Lecture outline: Chapter 11 Intermolecular attractive forces

Size: px
Start display at page:

Download "Lecture outline: Chapter 11 Intermolecular attractive forces"

Transcription

1 Lecture outline: Chapter 11 Intermolecular attractive forces Intermolecular forces Phase changes Vapor pressure Phase diagrams Types of solids 1

2 Gases The volume occupied by gas molecules is much less than the volume in which they reside Molecules of gases are in continual random motion Attractive/repulsive forces between gas molecules are negligible The average kinetic energy of a gas molecule is proportional to the temperature Which of these properties apply to liquids and solids as well?? 2

3 Physical state Defined volume? Defined shape? Compress/ expand? Gas Liquid Solid 3

4 Attractive forces Intramolecular forces: attractive forces of atoms within compounds (think: rope knot, zipper) Molecular compounds: covalent bonds, bond energies Ionic compounds: ionic bonds, lattice energies Intermolecular forces: attractive forces between different molecules (think: velcro, snap button) δ H δ+ Cl δ H δ+ Cl All attractive forces are electrostatic in nature 4

5 Magnitudes of attractive forces Bond energies Lattice energies Intermolecular attractions 5

6 Intermolecular forces Iondipole Dipoledipole London dispersion Hydrogen bonding Attraction between an ion and a molecule Attraction between molecules All attractive forces are electrostatic in nature 6

7 Review electronegativity, polarity, and dipole moment Increases from left to right in a period 7

8 Review electronegativity, polarity, and dipole moments δ + δ H F Polar less EN more EN Net dipole δ O δ + δ C O No net dipole Nonpolar Net dipole δ O δ + H H δ + Polar 8

9 Iondipole force The attraction between an ion and the partial charge on an end of a polar neutral molecule 9

10 IonDipole Forces δ + δ δ + δ + δ δ + δ δ + 10

11 IonDipole Forces δ δ + δ δ + δ + δ δ + δ 11

12 IonDipole Forces involving water δ + Cl δ + δ + Cl δ δ δ + δ + δ Na + Cl δ + δ δ + Cl δ + 12

13 Dipoledipole forces Attraction between neutral, polar molecules δ H δ+ Cl δ H δ+ Cl 13

14 DipoleDipole Forces + H Cl Cl Cl + H Cl + H + H Cl Cl H + H + Cl Cl H + + H Cl H + 14

15 London Dispersion forces Attraction between neutral, nonpolar molecules (or individual atoms) Since all attractions are electrostatic, how is this possible?? δ 0 δ 0?? δ 0 δ 0 15

16 London Dispersion forces Attraction between neutral, nonpolar molecules (or individual atoms) The motion of electrons in atoms and molecules can result in a shortlived instantaneous dipole e density shifts to left δ δ + δ 0 δ 0 δ 0 δ 0 e density shifts to right δ + δ 16

17 London Dispersion forces The motion of electrons in atoms and molecules can result in a shortlived instantaneous dipole An instantaneous dipole on one molecule (or atom) can induce an instantaneous dipole on an adjacent molecule (or atom) resulting in the dipoledipole attraction δ + 0 δ 0 δ + 0 δ 0 δ + 0 δ 0 δ + 0 δ 0 17

18 London Dispersion forces The motion of electrons in atoms and molecules can result in a shortlived instantaneous dipole An instantaneous dipole on one molecule (or atom) can induce an instantaneous dipole on an adjacent molecule (or atom) resulting in the dipoledipole attraction A switch in the direction of the instantaneous dipole on one molecule results in a switch in the direction on adjacent molecules δ + δ + δ δ + δ + δ + δ + δ + δ + 18

19 London Dispersion forces δ + δ δ + δ δ + δ δ + δ δ δ + δ δ + δ δ + δ δ + δ + δ δ + δ δ + δ δ + δ 19

20 London Dispersion Forces can also operate in a collection of neutral atoms e density shifts to left δ δ + δ 0 δ0 e density shifts to right δ + δ δ δ + δ δ + δ δ + δ δ + δ δ + δ + δ δ + δ δ + δ δ + δ δ + δ 20

21 Magnitude of London dispersion forces and size.. 21

22 Boiling and melting points are indicators of the strength of an intermolecular attractive force Δ melting Δ boiling 22

23 Boiling points of the Noble gases: He 4.2 K Ne 27.1 K Ar 87.3 K Kr K Xe Rn K 23

24 Hydrocarbon boiling points H A. B. C. H H C H H C C H H C C H H H H C H H H bp = 161 C bp = 89 C bp = 44 C H H H H D. H H H H E. H H H H H H C C C C H H C C C C C H H H H H H H H H H bp = 0.5 C bp = 36 C 24

25 Effect of shape on hydrocarbon boiling points: molecules with formula C 5 H 12 bp = 36.0 C bp = 27.7 C bp = 9.5 C 25

26 Hydrogen bonding Special type of dipoledipole force The intermolecular attraction between a H atom in a very polar bond and an unshared e pair on a small electronegative atom The intermolecular attraction between a H atom attached to N, O, or F and a N, O, or F atom 26

27 Hydrogen bonding in water δ + δ δ + δ + δ + δ δ + δ δ δ + δ + δ δ + δ + 27

28 Examples of hydrogen bonds Between waters Between ammonias Between water and ammonia Between water and ethylene glycol 28

29 Hydrogen bonding in ice 29

30 Hydrogen bonding in ice ICEShex saemod2.pse 30

31 Hydrogen bonding in ice 31

32 Hydrogen bonding in ice ICEShex saemod2.pse 32

33 Hydrogen bonding in liquid water At 25 C, thermal energy closely matches H bond energy (20 kj/mol) Average lifetime of aqueous Hbond is s Disordered 3dimensional network Each water has an average of 3.4 Hbonds 33

34 More than one type of force can contribute to intermolecular attractions in a molecule Consider: (1) size of molecule (2) shape of molecule Amount of accessible valence electron density to overlap another molecule (3) polarity of molecule ( EN) 34

35 boiling point ( C) More than one type of force can contribute to intermolecular attractions in a molecule Boiling points of group 6A hydrides H2O H2Te H2S H2Se Molar mass (g/mol) Consider: (1) size of molecule (2) shape of molecule (3) polarity of molecule ( EN) 35

36 More than one type of force can contribute to intermolecular attractions in a molecule Boiling points of hydrogen halides HF Consider: (1) size of molecule (2) shape of molecule boiling point ( C) HI (3) polarity of molecule ( EN) HBr HCl Molar mass (g/mol) 36

37 Intra and intermolecular attractive force strengths Remember it always takes energy to break a bond, whether it is intra or intermolecular covalent bond (bond E): ionic bond (lattice E): iondipole Hydrogen bond dipoledipole London dispersion ~ kj/mol ~ kj/mol ~15 kj/mol ~525 kj/mol ~210 kj/mol ~010 kj/mol 37

38 Intra and intermolecular forces in water H δ + H δ+ 463 kj/mol δ O δ O δ + H H δ + ~19 kj/mol 38

39 Intra and intermolecular forces in 463 kj/mol water ~19 kj/mol 39

40 Intermolecular attractions in neutral molecules In general, the relative strengths are: Hbond > dipoledipole > Londondispersion Strengths of dipoledipole and Londondispersion forces are related to the polarity, size, and shape of the molecule Boiling points are good indicators of the strength of an intermolecular attractive force: the higher the bp, the stronger the attraction; the lower the bp, the weaker the attraction 40

41 To visualize intermolecular forces, reference everything to absolute zero, where molecular motion is at a minimum, and everything is solid. Then think about adding heat, and ask what happens 41

42 What is the major type of intermolecular HF attractive force between molecules of: F 2 PCl 3 BrF 42

43 Which substance in the following pairs would you predict has a higher boiling point? HF or HBr CH 4 or C 4 H 10 NH 3 or PH 3 H 2 O or H 2 S MgBr 2 or PBr 3 43

44 Important properties of liquids Melting and boiling points Viscosity Surface tension Ability to form mixtures Vapor pressure 44

45 Viscosity: resistance of a liquid to flow Hydrocarbon Formula Boiling point Viscosity (cp) Hexane Heptane Octane Nonane Decane

46 Surface tension of a liquid Surface molecules are in a different environment than interior molecules 46

47 Surface tension of a liquid Author Michael Apel. T This file is licensed under the Creative Commons AttributionShare Alike 3.0 Unported license. Author: PD. This file is licensed under the Creative Commons Attribution Share Alike 3.0 Unported license. Attribution: Chris 73 / Wikimedia Commons This file is licensed under the Creative Commons AttributionShare Alike 3.0 Unported license. 47

48 Changes of state Energy of system gas liquid solid 48

49 exothermic endothermic Δ Δ 49 condensation liquid freezing gas deposition solid Energy of system sublimation melting (fusion) vaporization

50 Energy changes associated with changes of state Δ endothermic Δ endothermic exothermic Δ Δ How does evaporative cooling work? exothermic 50

51 Energy changes associated with changes of state Why does your hand get burned when exposed to gaseous water (steam) but not when exposed to hot air at the same temperature? 51

52 Heating curve for water Temperature ( C) liquid lines in red: raising temperature of (heating) a single phase gas liquid gas 0 25 ice ice liquid heat added (kj) 52

53 Heating curve for water Temperature ( C) ice liquid ice liquid heat added (kj) gas lines in green: phase transitions: all heat goes into breaking bonds, so no T increase liquid gas 53

54 The heat input for each region of the curve is determined by specific heats and enthalpies of phase transitions Temperature ( C) SH gas = 1.84 J/(g C) SH liquid = 4.18 J/(g C) liquid gas ΔH vap = kj/mol 0 25 ice ΔH fusion = 6.00 kj/mol SH ice =2.09 J/(g C) heat added (kj) 54

55 Use specific heat values, and ΔH vaporization and ΔH fusion values, to calculate ΔH for processes involving change of state (see chapter 11 self test) 55

56 States of matter are dependent on both temperature and pressure Critical temperature: the highest temperature at which a substance can exist as a liquid Critical pressure: the pressure required to liquify a substance at it s critical temperature 56

57 Which of the following substances can be liquefied at room temperature (298 K), given sufficient pressure? Substance Critical T (K) Critical P (atm) N Ar O CH CO Propane (C 3 H 8 ) Ammonia H 2 O

58 Which of the following substances can be liquefied at room temperature (298 K), given sufficient pressure? Substance Critical T (K) Critical P (atm) N Ar O CH CO Propane (C 3 H 8 ) Ammonia H 2 O Compressed gas vs. liquified gas 58

59 Vapor pressure 59

60 Distribution of kinetic energies for molecules in a liquid T 1 Kinetic energy required to escape from liquid fraction of molecules T 2 kinetic energy 60

61 Vapor pressure The pressure exerted by molecules in the gas phase above a liquid when the vapor and liquid are at equilibrium Equilibrium has been reached when rate escape = rate return 61

62 What is the relation between the strength of intermolecular forces and the value of vapor pressure at a given temperature? 62

63 What is the relation between temperature and the value of vapor pressure for a given liquid? Equilibrium at T 1 Increase T: rate escape > rate return Equilibrium reestablished at T 2 63

64 Boiling point: the temperature at which the vapor pressure of a liquid is equal to the external pressure 1000 vapor pressure (torr) Diethyl ether Ethanol Temperature ( C) Water Ethylene glycol 64

65 Relationships between altitude, atmospheric pressure, and boiling point Location Elevation (ft) P (torr) P (atm) Boiling point ( C) Summit of Mt. Everest 29, Summit of King s peak, UT 13, USU Campus Logan, UT 4, Madison, WI San Diego, CA Surface of Pacific Ocean Death Valley, CA A medical autoclave N/A

66 A phase diagram shows the relation between pressure, temperature, and physical state of a substance solid Melting (fusion) liquid Critical point freezing Pressure vaporization condensation sublimation deposition Triple point gas Temperature 66

67 Phase diagram for CO 2 (axes not to scale) 73 solid liquid Critical point Pressure (atm) 5.11 Triple point gas Temperature ( C)

68 Phase diagram for water (axes are not to scale) 218 Critical point Pressure (atm) Triple point Temperature ( C)

69 Note the differences in direction of slope for the melting point curves for CO 2 and H 2 O Phase diagram for H 2 O Phase diagram for CO Critical point 73 solid liquid Critical point Pressure Triple point Pressure (atm) 5.11 Triple point gas Temperature Temperature ( C)

70 Water is one of only a few molecular compounds for which the solid is less dense than the liquid water Most other molecular compounds 70

71 Skate sailing on Lake Mendota, Madison Wisconsin 71

72 Solids Three types of motion for molecules: Translational (diffusion) Rotational vibrational Solids are more restricted in freedom of motion than a gas or liquid Δ melting Δ boiling 72

73 Four types of solids Molecular solid: a solid composed of atoms or molecules held together by intermolecular attractions (London, dipoledipole, or Hbonds) Covalent network solid: a solid where all atoms are connected through covalent bonds Ionic solid: a solid where cations and anions interact through ionic bonds (electrostatic attractions Metallic solid: a solid consisting of metal atoms bonded through metallic bonds c Solids can also consist of polymeric units such as polyethylene and polyester, and complex biomolecules such as cellulose and lignin 73

74 Ice: a molecular solid Other examples: sucrose (C 12 H 22 O 11 ), paraffin, I 2, dry ice (CO 2 ) 74

75 The C allotropes diamond and graphite: Covalent network solids C atoms are sp 3, tetrahedral geometry C atoms are sp 2, trigonal planar geometry Other examples: silica quartz and glass (SiO 2 ) n 75

76 The C allotropes diamond and graphite: Covalent network solids 76

77 Buckyball (C 60 ) is an allotrope of C that exists in molecular form 77

78 NaCl: an ionic solid Cl Na + 78

79 Bonding in metallic solids? Compare Na and Ne Property Neon Sodium Atomic number Std state form Monatomic gas solid bp C 883 C mp C C Electrical No Yes conductor Reactivity No Readily oxidized Color Colorless Silverywhite Atomic radius 38 pm 190 pm 79

80 Metallic solids: Positively charged metal ions swimming in a sea of electrons

81 Metallic solids: Positively charged metal ions swimming in a sea of electrons

82 Properties of metals accounted for by the electron sea model Solids at room temperature Good electrical conductors high heat conductivity and heat capacity malleable and ductile Readily undergo oxidation

Liquids, Solids and Phase Changes

Liquids, Solids and Phase Changes Chapter 10 Liquids, Solids and Phase Changes Chapter 10 1 KMT of Liquids and Solids Gas molecules have little or no interactions. Molecules in the Liquid or solid state have significant interactions. Liquids

More information

London Dispersion Forces (LDFs) Intermolecular Forces Attractions BETWEEN molecules. London Dispersion Forces (LDFs) London Dispersion Forces (LDFs)

London Dispersion Forces (LDFs) Intermolecular Forces Attractions BETWEEN molecules. London Dispersion Forces (LDFs) London Dispersion Forces (LDFs) LIQUIDS / SOLIDS / IMFs Intermolecular Forces (IMFs) Attractions BETWEEN molecules NOT within molecules NOT true bonds weaker attractions Represented by dashed lines Physical properties (melting points,

More information

The Liquid and Solid States

The Liquid and Solid States : The Liquid and Solid States 10-1 10.1 Changes of State How do solids, liquids and gases differ? Figure 10.4 10-2 1 10.1 Changes of State : transitions between physical states Vaporization/Condensation

More information

- intermolecular forces forces that exist between molecules

- intermolecular forces forces that exist between molecules Chapter 11: Intermolecular Forces, Liquids, and Solids - intermolecular forces forces that exist between molecules 11.1 A Molecular Comparison of Liquids and Solids - gases - average kinetic energy of

More information

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry

Liquids & Solids. Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry Liquids & Solids Mr. Hollister Holliday Legacy High School Regular & Honors Chemistry 1 Liquids 2 Properties of the States of Matter: Liquids High densities compared to gases. Fluid. The material exhibits

More information

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO

Lecture Presentation. Chapter 11. Liquids and Intermolecular Forces. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 11 Liquids and Intermolecular Forces John D. Bookstaver St. Charles Community College Cottleville, MO Properties of Gases, Liquids, and Solids State Volume Shape of State Density

More information

The Liquid and Solid States

The Liquid and Solid States : The Liquid and Solid States 10-1 10.1 Changes of State How do solids, liquids and gases differ? Figure 10.4 10-2 10.1 Changes of State : transitions between physical states Vaporization/Condensation

More information

2011, Robert Ayton. All rights reserved.

2011, Robert Ayton. All rights reserved. Liquids, Solids, and Intermolecular Forces Outline 1. Phase Diagrams and Triple Point Diagrams 2. Intermolecular Forces Review 1. Phase Diagrams and Triple Point Diagrams Phase Diagram of Water Triple

More information

Intermolecular forces Liquids and Solids

Intermolecular forces Liquids and Solids Intermolecular forces Liquids and Solids Chapter objectives Understand the three intermolecular forces in pure liquid in relation to molecular structure/polarity Understand the physical properties of liquids

More information

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc.

Chapter 11 SOLIDS, LIQUIDS AND GASES Pearson Education, Inc. Chapter 11 SOLIDS, LIQUIDS AND GASES States of Matter Because in the solid and liquid states particles are closer together, we refer to them as. The States of Matter The state of matter a substance is

More information

Ch. 9 Liquids and Solids

Ch. 9 Liquids and Solids Intermolecular Forces I. A note about gases, liquids and gases. A. Gases: very disordered, particles move fast and are far apart. B. Liquid: disordered, particles are close together but can still move.

More information

Chapter 10 Liquids, Solids, and Intermolecular Forces

Chapter 10 Liquids, Solids, and Intermolecular Forces Chapter 10 Liquids, Solids, and Intermolecular Forces The Three Phases of Matter (A Macroscopic Comparison) State of Matter Shape and volume Compressibility Ability to Flow Solid Retains its own shape

More information

PROPERTIES OF SOLIDS SCH4U1

PROPERTIES OF SOLIDS SCH4U1 PROPERTIES OF SOLIDS SCH4U1 Intra vs. Intermolecular Bonds The properties of a substance are influenced by the force of attraction within and between the molecules. Intra vs. Intermolecular Bonds Intramolecular

More information

Chapter 11. Kinetic Molecular Theory. Attractive Forces

Chapter 11. Kinetic Molecular Theory. Attractive Forces Chapter 11 KMT for Solids and Liquids Intermolecular Forces Viscosity & Surface Tension Phase Changes Vapor Pressure Phase Diagrams Solid Structure Kinetic Molecular Theory Liquids and solids will experience

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids Chapter 11. Intermolecular Forces, Liquids, and Solids A Molecular Comparison of Gases, Liquids, and Solids Physical properties of substances are understood in terms of kinetic-molecular theory: Gases

More information

Unit Five: Intermolecular Forces MC Question Practice April 14, 2017

Unit Five: Intermolecular Forces MC Question Practice April 14, 2017 Unit Five: Intermolecular Forces Name MC Question Practice April 14, 2017 1. Which of the following should have the highest surface tension at a given temperature? 2. The triple point of compound X occurs

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

9/2/10 TYPES OF INTERMOLECULAR INTERACTIONS

9/2/10 TYPES OF INTERMOLECULAR INTERACTIONS Tro Chpt. 11 Liquids, solids and intermolecular forces Solids, liquids and gases - A Molecular Comparison Intermolecular forces Intermolecular forces in action: surface tension, viscosity and capillary

More information

Chapter 12. Liquids: Condensation, Evaporation, and Dynamic Equilibrium

Chapter 12. Liquids: Condensation, Evaporation, and Dynamic Equilibrium Chapter 12 Liquids: Condensation, Evaporation, and Dynamic Equilibrium Chapter Map Condensation (Gas to Liquid) Evaporation For a particle to escape from the surface of the liquid, it must meet the following

More information

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules?

Chapter 10. Dipole Moments. Intermolecular Forces (IMF) Polar Bonds and Polar Molecules. Polar or Nonpolar Molecules? Polar Bonds and Polar Molecules Chapter 10 Liquids, Solids, and Phase Changes Draw Lewis Structures for CCl 4 and CH 3 Cl. What s the same? What s different? 1 Polar Covalent Bonds and Dipole Moments Bonds

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids 11.2 Intermolecular Forces Intermolecular forces are much weaker than ionic or covalent bonds (e.g., 16 kj/mol versus 431 kj/mol for HCl). Melting or boiling = broken intermolecular forces Intermolecular

More information

Intermolecular Forces and Liquids and Solids Chapter 11

Intermolecular Forces and Liquids and Solids Chapter 11 Intermolecular Forces and Liquids and Solids Chapter 11 A phase is a homogeneous part of the system in contact with other parts of the system but separated from them by a well defined boundary. Phases

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids. Intermolecular Forces

Chapter 11 Intermolecular Forces, Liquids, and Solids. Intermolecular Forces Chapter 11, Liquids, and Solids States of Matter The fundamental difference between states of matter is the distance between particles. States of Matter Because in the solid and liquid states particles

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11 Liquids and Intermolecular Forces States of Matter The three states of matter are 1) Solid Definite shape Definite volume 2) Liquid Indefinite shape Definite volume 3) Gas Indefinite shape Indefinite

More information

States of Matter; Liquids and Solids. Condensation - change of a gas to either the solid or liquid state

States of Matter; Liquids and Solids. Condensation - change of a gas to either the solid or liquid state States of Matter; Liquids and Solids Phase transitions - a change in substance from one state to another Melting - change from a solid to a liquid state Freezing - change of a liquid to the solid state

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids PowerPoint Lecture Presentation by J. David Robertson University of Missouri Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The F-B-F bond angle in the BF3 molecule is. A) 109.5e B) 120e C) 180e D) 90e E) 60e

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ CH11 1. Order the intermolecular forces (dipole-dipole, London dispersion, ionic, and hydrogen-bonding) from weakest to strongest. A) dipole-dipole, London dispersion, ionic, and

More information

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids

Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 1 Chapters 11 and 12: Intermolecular Forces of Liquids and Solids 11.1 A Molecular Comparison of Liquids and Solids The state of matter (Gas, liquid or solid) at a particular temperature and pressure depends

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

Chapter 12 Intermolecular Forces and Liquids

Chapter 12 Intermolecular Forces and Liquids Chapter 12 Intermolecular Forces and Liquids Jeffrey Mack California State University, Sacramento Why? Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature

More information

Chapter 10: Liquids, Solids, and Phase Changes

Chapter 10: Liquids, Solids, and Phase Changes Chapter 10: Liquids, Solids, and Phase Changes In-chapter exercises: 10.1 10.6, 10.11; End-of-chapter Problems: 10.26, 10.31, 10.32, 10.33, 10.34, 10.35, 10.36, 10.39, 10.40, 10.42, 10.44, 10.45, 10.66,

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces Molecular Compounds The simplest molecule is H 2 : Increased electron density draws nuclei together The pair of shared electrons constitutes a covalent bond. Intermolecular Forces

More information

Chapter 10: Liquids and Solids

Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids Chapter 10: Liquids and Solids *Liquids and solids show many similarities and are strikingly different from their gaseous state. 10.1 Intermolecular Forces Intermolecular

More information

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw Hill Companies, Inc. Permission required for 1 A phase is a homogeneous part of the system in contact with other parts of the

More information

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids

Chapter 12. Insert picture from First page of chapter. Intermolecular Forces and the Physical Properties of Liquids and Solids Chapter 12 Insert picture from First page of chapter Intermolecular Forces and the Physical Properties of Liquids and Solids Copyright McGraw-Hill 2009 1 12.1 Intermolecular Forces Intermolecular forces

More information

Chem 112 Dr. Kevin Moore

Chem 112 Dr. Kevin Moore Chem 112 Dr. Kevin Moore Gas Liquid Solid Polar Covalent Bond Partial Separation of Charge Electronegativity: H 2.1 Cl 3.0 H Cl δ + δ - Dipole Moment measure of the net polarity in a molecule Q Q magnitude

More information

Properties of Liquids and Solids

Properties of Liquids and Solids Properties of Liquids and Solids World of Chemistry Chapter 14 14.1 Intermolecular Forces Most substances made of small molecules are gases at normal temperature and pressure. ex: oxygen gas, O 2 ; nitrogen

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids 11.2 Intermolecular Forces Intermolecular forces are much weaker than ionic or covalent bonds (e.g., 16 kj/mol versus 431 kj/mol for HCl). Melting or boiling = broken intermolecular forces Intermolecular

More information

Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

More information

CHAPTER 9: LIQUIDS AND SOLIDS

CHAPTER 9: LIQUIDS AND SOLIDS CHAPTER 9: LIQUIDS AND SOLIDS Section 9.1 Liquid/Vapor Equilibrium Vaporization process in which a liquid vapor open container - evaporation continues until all liquid evaporates closed container 1) Liquid

More information

Nestor S. Valera Ateneo de Manila. Chapter 12 - Intermolecular Forces

Nestor S. Valera Ateneo de Manila. Chapter 12 - Intermolecular Forces Nestor S. Valera Ateneo de Manila Chapter 12 - Intermolecular Forces 1 A phase is a region that differs in structure and/or composition from another region. 2 Phases Solid phase - ice Liquid phase - water

More information

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due Liquids and solids They are similar compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due to the molecules being close together in solids

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids Surveying the Chapter: Page 442 Chapter 11 Intermolecular Forces, Liquids, and Solids We begin with a brief comparison of solids, liquids, and gases from a molecular perspective, which reveals the important

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. A phase is a homogeneous part of the system in contact

More information

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey

CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS. Chemistry 1411 Joanna Sabey CHAPTER 11: INTERMOLECULAR FORCES AND LIQUIDS AND SOLIDS Chemistry 1411 Joanna Sabey Forces Phase: homogeneous part of the system in contact with other parts of the system but separated from them by a

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 A phase is a homogeneous part of the system in contact

More information

Liquids and Solids Chapter 10

Liquids and Solids Chapter 10 Liquids and Solids Chapter 10 Nov 15 9:56 AM Types of Solids Crystalline solids: Solids with highly regular arrangement of their components Amorphous solids: Solids with considerable disorder in their

More information

Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES

Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES BONDING & INTERMOLECULAR FORCES Page 1 INTERMOLECULAR FORCES Intermolecular forces (van der Waals forces) relative weak interactions that occur between molecules. Most of the physical properties of gases,

More information

Chapter 10 Liquids and Solids. Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, , 113

Chapter 10 Liquids and Solids. Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, , 113 Chapter 10 Liquids and Solids Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, 104-106, 113 Recall: Intermolecular vs. Intramolecular Forces Intramolecular: bonds between

More information

UNIT 14 IMFs, LIQUIDS, SOLIDS PACKET. Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES

UNIT 14 IMFs, LIQUIDS, SOLIDS PACKET. Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES Name: Date: Period: #: BONDING & INTERMOLECULAR FORCES p. 1 Name: Date: Period: #: IMF NOTES van der Waals forces: weak attractive forces between molecules. There are 3 types: 1. London Dispersion Forces

More information

Ch 9 Liquids & Solids (IMF) Masterson & Hurley

Ch 9 Liquids & Solids (IMF) Masterson & Hurley Ch 9 Liquids & Solids (IMF) Masterson & Hurley Intra- and Intermolecular AP Questions: 2005 Q. 7, 2005 (Form B) Q. 8, 2006 Q. 6, 2007 Q. 2 (d) and (c), Periodic Trends AP Questions: 2001 Q. 8, 2002 Q.

More information

Chemistry 101 Chapter 14 Liquids & Solids

Chemistry 101 Chapter 14 Liquids & Solids Chemistry 101 Chapter 14 Liquids & Solids States of matter: the physical state of matter depends on a balance between the kinetic energy of particles, which tends to keep them apart, and the attractive

More information

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces

Chapter 11. Freedom of Motion. Comparisons of the States of Matter. Liquids, Solids, and Intermolecular Forces Liquids, Solids, and Intermolecular Forces Chapter 11 Comparisons of the States of Matter The solid and liquid states have a much higher density than the gas state The solid and liquid states have similar

More information

Chapter 14. Liquids and Solids

Chapter 14. Liquids and Solids Chapter 14 Liquids and Solids Section 14.1 Water and Its Phase Changes Reviewing What We Know Gases Low density Highly compressible Fill container Solids High density Slightly compressible Rigid (keeps

More information

AP Chemistry: Liquids and Solids Practice Problems

AP Chemistry: Liquids and Solids Practice Problems AP Chemistry: Liquids and Solids Practice Problems Directions: Write your answers to the following questions in the space provided. or problem solving, show all of your work. Make sure that your answers

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 11 Liquids and Intermolecular Forces Intermolecular Forces The attractions between molecules are not nearly as strong as the intramolecular attractions

More information

Chapter 14. Liquids and Solids

Chapter 14. Liquids and Solids Chapter 14 Liquids and Solids Review Solid - Has a definite (fixed) shape and volume (cannot flow). Liquid - Definite volume but takes the shape of its container (flows). Gas Has neither fixed shape nor

More information

Exam Accelerated Chemistry Study Sheet Chap12 Solids/Liquids/Intermolecular Forces

Exam Accelerated Chemistry Study Sheet Chap12 Solids/Liquids/Intermolecular Forces Exam Accelerated Chemistry Study Sheet Chap12 Solids/Liquids/Intermolecular Forces Name /66 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Intermolecular

More information

ก ก ก Intermolecular Forces: Liquids, Solids, and Phase Changes

ก ก ก Intermolecular Forces: Liquids, Solids, and Phase Changes ก ก ก Intermolecular Forces: Liquids, Solids, and Phase Changes ก ก ก ก Mc-Graw Hill 1 Intermolecular Forces: Liquids, Solids, and Phase Changes 12.1 An Overview of Physical States and Phase Changes 12.2

More information

Chem 1046 February 27, 2001 Test #2

Chem 1046 February 27, 2001 Test #2 Chem 1046 February 27, 2001 Test #2 1. A sample of octane in equilibrium with its vapor in a closed 1.0-L container has a vapor pressure of 50.0 torr at 45 C. The container s volume is decreased to 0.50

More information

Question 2 Identify the phase transition that occurs when CO 2 solid turns to CO 2 gas as it is heated.

Question 2 Identify the phase transition that occurs when CO 2 solid turns to CO 2 gas as it is heated. For answers, send email to: admin@tutor-homework.com. Include file name: Chemistry_Worksheet_0039 Price: $4 (c) 2012 www.tutor-homework.com: Tutoring, homework help, help with online classes. Chapter 11

More information

Honors Chemistry Dr. Kevin D. Moore

Honors Chemistry Dr. Kevin D. Moore Honors Chemistry Dr. Kevin D. Moore Key Properties: Solid is less dense than liquid Water reaches maximum density at 4 C Very high specific heat Dissolves many substances Normal Boiling Point: 100 C Normal

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids Chapter 11 Intermolecular Forces, Liquids, and Solids Dissolution of an ionic compound States of Matter The fundamental difference between states of matter is the distance between particles. States of

More information

Chap. 12 INTERMOLECULAR FORCES

Chap. 12 INTERMOLECULAR FORCES Chap. 12 INTERMOLECULAR FORCES Know how energy determines physical properties and how phase changes occur as a result of heat flow. Distinguish between bonding (intermolecular) and nonbonding (intermolecular)

More information

Intermolecular forces (IMFs) CONDENSED STATES OF MATTER

Intermolecular forces (IMFs) CONDENSED STATES OF MATTER Intermolecular forces (IMFs) CONDENSED STATES OF MATTER States of Matter: - composed of particles packed closely together with little space between them. Solids maintain a. - any substance that flows.

More information

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation).

2. As gas P increases and/or T is lowered, intermolecular forces become significant, and deviations from ideal gas laws occur (van der Waal equation). A. Introduction. (Section 11.1) CHAPTER 11: STATES OF MATTER, LIQUIDS AND SOLIDS 1. Gases are easily treated mathematically because molecules behave independently. 2. As gas P increases and/or T is lowered,

More information

Chapter 10. Liquids and Solids

Chapter 10. Liquids and Solids Chapter 10 Liquids and Solids Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Section 10.1 Intermolecular Forces Metallic bonds Covalent bonds Ionic

More information

Chapter 11. Liquids, Solids, and Intermolecular Forces. Water, No Gravity. Lecture Presentation

Chapter 11. Liquids, Solids, and Intermolecular Forces. Water, No Gravity. Lecture Presentation Lecture Presentation Chapter 11 Liquids, Solids, and Intermolecular Forces Water, No Gravity In the space station there are no spills. Rather, the water molecules stick together to form a floating, oscillating

More information

They are similar to each other

They are similar to each other They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close together in solids

More information

Chapter 10. The Liquid and Solid States. Introduction. Chapter 10 Topics. Liquid-Gas Phase Changes. Physical State of a Substance

Chapter 10. The Liquid and Solid States. Introduction. Chapter 10 Topics. Liquid-Gas Phase Changes. Physical State of a Substance Introduction Chapter 10 The Liquid and Solid States How do the properties of liquid and solid substances differ? How can we predict properties based on molecular- level structure? Glasses Wires Reshaping

More information

CHAPTER 6 Intermolecular Forces Attractions between Particles

CHAPTER 6 Intermolecular Forces Attractions between Particles CHAPTER 6 Intermolecular Forces Attractions between Particles Scientists are interested in how matter behaves under unusual circumstances. For example, before the space station could be built, fundamental

More information

Liquids & Solids. For the condensed states the ave KE is less than the attraction between molecules so they are held together.

Liquids & Solids. For the condensed states the ave KE is less than the attraction between molecules so they are held together. Liquids & Solids Intermolecular Forces Matter exists in 3 states. The state of matter is influenced by the physical properties of a substance. For liquids & solids, the condensed states, many of the physical

More information

CHAPTER 11: Intermolecular Forces, Liquids, and Solids. Are there any IDEAL GASES? The van der Waals equation corrects for deviations from ideality

CHAPTER 11: Intermolecular Forces, Liquids, and Solids. Are there any IDEAL GASES? The van der Waals equation corrects for deviations from ideality CHAPTER 11: Intermolecular Forces, Liquids, and Solids Are there any IDEAL GASES? The van der Waals equation corrects for deviations from ideality Does the KMT break down? Kinetic Molecular Theory 1. Gas

More information

Liquids, Solids, and Phase Changes

Liquids, Solids, and Phase Changes C h a p t e r 10 Liquids, Solids, and Phase Changes KMT of Liquids and Solids 01 Gases have little or no interactions. Liquids and solids have significant interactions. Liquids and solids have well-defined

More information

Chapter 12: Liquids, Solids and Intermolecular Forces

Chapter 12: Liquids, Solids and Intermolecular Forces C h e m 1 2 : C h a p 1 2 : L i q u i d s, S o l i d s, I n t e r m o l e c u l a r F o r c e s P a g e 1 Chapter 12: Liquids, Solids and Intermolecular Forces Homework: Read Chapter 12. Check MasteringChemistry

More information

Chapter #16 Liquids and Solids

Chapter #16 Liquids and Solids Chapter #16 Liquids and Solids 16.1 Intermolecular Forces 16.2 The Liquid State 16.3 An Introduction to Structures and Types of Solids 16.4 Structure and Bonding of Metals 16.5 Carbon and Silicon: Network

More information

Chapter 13 States of Matter Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes

Chapter 13 States of Matter Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes Chapter 13 States of Matter 13.2 Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes I. Forces of Attraction (13.2) Intramolecular forces? (forces within) Covalent Bonds, Ionic Bonds, and metallic

More information

ASSIGNMENT SHEET #4 PART I APQ ANSWERS

ASSIGNMENT SHEET #4 PART I APQ ANSWERS ASSIGNMENT SHEET #4 PART I APQ ANSWERS 5 a. (Recall: combustion means adding oxygen gas to) C 5 H 12 + 8 O 2 5 CO 2 + 6 H 2 O b. 2.50 g C 5 H 12 72.15 g/mole C 5 H 12 0.035 mole C 5 H 12 0.035 mole C 5

More information

Bonding and IMF practice test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Bonding and IMF practice test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name Bonding and IMF practice test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) There are paired and unpaired electrons in the Lewis symbol

More information

ENTROPY

ENTROPY ENTROPY 6.2.8 6.2.11 ENTHALPY VS. ENTROPY ENTROPY (S) the disorder of a system - solid liquid gas = entropy - gas liquid solid = entropy - mixing substances always = entropy SPONTANEOUS VS. NONSPONTANEOUS

More information

Chapter 11. Liquids and Intermolecular Forces

Chapter 11. Liquids and Intermolecular Forces Chapter 11. Liquids and Intermolecular Forces 11.1 A Molecular Comparison of Gases, Liquids, and Solids Gases are highly compressible and assume the shape and volume of their container. Gas molecules are

More information

They are similar to each other. Intermolecular forces

They are similar to each other. Intermolecular forces s and solids They are similar to each other Different than gases. They are incompressible. Their density doesn t change much with temperature. These similarities are due to the molecules staying close

More information

Ch 10 -Ch 10 Notes Assign: -HW 1, HW 2, HW 3 Blk 1 Ch 10 Lab

Ch 10 -Ch 10 Notes Assign: -HW 1, HW 2, HW 3 Blk 1 Ch 10 Lab Advanced Placement Chemistry Chapters 10 11 Syllabus As you work through each chapter, you should be able to: Chapter 10 Solids and Liquids 1. Differentiate between the various types of intermolecular

More information

Chapter 14: Liquids and Solids

Chapter 14: Liquids and Solids I. Phases of matter and phase changes a. Recall the three main phases of matter: Chapter 14: Liquids and Solids Energy is involved during the transition from one phase of matter to another. You should

More information

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS

CHAPTER ELEVEN KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS CHAPTER ELEVEN AND LIQUIDS AND SOLIDS KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Differences between condensed states and gases? KINETIC MOLECULAR THEORY OF LIQUIDS AND SOLIDS Phase Homogeneous part

More information

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline

Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Chem 1075 Chapter 13 Liquids and Solids Lecture Outline Slide 2-3 Properties of Liquids Unlike gases, liquids respond dramatically to temperature and pressure changes. We can study the liquid state and

More information

Ch. 11 States of matter

Ch. 11 States of matter Ch. 11 States of matter States of Matter Solid Definite volume Definite shape Liquid Definite volume Indefinite shape (conforms to container) Gas Indefinite volume (fills any container) Indefinite shape

More information

INTERMOLECULAR FORCES: LIQUIDS, SOLIDS & PHASE CHANGES (Silberberg, Chapter 12)

INTERMOLECULAR FORCES: LIQUIDS, SOLIDS & PHASE CHANGES (Silberberg, Chapter 12) INTERMOLECULAR FORCES: LIQUIDS, SOLIDS & PASE CANGES (Silberberg, Chapter 12) Intermolecular interactions Ideal gas molecules act independently PV=nRT Real gas molecules attract/repulse one another 2 n

More information

States of Matter. Solids Liquids Gases

States of Matter. Solids Liquids Gases States of Matter Solids Liquids Gases 1 Solid vs. Liquid vs. Gas Depends on only two things: What? Attractions Kinetic between particles vs Energy of particles 2 Intermolecular Forces (Molecular Attractions)

More information

States of Matter. Solids Liquids Gases

States of Matter. Solids Liquids Gases States of Matter Solids Liquids Gases 1 Solid vs. Liquid vs. Gas Depends on only two things: What? Attractions Kinetic between particles vs Energy of particles 2 Intermolecular Forces (Molecular Attractions)

More information

Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds

Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds Sample Exercise 11.1 Identifying Substances That Can Form Hydrogen Bonds In which of these substances is hydrogen bonding likely to play an important role in determining physical properties: methane (CH

More information

Upon successful completion of this unit, the students should be able to:

Upon successful completion of this unit, the students should be able to: Unit 9. Liquids and Solids - ANSWERS Upon successful completion of this unit, the students should be able to: 9.1 List the various intermolecular attractions in liquids and solids (dipole-dipole, London

More information

CDO AP Chemistry Unit 7 Review

CDO AP Chemistry Unit 7 Review CDO AP Chemistry Unit 7 Review MULTIPLE CHOICE REVIEW 1. Surface tension in a liquid is due to the fact that a) surface molecules are pulled toward the interior b) liquids tend toward lowest energy c)

More information

States of matter. Chapter 11. Kinetic Molecular Theory of Liquids and Solids. Kinetic Molecular Theory of Solids Intermolecular Forces

States of matter. Chapter 11. Kinetic Molecular Theory of Liquids and Solids. Kinetic Molecular Theory of Solids Intermolecular Forces States of matter Chapter 11 Intermolecular Forces Liquids and Solids By changing the T and P, any matter can exist as solid, liquid or gas. Forces of attraction determine physical state Phase homogeneous

More information

Chapter 10: States of Matter. Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding

Chapter 10: States of Matter. Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding Chapter 10: States of Matter Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding Pressure standard pressure the pressure exerted at sea level in dry air

More information

Chapter 11. Intermolecular Forces, Liquids, and Solids

Chapter 11. Intermolecular Forces, Liquids, and Solids Sample Exercise 11.1 (p. 450) In which of the following substances is hydrogen bonding likely to play an important role in determining physical properties: methane (CH 4 ), hydrazine (H 2 NNH 2 ), methyl

More information

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules.

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules. Preview Lesson Starter Objectives The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory and the Nature of Gases Deviations of Real Gases from Ideal Behavior Section 1 The Kinetic-Molecular

More information

Born-Haber Cycle: ΔH hydration

Born-Haber Cycle: ΔH hydration Born-Haber Cycle: ΔH hydration ΔH solution,nacl = ΔH hydration,nacl(aq) U NaCl ΔH hydration,nacl(aq) = ΔH hydration,na + (g) + ΔH hydration,cl (g) Enthalpies of Hydration 1 Sample Exercise 11.3 Use the

More information

1. What is the difference between intermolecular forces and intramolecular bonds? Variations in the Boiling Point of Noble Gases

1. What is the difference between intermolecular forces and intramolecular bonds? Variations in the Boiling Point of Noble Gases NAME: DATE: Chemical Bonding Forces Assignment 1. What is the difference between intermolecular forces and intramolecular bonds? 2. Use your data booklet to fill in the following chart Variations in the

More information