELECTROCHEMICAL STUDY OF THE ELECTRODEPOSITION AND INTERCALATION OF SODIUM INTO GRAPHITE FROM SODIUM CHLORIDE AS THE FIRST STEP OF CARBON NANO-TUBES

More information

Lecture 18 Molecular Motion and Kinetic Energy

Lecture 18 Molecular Motion and Kinetic Energy Physical Principles in Biology Biology 3550 Fall 2017 Lecture 18 Molecular Motion and Kinetic Energy Monday, 2 October c David P. Goldenberg University of Utah goldenberg@biology.utah.edu Fick s First

More information

Scanning Electrochemical Microscopy. 55. Fabrication and Characterization of Micropipet Probes

Scanning Electrochemical Microscopy. 55. Fabrication and Characterization of Micropipet Probes Anal. Chem. 2005, 77, 5182-5188 Scanning Electrochemical Microscopy. 55. Fabrication and Characterization of Micropipet Probes Darren A. Walsh, José L. Fernández, Janine Mauzeroll, and Allen J. Bard* Department

More information

Simulation of Neurotransmitter Sensing by Cyclic Voltammetry under Mechanical Motion of a Neural Electrode

Simulation of Neurotransmitter Sensing by Cyclic Voltammetry under Mechanical Motion of a Neural Electrode Simulation of Neurotransmitter Sensing by Cyclic Voltammetry under Mechanical Motion of a Neural Electrode Seonhye Han 1, Michael Polanco 2, Hargsoon Yoon 1, Sebastian Bawab 2 1 Neural Engineering and

More information

Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate

Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate Taylor J. Woehl, * Chiwoo Park, James E. Evans, Ilke Arslan, William D. Ristenpart, and

More information

Lecture 14. Electrolysis.

Lecture 14. Electrolysis. Lecture 14 Electrolysis: Electrosynthesis and Electroplating. 95 Electrolysis. Redox reactions in which the change in Gibbs energy G is positive do not occur spontaneously. However they can be driven via

More information

CHEM465/865 Electrochemistry

CHEM465/865 Electrochemistry CHEM465/865 Electrochemistry Instructor: Dr. Michael Eikerling Office: C9034 Phone: 604-291-4463 e-mail: meikerl@sfu.ca Office hours (room C9034) : Friday: 1 2 pm Monday, Wednesday: 10:30 11:30 am Tutorials

More information

Direct Measurement of Electron Transfer through a Hydrogen Bond

Direct Measurement of Electron Transfer through a Hydrogen Bond Supporting Information Direct Measurement of Electron Transfer through a Hydrogen Bond between Single Molecules Tomoaki Nishino,*, Nobuhiko Hayashi, and Phuc T. Bui Nanoscience and Nanotechnology Research

More information

Added topics: depend on time/rate - Skipped

Added topics: depend on time/rate - Skipped VIa- 1 Added topics: depend on time/rate - Skipped - 2012 a) diffusion rate material moves in medium faster motion more friction affect equilibrium separations like electrophoresis HPLC pharmacological

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

Au-C Au-Au. g(r) r/a. Supplementary Figures

Au-C Au-Au. g(r) r/a. Supplementary Figures g(r) Supplementary Figures 60 50 40 30 20 10 0 Au-C Au-Au 2 4 r/a 6 8 Supplementary Figure 1 Radial bond distributions for Au-C and Au-Au bond. The zero density regime between the first two peaks in g

More information

Scanning Electrochemical Microscopy. 34. Potential Dependence of the Electron-Transfer Rate and Film Formation at the Liquid/Liquid Interface

Scanning Electrochemical Microscopy. 34. Potential Dependence of the Electron-Transfer Rate and Film Formation at the Liquid/Liquid Interface J. Phys. Chem. 1996, 100, 17881-17888 17881 Scanning Electrochemical Microscopy. 34. Potential Dependence of the Electron-Transfer Rate and Film Formation at the Liquid/Liquid Interface Michael Tsionsky

More information