CHEM UNIT 9: Chemical Reactions and Stoichiometry

Size: px
Start display at page:

Download "CHEM UNIT 9: Chemical Reactions and Stoichiometry"

Transcription

1 CHEM UNIT 9: Chemical Reactions and Stoichiometry This is a good website that has videos of Mr. Cummings (our Chem. Dept. Head) lecturing on topics. For this unit, we recommend videos #34, #35, #36, and #37. Another useful video on Limiting Reagents and %Yield is at: Review of Key Old Material and Skills: Make Sure You Know All the Words in Bold!! Compounds: Chemicals that are composed of two (or more) different types of Elements. Ionic Compounds: Compounds composed of at least one Cation (+) and one Anion (-), which are bonded by Ionic Bonds. Almost all of these contain metal ions (some exceptions, e.g. NH4Cl) Molecules: Chemicals whose atoms are attached by Covalent Bonds. Molecular Elements: Only have one type of element (e.g. H2, N2, Cl2, S8) Molecular Compounds: Have two or more different kinds of elements. (e.g. H2O, C6H12O6) Atomic Mass: The Mass of one atom of an element in amu (Atomic Mass Units). Atomic Masses are found on the Periodic Table (P.T.) Molar Mass: Molar Mass (g/mol.) is the mass of one mole of something. Its units are grams per mole (g/mol.). Molar Mass (g/mol.) for single Atoms is just the P.T. Atomic Mass, but with the units changed to g/mol. Molar Mass (g/mol.) for Compounds or Molecules is just the sum of all of the atoms in the Chemical Formula. Scientific Notation: An easy way to express very big or very small numbers (or anything in between). Percent: Calculating Percentages (%) Four Key Math Tools for using Moles in Chemistry: A. (#Moles) x (A.N.) = #Particles A.N. = Avogadro s Number = x B. (#Particles) / (A.N) = #Moles C. (#Moles) x (Molar Mass) = #Grams D. (#Grams / Molar Mass) = #Moles 1

2 CHEMICAL REACTIONS Chemical Reactions: When chemicals change into other chemicals. Reactants: In a Chemical Reaction, the chemicals that are going to be changed. Products: In a Chemical Reaction, the new chemicals that are left after a reaction is finished. CHEMICAL EQUATIONS: Chemical Equations are a way to describe and show chemical reactions. They are not math equations, but are like them in that there is a left and a right side, connected by a symbol. They may also contain numbers like math equations do, but these have special meanings. Here s one for reacting Glucose with Oxygen: C6H12O6 + O2 H2O + CO2 In Chemical Equations, Reactants always go on the left side, and Products go on the right side. We use plus signs (+) between reactants to indicate they are reacting with each other. We use an arrow ( ) to point to the products on the right side. The (+) between the products is just used to separate them, the products are not reacting with each other! Be careful, symbols may have more than one meaning! For example, what do the two (+) signs in this equation mean? Ag +1 + Cl -1 AgCl Do they mean the same thing? NO! In Ag +1, the (+) in the superscript means a positive charge. But, the (+) between the two reactants means they are reacting with each other. DIATOMIC ELEMENTS: Recall Diatomic Molecules are molecules made of just two atoms. (e.g. HCl, CO, HF, H 2, O 2 ) Diatomic Elements are elements that occur naturally as diatomic molecules. There are seven Diatomic Elements: H 2, N 2, O 2, F 2, Cl 2, Br 2, and I 2. Note that F 2, Cl 2, Br 2, and I 2 are all halogens, are diatomic. (So all halogens are diatomic!) BALANCED CHEMICAL EQUATIONS: (The Law of Conservation of Matter / Mass) Balanced Chemical Equations have the same number of atoms of each type of element on both the reactant side and the product side. Not Balanced: N2 + 3H2 2NH3 Balanced: N2 + H2 NH3 BALANCING CHEMICAL EQUATIONS: How do I do it? List each element that is found on the reactant side (left side) of the chemical equation. Duplicate that list beneath the product side (right side) Count the number of atoms of each type of element on the reactant side, and record this. Count the number of atoms of each type of element on the product side, and record this. If the numbers for each element are the same for each side, it s balanced already!! No more work needs to be done! 2

3 BALANCING CHEMICAL EQUATIONS: (continued) If the numbers are not the same, you must balance the equation by using Coefficients. Coefficients are integer numbers that are put in front of chemical formulas to show how many moles of each reactant or product chemical are needed in a balanced chemical equation. Example: Here s an unbalanced equation: C6H12O6 + O2 H2O + CO2 Here s the Balanced version: C6H12O6 + 6O2 6H2O + 6CO2 The Coefficients are 1, 6, 6, and 6. (If a Coefficient is 1, we don t write it down, we assume it s there.) Do not confuse Coefficients with Subscripts!!! Subscripts are used in Formulas for Chemicals to shown how many atoms of an element are in a chemical. Changing subscripts will indicate a new, different chemical. We cannot change the reactant or product chemicals when balancing!! Example: H2O is water, one water has two H and one O. H2O2 is hydrogen peroxide, one molecule has two H and two O, it is not water! However, 2H2O means we have two H2O, or two moles of H2O. 2H2O is not a new chemical! MOLAR RATIOS: Molar Ratios are the integer Coefficients from a Balanced equation, arranged starting with the reactant coefficients, and ending with the product ones. Example: For C6H12O6 + 6O2 6H2O + 6CO2, the Molar Ratios are 1 : 6 : 6 : 6 Again, don t confuse Coefficients with Subscripts!!! Only Coefficients are used for Molar Ratios. STOICHIOMETRY: Stoichiometry is the study of mole mass relationships in chemical reactions. The figure below shows the main relationships between reactant mass, reactant moles, product moles, and product mass. Theoretical Yield Actual Yield %Yield Stoichiometry requires balanced chemical equations, the use of molar ratios, understanding of percentages, the use of the four key math tools for using moles in chemistry, and, most importantly, applied common sense. In doing Stoichiometry, you must be able to calculate Molar Masses, convert from grams to moles (g moles) and from moles to grams (moles g). You must also be able to go from moles reactant to moles product using molar ratios. 3

4 LIMITING REACTANTS: Limiting Reactant: In a chemical reaction, the one reactant whose amount limits (determines) the amount of product that can be made. All Reactants that are not the Limiting Reactant are in excess, and some of these will be left over after the reaction has finished. THEORETICAL YIELD: Theoretical Yield is the calculated amount of product that can be made. (If everything goes perfectly!) You must know what the Limiting Reactant is in order to calculate Theoretical Yield. ACTUAL YIELD: Actual Yield is the actual, measured amount of product that is made. Actual Yield must be measured, not just calculated. Actual Yield can never be larger than the Theoretical Yield! (This would not obey the Law of Conservation of Matter (or Mass). PERCENT YIELD (%YIELD): Percent Yield is a measure of the quality of how well a reaction was performed! Calculation of %Yield: %Yield = 100 x (Actual Yield / Theoretical Yield) %Yield can never be greater than 100%! (This would not obey the Law of Conservation of Matter (or Mass). We cannot create matter from nothing!! THE BIG PICTURE: The figure below is the BIG PICTURE for Stoichiometry. You must understand it! Note the four boxes connected to each other. From any one box, we can go to any other box, PROVIDED we have a balanced equation AND, we know how to calculate Molar Mass and how to use the key math tools for using moles. Note we hardly every use Avogadro s Number!! Never use Avogadro s Number unless you are very sure you need it!! 4

5 Key Vocabulary Words and Skills: (The ones inside the box are review from previous units. Compounds Ionic Compounds Molecules Atomic Mass Molar Mass Scientific Notation Percent Four Key Math tools for using Moles Chemical Reactions Reactants Products Chemical Equations Diatomic Molecules Diatomic Elements: H2, N2, O2, halogens Balanced Chemical Equations Coefficients Molar Ratios Stoichiometry Limiting Reactants / Reagents Theoretical Yield Actual Yield Percent Yield (%Yield) Stoichiometry The Big Picture Limiting Reactants / Reagents Theoretical Yield Molar Ratios 14 Key Things to know for the Test: 1. How to use Scientific Notation using a calculator. 2. What is Molar Mass, how to calculate it, and how to use it in calculations. 3. Chemical Reactions and how to read them. 4. What are the Diatomic Elements? 5. How to Balance Chemical Equations using Coefficients. 6. How to determine and use Molar Ratios. 7. The Big Picture: Converting g reactant to moles reactant. (gr molesr) Converting moles reactant to moles product. (molesr molesp) Converting moles product to g product. (molesp gp) Doing these in reverse! 8. What are Limiting Reactants and how to identify them. 9. How to calculate Theoretical Yield. 10. What is Actual Yield. 11. How to calculate Percent Yield (%Yield). 5

6 NOTES: 6

Name AP CHEM / / Chapter 3 Outline Stoichiometry

Name AP CHEM / / Chapter 3 Outline Stoichiometry Name AP CHEM / / Chapter 3 Outline Stoichiometry Atomic Masses The modern system of atomic masses, instituted in 1961, is based on carbon-12. Carbon-12 is assigned the mass of exactly 12 atomic mass units

More information

Chapter 3. Stoichiometry:

Chapter 3. Stoichiometry: Chapter 3. Stoichiometry: Watch Bozeman Videos & other videos on my website for additional help: Big Idea 1: Chemical Analysis Conservation of Atoms Balancing Equations Symbolic Representation Mole Big

More information

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole Chem 103, Section F0F Unit IV - Stoichiometry of Formulas and Equations Lecture 11 The concept of a mole, which is a very large group of atoms or molecules Determining the formulas for a compound Stoichiometry

More information

Name: Mr. Dolgos Regents Chemistry NOTE PACKET. Unit 5: Moles & Stoichiometry

Name: Mr. Dolgos Regents Chemistry NOTE PACKET. Unit 5: Moles & Stoichiometry Name: Mr. Dolgos Regents Chemistry NOTE PACKET Unit 5: Moles & Stoichiometry 1 UNIT 5: MOLES & STOICHIOMETRY VOCABULARY: 1. Mole 2. Formula mass (FM) 3. Gram formula mass (GFM) 4. Coefficient 5. Subscript

More information

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses 9/14/1 Chemistry Second Edition Julia Burdge Stoichiometry: Ratios of Combination Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Stoichiometry: Ratios

More information

Calculations with Chemical Formulas and Equations

Calculations with Chemical Formulas and Equations Calculations with Chemical Formulas and Equations Mass and Moles of a Substance Chemistry requires a method for determining the numbers of molecules in a given mass of a substance. This allows the chemist

More information

key content vocabulary next to definitions (sometimes #2 and #3 will be the same and in that case I expect to see a box AND DEF)

key content vocabulary next to definitions (sometimes #2 and #3 will be the same and in that case I expect to see a box AND DEF) Unit 6 Text Chemistry I CP 1 Your Key Chemistry Annotation Guide If you are NOT using the following annotation, put in your key to the left of each item. Mr. T s Key Items to be annotated Circle Box Write

More information

key content vocabulary next to definitions (sometimes #2 and #3 will be the same and in that case I expect to see a box AND DEF)

key content vocabulary next to definitions (sometimes #2 and #3 will be the same and in that case I expect to see a box AND DEF) Unit 6 Notes Chemistry I Honors 1 Your Key Chemistry Annotation Guide If you are NOT using the following annotation, put in your key to the left of each item. Mr. T s Key Items to be annotated Circle Box

More information

A TAKAMUL INTERNATIONAL SCHOOL CH.10 THE MOLE PREPARED BY MR. FAHAD AL-JARAH

A TAKAMUL INTERNATIONAL SCHOOL CH.10 THE MOLE PREPARED BY MR. FAHAD AL-JARAH A TAKAMUL INTERNATIONAL SCHOOL CH.10 THE MOLE PREPARED BY MR. FAHAD AL-JARAH Chapter Outline Section 10.1 Measuring Matter Key Concepts The mole is a unit used to count particles of matter indirectly.

More information

Stoichiometry. Please take out your notebooks

Stoichiometry. Please take out your notebooks Stoichiometry Please take out your notebooks Stoichiometry stochio = Greek for element metry = measurement Stoichiometry is about measuring the amounts of elements and compounds involved in a reaction.

More information

UNIT 5: MOLES & STOICHIOMETRY

UNIT 5: MOLES & STOICHIOMETRY *KEY* UNIT 5: MOLES & STOICHIOMETRY *KEY* VOCABULARY: 1. Mole 2. Formula mass (FM) 3. Gram formula mass (GFM) 4. Coefficient 5. Subscript 6. Species 7. Law of conservation of mass 8. Law of conservation

More information

Chapter 3 Stoichiometry. Ratios of combination

Chapter 3 Stoichiometry. Ratios of combination Chapter 3 Stoichiometry Ratios of combination Topics Molecular and formula masses Percent composition of compounds Chemical equations Mole and molar mass Combustion analysis (Determining the formula of

More information

Stoichiometry Ratios of Combination

Stoichiometry Ratios of Combination Chapter 3 Stoichiometry Ratios of Combination Dr. A. Al-Saadi 1 Preview Concepts of atomic mass, molecular mass, mole, molar mass, and percent compositions. Balancing chemical equations. Stoichiometric

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

More information

Stoichiometry. Chapter 3

Stoichiometry. Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry: The study of quantities of materials consumed and produced in chemical reactions. In macroworld, we can count objects by weighing assuming

More information

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017

General Chemistry. Chapter 3. Mass Relationships in Chemical Reactions CHEM 101 (3+1+0) Dr. Mohamed El-Newehy 10/12/2017 General Chemistry CHEM 101 (3+1+0) Dr. Mohamed El-Newehy http://fac.ksu.edu.sa/melnewehy Chapter 3 Mass Relationships in Chemical Reactions 1 In this chapter, Chemical structure and formulas in studying

More information

3 Stoichiometry: Calculations with Chemical Formulas and Equations

3 Stoichiometry: Calculations with Chemical Formulas and Equations 3 Stoichiometry: Calculations with Chemical Formulas and Equations 3.1 Chemical Equations Balance chemical equations. 3. Simple Patterns of Reactivity Predict products of a chemical reaction in a combination

More information

Q: How long would it take to spend a mole of $1 coins if they were being spent at a rate of 1 billion per second? A:

Q: How long would it take to spend a mole of $1 coins if they were being spent at a rate of 1 billion per second? A: : The Mole- 6.02 x 10 23 ODE TO A MOLE I find that my heart beat goes out of control Just thinking how useful to man is the mole! So perfectly compact. What could be neater? Only occupying twenty-two and

More information

Right Side NOTES ONLY

Right Side NOTES ONLY Ch. 8 Stoichiometry Title and Highlight TN Ch 8.1 Topic: EQ: Right Side NOTES ONLY Date Write Question out (left side of red line) and answer it (Highlight answer) based on from what you read. Write out

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Lecture Presentation

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations. Lecture Presentation Lecture Presentation Chapter 3 : Calculations with Chemical Formulas and Equations John D. Bookstaver St. Charles Community College Cottleville, MO Law of Conservation of Mass We may lay it down as an

More information

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet

Do Now. Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet Do Now Agenda Welcome back! The beginning of ALL THE MATH! Homework PBJ procedure Pages 1-3 of HW packet All the math Molar Mass the mass of one mole of any substance, reported in grams (gram atomic mass)

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3 : Calculations with Chemical Formulas and Equations AP Chemistry 2014-15 North Nova Education Centre Mr. Gauthier Law of Conservation of Mass We may lay it down as an incontestable axiom that,

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Lecture Outline 3.1 Chemical Equations The quantitative nature of chemical formulas and reactions is called stoichiometry. Lavoisier

More information

Molar Mass. The total of the atomic masses of all the atoms in a molecule:

Molar Mass. The total of the atomic masses of all the atoms in a molecule: Molar Mass The total of the atomic masses of all the atoms in a molecule: Ex: H 2 O H (1.0079) x 2 atoms = 2.0158 grams O (15.999) x 1 atom = 15.999 grams 18.0148 grams (18.0 grams) Ex: Cu(NO 3 ) 2 Cu

More information

Solutions to the Extra Problems for Chapter 8

Solutions to the Extra Problems for Chapter 8 Solutions to the Extra Problems for Chapter 8. The answer is 83.4%. To figure out percent yield, you first have to determine what stoichiometry says should be made: Mass of MgCl 4.3 amu + 35.45 amu 95.

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

- Converting Moles (mol.) to grams (g):

- Converting Moles (mol.) to grams (g): Study Guide: Avogadro's # 1mol = 6.02x10^23 particles/atoms/ions/elephants use this as a conversion factor to calculate atoms in compound 1mol C / 6.02 x 10^23 atoms C Percent composition: [Mass of Element

More information

Chemical formulas allow chemists to calculate characteristic values for a compound.

Chemical formulas allow chemists to calculate characteristic values for a compound. Chemical Formulas Using Analytical Data to Calculate Chemical Formulas Chemical formulas allow chemists to calculate characteristic values for a compound. Calculation Types You Must be Able to Complete

More information

Chemical Equations. Law of Conservation of Mass. Anatomy of a Chemical Equation CH4(g) + 2O2(g) Chapter 3

Chemical Equations. Law of Conservation of Mass. Anatomy of a Chemical Equation CH4(g) + 2O2(g) Chapter 3 Chemical Equations Chemical equations are concise representations of chemical reactions. Chapter 3 : Calculations with Chemical Formulas and Equations Law of Conservation of Mass Anatomy of a Chemical

More information

Chapter No. 1 BASIC CONCEPTS Short Question With Answer Q.1 Calculate the grams atoms in 0.4 gm of potassium. Gram atoms of potassium = = = 0.01 grams atoms Q.2 23 grams of sodium and 238 gram of uranium

More information

Notes: Unit 7 Moles & Stoichiometry

Notes: Unit 7 Moles & Stoichiometry Regents Chemistry: Notes: Unit 7 Moles & Stoichiometry 1 KEY IDEAS In all chemical reactions there is a conservation of mass, energy, and charge. (3.3a) A balanced chemical equation represents conservation

More information

Chemistry 101 Chapter 8 Chemical Composition

Chemistry 101 Chapter 8 Chemical Composition Chemistry 101 Chapter 8 Chemical Composition Atomic mass unit (amu): a unit of the scale relative masses of atoms (1 amu = 1.66 10-24 g). Atomic weight (Atomic mass): the atomic weight of an element given

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Chemistry 4.1 - The Mole Concept The Atomic Mass Unit You need to know the atomic mass unit and the relative atomic mass. In Unit C3.3, 1 atomic mass unit

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Chapter 3: Molecules, Compounds, and Chemical Equations

Chapter 3: Molecules, Compounds, and Chemical Equations Chapter 3: Molecules, Compounds, and Chemical Equations 2. Chemical Bonds a. Ionic bonds are formed when a metal atom transfers an electron to a nonmetal and the two ions become attracted i. This results

More information

Lecture outline: Section 3. Law of conservation of mass: atoms are not created or. reactions. They simply rearrange. Mass before = mass after

Lecture outline: Section 3. Law of conservation of mass: atoms are not created or. reactions. They simply rearrange. Mass before = mass after Lecture outline: Section 3 Chemical reactions: chemical changes that occur when substances react to form new substances 1. Chemical equations 2. Atomic and molecular 3. Chemical calculations Law of conservation

More information

OCR A GCSE Chemistry. Topic 3: Chemical reactions. Introducing chemical reactions. Notes.

OCR A GCSE Chemistry. Topic 3: Chemical reactions. Introducing chemical reactions. Notes. OCR A GCSE Chemistry Topic 3: Chemical reactions Introducing chemical reactions Notes C3.1a use chemical symbols to write the formulae of elements and simple covalent and ionic compounds For simple ionic

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules)

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules) Stoichiometry Introduction Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Or Avogadros Number: (number of Molecules) Or Moles (amount of a substance containing avogadros number

More information

WJEC England GCSE Chemistry. Topic 3: Chemical formulae, equations and amount of substance. Notes. (Content in bold is for Higher Tier only)

WJEC England GCSE Chemistry. Topic 3: Chemical formulae, equations and amount of substance. Notes. (Content in bold is for Higher Tier only) WJEC England GCSE Chemistry Topic 3: Chemical formulae, equations and amount of substance Notes (Content in bold is for Higher Tier only) charges on ions an ion is formed when an atom loses or gains electrons

More information

Lecture outline: Section 3

Lecture outline: Section 3 Lecture outline: Section 3 Chemical reactions: chemical changes that occur when substances react to form new substances 1. Chemical equations 2. Atomic and molecular mass 3. Chemical calculations 1 Law

More information

THE MOLE (a counting unit)

THE MOLE (a counting unit) MOLE AND MATH THE MOLE (a counting unit) A mole represents a set or group, much in the same way that a dozen represents a set of twelve. 1 dozen eggs = 12 eggs; 1 mole eggs = 6.022 x 10 23 eggs 1 dozen

More information

9.1.1 CHEMICAL EQUATIONS AND STOICHIOMETRY

9.1.1 CHEMICAL EQUATIONS AND STOICHIOMETRY 9.1.1 CHEMICAL EQUATIONS AND STOICHIOMETRY Work directly from Zumdahl (Chapter 3). Work through exercises as required, then summarise the essentials of the section when complete. A chemical equation is

More information

Chapter 10 Chemical Quantities

Chapter 10 Chemical Quantities Chapter 10 Chemical Quantities 10.1 The Mole: A Measurement of Matter OBJECTIVES: Describe methods of measuring the amount of something. Define Avogadro s number as it relates to a mole of a substance.

More information

Chapter 3. Stoichiometry

Chapter 3. Stoichiometry 1 hapter 3 Stoichiometry 2 Atomic Mass Avogadro s Number and Molar Mass 3 Atomic Mass: Mass of 1 atom in atomic mass units 1 amu = 1/12 of the mass of 1-12 atom = 1.661X10-24 g Naturally occurring carbon

More information

Atoms, Molecules, and the Mole

Atoms, Molecules, and the Mole The Mole Now that we know how to write and name chemical compounds, we need to understand how chemists use these formulas quantitatively. As chemists, we need to know how many atoms or molecules are reacting

More information

Chapter 3. Stoichiometry

Chapter 3. Stoichiometry Chapter 3 Stoichiometry Chapter 3 Chemical Stoichiometry Stoichiometry The study of quantities of materials consumed and produced in chemical reactions. Since atoms are so small, we must use the average

More information

Notes: Unit 7 Moles & Stoichiometry

Notes: Unit 7 Moles & Stoichiometry Regents Chemistry: Notes: Unit 7 Moles & Stoichiometry 1 KEY IDEAS A compound is a substance composed of two or more different elements that are chemically combined in a fixed proportion. A chemical compound

More information

Unit III: Quantitative Composition of Compounds

Unit III: Quantitative Composition of Compounds Unit III: Quantitative Composition of Compounds A. Atoms and Isotopes B. Atomic Composition of Chemical Compounds C. Formula and Molecular Mass D. Calculations using Moles of Atoms E. Calculations using

More information

Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq)

Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq) Dealing with chemical stoichiometry Steward Fall 08 of Not including volumetric stoichiometry of Chapter 6.0x10 A 6.0x10 Mol/mol ratio from balanced equation B 6.0x10 6.0x10 s, Equations, and Moles: II

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Chem 101 Review. Fall 2012

Chem 101 Review. Fall 2012 Chem 101 Review Fall 2012 Elements, Atoms, Ions Elements in nature symbols Constant composition chemical formula Dalton s atomic theory Atomic structure what makes up the atom ions isotopes Periodic table

More information

CHAPTER 3: PART 2 8/9/2015. A chemical change (a chemical reaction) converts one substance into another.

CHAPTER 3: PART 2 8/9/2015. A chemical change (a chemical reaction) converts one substance into another. 8/9/015 A chemical change (a chemical reaction) converts one substance into another. CHAPTER 3: PART Chemical Equations and Stoichiometry Chemical reactions involve: 1. Breaking bonds in the reactants.

More information

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily. The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole

More information

NOTES Mole Concept Chapter 3

NOTES Mole Concept Chapter 3 Chapter 3 Vocabulary: NOTES Mole Concept Chapter 3 average atomic mass- Avogadro's Numberchemical equationempirical formula- Haber process- the weighted average mass of the atoms in a naturally occurring

More information

Chapter 10 Chemical Quantities

Chapter 10 Chemical Quantities Chapter 10 Chemical Quantities 101 The Mole: A Measurement 102 Mole-Mass and Mole-Volume Relationships 103 Percent Composition and Chemical Formulas 1 CHEMISTRY & YOU How can you quantify the amount of

More information

The AP Chemistry Summer assignment is meant to help prepare you for the first few weeks of class

The AP Chemistry Summer assignment is meant to help prepare you for the first few weeks of class The AP Chemistry Summer assignment is meant to help prepare you for the first few weeks of class Part 1. Review the mole concept and how it s used. This includes mass (grams) to moles, moles-to-mass calculations,

More information

STOICHIOMETRY. STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed.

STOICHIOMETRY. STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed. STOICHIOMETRY Stoikheion = element; metron = to measure STOICHIOMETRY Chemists use balanced chemical equations to calculate how much reactant is needed or how much product is formed. provides the same

More information

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 11.1 notes 1 MOLE = 6.02 x 10 23 representative particles representative particles

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 3 : Calculations with Chemical Formulas and Equations John D. Bookstaver St. Charles Community

More information

Chapter 10. How you measure how much? Moles. Representative particles. Conversion factors. Chemical Quantities or

Chapter 10. How you measure how much? Moles. Representative particles. Conversion factors. Chemical Quantities or Chapter 10 Chemical Quantities or 1 2 How you measure how much? You can measure mass, or volume, or you can count pieces. We measure mass in grams. We measure volume in liters. We count pieces in MOLES.

More information

Chapter 3: Molecules, Compounds and Chemical Equations: (continue and finish chapter 3: 8-11)

Chapter 3: Molecules, Compounds and Chemical Equations: (continue and finish chapter 3: 8-11) C h e m i s t r y 1 A : C h a p t e r 3 P a r t B P a g e 1 Chapter 3: Molecules, Compounds and Chemical Equations: (continue and finish chapter 3: 8-11) Homework: Read Chapters 3. Work out sample/practice

More information

Chapter 3 Chemical Reactions and Reaction Stoichiometry

Chapter 3 Chemical Reactions and Reaction Stoichiometry Chapter 3 Chemical Reactions and Reaction Stoichiometry 2015 Pearson Education, Inc. Chemical Reactions and Reaction Stoichiometry 3.1 Chemical Equations 3.2 Simple Patterns of Chemical Reactivity 3.3

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Table Of Contents Section.1 Measuring Matter Section.2 Mass and the Mole Section.3 Moles of Compounds Chapter : Section.4 Empirical and Molecular Formulas Section.5 Formulas

More information

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 10 Notes STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles representative particles = ATOMS, IONS,

More information

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number?

Honors Chemistry Unit 6 Moles and Stoichiometry Notes. Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? Honors Chemistry Unit 6 Moles and Stoichiometry Notes Intro to the mole 1. What is the chemical mole? 2. What is Avogadro s number? 3. What does it mean? 4. How is a mole like a dozen doughnuts? Formula

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 3 : Calculations with Chemical Formulas and Equations John D. Bookstaver St. Charles Community

More information

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 3 : Calculations with Chemical Formulas and Equations John D. Bookstaver St. Charles Community

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Reading Assignments: Chapter 3 in R. Chang, Chemistry, 8th Ed., McGraw-Hill, 2005 Mass Relationships in Chemical Reactions Or Related topics in other textbooks. Consultation outside lecture room: Office

More information

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles Unit 8: Quantification of Chemical Reactions Chapter 10: The mole Chapter 12: Stoichiometry Counting by mass: The Mole Chemists can t count individual atoms Use moles to determine amounts instead mole

More information

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations Chapter 3 Stoichiometry: Calculations with Chemical Formulas and Equations Matter Matter is anything that has mass and takes up space 2 Composition of Matter Atom number of protons = atomic number (Z)

More information

Chemical Equations. Chemical Equations

Chemical Equations. Chemical Equations Page III-4a-1 / Chapter Four Part I Lecture Notes Chemical Reactions Chapter 4 Part 1 Chemistry as Cooking! - the Chemical Reaction "Recipe" and technique leads to successful creations Must know amounts

More information

Finding Formulas. using mass information about a compound to find its formula

Finding Formulas. using mass information about a compound to find its formula Finding Formulas using mass information about a compound to find its formula Molecular Formula Molecular formula is the actual formula of compounds which form molecules. For example, the molecular formula

More information

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Moles Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities Micro World atoms & molecules Macro World grams Atomic mass is the mass of an atom in

More information

Chapter 3: Phenomena. Chapter 3: Stoichiometry. Mass of A. Mass of C. Mass of A. Mass of D. Mass of B. Mass of B. Mass of C

Chapter 3: Phenomena. Chapter 3: Stoichiometry. Mass of A. Mass of C. Mass of A. Mass of D. Mass of B. Mass of B. Mass of C Chapter 3: Phenomena Phenomena: When some substances are mixed together other substances form. Below is data for the reaction A(s) + 2B(aq) C(aq) + D(aq). Look at the data below and identify any patterns

More information

Chapter 5. Chemistry for Changing Times, Chemical Accounting. Lecture Outlines. John Singer, Jackson Community College. Thirteenth Edition

Chapter 5. Chemistry for Changing Times, Chemical Accounting. Lecture Outlines. John Singer, Jackson Community College. Thirteenth Edition Chemistry for Changing Times, Thirteenth Edition Lecture Outlines Chemical Accounting John Singer, Jackson Community College Chemical Sentences: Equations Chemical equations represent the sentences in

More information

Balancing Equations. Reactants: Zn + I 2 Product: Zn I 2

Balancing Equations. Reactants: Zn + I 2 Product: Zn I 2 Balancing Equations 1 Reactants: Zn + I 2 Product: Zn I 2 2 Chemical Equations Their Job: Depict the kind of reactants and products and their relative amounts in a reaction. 4 Al (s) + 3 O 2 (g) ---> 2

More information

Problem Set III Stoichiometry - Solutions

Problem Set III Stoichiometry - Solutions Chem 121 Problem set III Solutions - 1 Problem Set III Stoichiometry - Solutions 1. 2. 3. molecular mass of ethane = 2(12.011) + 6(1.008) = 30.07 g 4. molecular mass of aniline = 6(12.011) + 7(1.008) +

More information

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g.

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g. Lecture 5 Professor Hicks General Chemistry II (CHE132) Percent Composition (aka percent by mass) % by mass component 1 = mass component 1 mass sample 100% sample component 1 100 g sample component 1 component

More information

Molar Calculations - Lecture Notes for Chapter 6. Lecture Notes Chapter Introduction

Molar Calculations - Lecture Notes for Chapter 6. Lecture Notes Chapter Introduction Page 1 of 9 Page 2 of 9 Lecture Notes Chapter 6 1. Introduction a. The above equation describes the synthesis of water from hydrogen and oxygen. b. It is not balanced, however. c. Notice how the number

More information

Chemistry B Final Exam Review Packet Winter 2017

Chemistry B Final Exam Review Packet Winter 2017 Chemistry B Final Exam Review Packet Winter 2017 The final exam will count as approximately 15% of your final grade in Chemistry B. Exam Format: Multiple choice ~35 questions Free Response/Calculations:

More information

Chapter 9: Stoichiometry The Arithmetic ti Of Equations

Chapter 9: Stoichiometry The Arithmetic ti Of Equations Chapter 9: Stoichiometry The Arithmetic of Equations Chemical Calculations Limiting Reagent and Percent Yield The Arithmetic ti Of Equations -- The Arithmetic of Equations -- Using Everyday Equations Stoichiometry

More information

Balancing Equations. Chemical reactions occur when bonds (between the electrons of atoms) are formed or broken Chemical reactions involve

Balancing Equations. Chemical reactions occur when bonds (between the electrons of atoms) are formed or broken Chemical reactions involve Balancing Equations Chemical reactions occur when bonds (between the electrons of atoms) are formed or broken Chemical reactions involve changes in the chemical composition of matter the making of new

More information

Chapter 10 Chemical Quantities

Chapter 10 Chemical Quantities 101 The Mole: A Measurement Chapter 10 Chemical Quantities 101 The Mole: A Measurement 102 Mole-Mass and Mole-Volume Relationships 103 Percent Composition and Chemical Formulas 1 Copyright Pearson Education,

More information

Mole. The SI base unit used to measure the amount of a substance.

Mole. The SI base unit used to measure the amount of a substance. Stoichiometry Stoichiometry The study of quantitative relationships between the amounts of reactants used and products formed by a chemical reactions; it is based on the law of conservation of mass. Mole

More information

Calculations involving masses Notes

Calculations involving masses Notes Edexcel GCSE Chemistry Topic 1: Key concepts in chemistry Calculations involving masses Notes www.pmt.education 1.41 Describe the limitations of particular representations and models, to include dot and

More information

CHEM Chapter3. Mass Relations in Chemical Reactions (Homework)

CHEM Chapter3. Mass Relations in Chemical Reactions (Homework) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. There are two different common crystalline forms of carbon diamond and graphite. A less common form called

More information

Lecture Notes Chapter 6

Lecture Notes Chapter 6 Lecture Notes Chapter 6 1. Introduction a. The above equation describes the synthesis of water from hydrogen and oxygen. b. It is not balanced, however. à c. Notice how the number of oxygen atoms on left

More information

Section 6: Stoichiometry

Section 6: Stoichiometry Section 6: Stoichiometry The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 6.01 The Mole Chemistry (8)(A) Chemistry (8)(B) 6.02 Percent

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3: Phenomena Phenomena: When some substances are mixed together other substances form. Below is data for the reaction A(s) + 2B(aq) C(aq) + D(aq). Look at the data below and identify any patterns

More information

Unit III: Quantitative Composition of Compounds

Unit III: Quantitative Composition of Compounds Unit III: Quantitative Composition of Compounds A. Atoms and Isotopes B. Atomic Composition of Chemical Compounds C. Formula and Molecular Mass D. Calculations using Moles of Atoms E. Calculations using

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3: Phenomena Phenomena: When some substances are mixed together other substances form. Below is data for the reaction: A(s) + 2B(aq) C(aq) + D(aq) Look at the data below and identify any patterns

More information

Chem 11 UNIT 3: STOICHIOMETRY Name:

Chem 11 UNIT 3: STOICHIOMETRY Name: Chem 11 UNIT 3: STOICHIOMETRY Name: Ms. Pirvu Period: Writing & Balancing Equations Chemical reactions can be described by chemical equations. Recall Law of Conservation of Mass mass cannot be nor. This

More information

Unit 3 Molecules and Reactions

Unit 3 Molecules and Reactions Suggested Reading Chapter 2 Atoms, Molecules, and Ions (2.1 2.8) Chapter 3 Stoichiometry: Calculations with Chemical Equations ( 3.1 3.7) Chapter 4 Aqueous Reactions and Solution Stoichiometry (4.1 4.5)

More information

L = 6.02 x mol Determine the number of particles and the amount of substance (in moles)

L = 6.02 x mol Determine the number of particles and the amount of substance (in moles) 1.1 The Mole 1.1.1 - Apply the mole concept to substances A mole is the name given to a certain quantity. It represents 6.02 x 10 23 particles. This number is also known as Avogadro's constant, symbolised

More information

Announcements. 1 point for every question attempted; 0.2 extra credit points for every correct answer

Announcements. 1 point for every question attempted; 0.2 extra credit points for every correct answer Announcements Print worksheet #3 prior to your Tuesday discussion section Solutions to worksheets #1 and #2 are posted online now A full schedule of readings and suggested problems is posted on the course

More information

Chemical Reactions. Section 7.1: Nature of Reactions

Chemical Reactions. Section 7.1: Nature of Reactions Chemical Reactions Section 7.1: Nature of Reactions When do chemical reactions take place? What is the role of energy in chemical reactions? 1 Chemical Reactions It is a change in matter that produces

More information

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances.

Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Ch 3.3 Counting (p78) One dozen = 12 things We use a dozen to make it easier to count the amount of substances. Moles the SI base unit that describes the amount of particles in a substance. Mole is abbreviated

More information