Supporting Information for. Electrochemical Water Oxidation Using a Copper Complex

Size: px
Start display at page:

Download "Supporting Information for. Electrochemical Water Oxidation Using a Copper Complex"

Transcription

1 Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 28 Supporting Information for Electrochemical Water Oxidation Using a Copper Complex Sebastian Nestke, a Emanuel Ronge, b Inke Siewert a * a Universität Göttingen, Institut für Anorganische Chemie, Tammannstr. 4, 3777 Göttingen, Germany b Universität Göttingen, Institut für Materialphysik, Friedrich-Hund-Platz, 3777 Göttingen, Germany inke.siewert@chemie.uni-goettingen.de Table of content Instrumentation... 2 Molecular Copper Oxygen Evolution Catalysts... 2 Electrochemical Measurements... 3 GC-TCD Traces... Vis Spectroscopy... Surface Analysis... References... 4

2 Instrumentation A combined glass electrode (Metrohm ) filled with 3 M KCl in water was used for ph determination (daily calibration). For the electrochemical investigations a Gamry Instruments Reference 6 or Reference 6+. All electrochemical measurements were performed with ir compensation using the positive feedback method which is implemented in the PH2 software of Gamry. The UV/vis spectra were recorded with an Agilent Cary 5 UV-VIS-NIR spectrometer or Analytic Jena SPECORD 5 PLUS spectrometer. GC experiments of the headspace were carried out with a Shimadzu GC-24 equipped with a TCD detector and a molecular sieve column (5 Å, 8/, 2 m length, 2 mm ID). Methane was used as internal standard and injected into the headspace before each CPE. To calculate no2, a calibration curve by measuring known quantities of no2/nch4 mixtures was done. The SEM and EDX analysis was carried out with a Nova NanoSem 65 in-situ SEM from FEI. A through the lens (TL) and an Everhart-Thornley (ET) detector was used to take images at an acceleration voltage of kv. For the energy-dispersive X-ray spectroscopy (EDX) an Oxford Instrument X-max detector was deployed. The EDX measurements were carried out at an acceleration voltage of 2 kv and a live time of 9 s for every measuring point. Molecular Copper Oxygen Evolution Catalysts Figure S. Overview of selected mononuclear copper oxygen evolution catalysts, ref. see main text. 2

3 Electrochemical Measurements 2 ph 8. 2 ph ph ,2,4,6,8,,2,4,6,8-2,2,4,6,8,,2,4,6,8-2,2,4,6,8,,2,4,6,8 2 ph ph. 2 ph ,2,4,6,8,,2,4,6,8-2,2,4,6,8,,2,4,6,8-2,2,4,6,8,,2,4,6,8 2 ph. 2 ph.5 2 ph ,2,4,6,8,,2,4,6,8-2,2,4,6,8,,2,4,6,8-2,2,4,6,8,,2,4,6,8 Figure S 2. ph dependent CV data of in Millipore water ([] mm, I=. M PO4 3, without Chelex, ν =. Vs - ). 3

4 5 Fc/Fc + % H 2 O % H 2 O I /µa ,5,,5,,5 E vs. Fc/Fc + /V Figure S 3. CV data of in acetonitrile with % (red) and % (black) water ([] mm, I =. M n Bu4NPF6, ph = 8, ν =. Vs ) Phosphate,,5,,5 2, Carbonate Borate -25 -,5 -, -,5,,5,,5 2, 2 5 Acetate 5 5,,5,,5 2,,,5,,5 2, Figure S 4. CV data of in Millipore water employing a BDD electrode and various buffer salts ([] mm, I =. M buffer, ph = 2). Borate, carbonate and acetate buffer solutions were adjusted to ph 2 with NaOH and used without Chelex. 4

5 Q /C Q /C,,8,6,4, t /s, t /s Figure S 5. Bulk electrolysis experiments in Millipore water with and a 7 mm GC rod in a two-compartment cell. The GC rod was polished and conditioned by 3 CV cycles between.6 V and. V in electrolyte solution prior CPE. Left: E appl =.494 V, right: E appl =.944 V; ([] mm, I =. M PO4 3, ph = 2) ,2,4,6,8,,2,4,6,8 Figure S 6. CV data of using the GC plates ([] mm, I=. M PO4 3, ν =. Vs -, ph = 2) after conditioning and before CPE. The red curve represents the CV of in electrolyte solution and the black curve pure electrolyte solution ,2,4,6,8,,2,4,6,8 Figure S 7. CV data of 3 M CuSO4 in. M Na2CO3 using the GC plates (I=. M, ν =. Vs, ph.8) after conditioning and before CPE, (without Chelex ). 5

6 Q /C CuSO t /s Figure S 8. Charge vs. time plot during CPE using GC plates. Blue: 3 mm CuSO4 in. M Na2CO3 solution, E appl =.3 V; red:, E appl =.494 V ([] mm, I=. M PO4 3, ph 2); black: pure electrolyte solution, E appl =.494 V (I=. M PO4 3, ph = 2). i /ma after CPE of solution after CPE of electrolyte solution,5,,5 Figure S 9. CV data of the reused electrode in new electrolyte solution after 3 min CPE at E appl =.494 V ([] mm, I =. M PO4 3, ν =. Vs, ph = 2). The GC-electrode was rinsed off but not polished between the experiments. 8 (3 C) ( C) reused electrode (2 C) 6 Q /C t /s Figure S. Plot of the electric charge vs. time during CPE with the reused electrode in new electrolyte solution (red), polished and conditioned electrode in electrolyte solution (black), polished and conditioned electrode in solution (blue). 6

7 st Cycle th Cycle 2th Cycle,2,4,6,8,,2,4, st Cycle th Cycle 2th Cycle,2,4,6,8,,2,4,6 Figure S. Left: 2 successive scans of ([] mm) in Millipore water; right: 2 successive scans of free solution. (I =. M PO4 3, =. Vs -, ph = 2) mvs - -,5,,5,,5 2, Figure S 2. Scan rate dependent CV data of in Millipore water ([] mm, I =. M PO4 3, ph = 2), background subtracted. i 2 p /na data points linear fit y = 2.279E-9 x i c /i p /Vs - -/2 /V -/2 s /2 5, 4,5 4, 3,5 3, 2,5 2,,5, data points linear fit y =.5 x +.24 Figure S 3. Left: Plot of the square of the peak current for the Cu(II) reduction in dependence of the scan rate. Right: Plot of the ratio of the catalytic current (E =.494 V) over the current of the Cu(II) reduction vs. the square root of the scan rate. i p =.4463 n p F A ( n p F υ D R T D = R T m F 3 A 2 c ) =.24 5 cm2 s (S) (S2) 7

8 ,2,4,6,8,,2,4,6, Zn-,2,4,6,8,,2,4,6,8 Figure S 4. CV data of (left)) and the equivalent zinc (right) in Millipore water ([] mm, I =. M PO4 3, =. Vs -, ph = 2).,6,5,4,3,2,,,9,8,7 y = -.53x +.42 y = -.25x +.74 st inflection point, data point 2nd inflection point, data point linear fit ph Figure S 5. Plot of the potential of the inflection points of the CV data at different ph, black: st inflection point, red: 2 nd inflection point. 6 4 H 2 O, ph 2 D 2 O, pd 2 2,2,4,6,8,,2,4,6,8 Figure S 6. CV data of in Millipore water ([] mm, I =. M PO4 3, =. Vs -, ). Red: H2O (ph = 2), black: D2O (pd = 2). K2HPO4 was used for the D2O solution and the pd was adjusted with NaOD. The ph* was measured with a glass electrode and converted to pd by adding.45. [] 8

9 ,5,,5,,5 2, ,5,,5,,5 2, Figure S 7. CV data of and eq. (left) and eq. (right) of H2O2 ([] mm, I =. M PO4 3, ph = 2) Phosphate,,5,,5 2, Carbonate Borate -, -,5,,5,,5 2, Acetate ,,5,,5 2,,,5,,5 2, Figure S 8. CV data of in Millipore water with various buffer salts ([] mm, I =. M buffer, ph = 2). Borate, carbonate and acetate buffer solutions were adjusted to ph 2 with NaOH and used without Chelex. 9

10 GC-TCD Traces 8 N 2 6 Complex solution Electrolyte solution U /µv 4 2 O 2 CH t /s Figure S 9. GC-TCD traces of the headspace after 3 min CPE (E appl =.494 V, I =. M PO4 3, ph = 2). Red: trace after CPE of electrolyte solution; black: trace after CPE of solution ([] mm). Vis Spectroscopy Absorbance,5,,5 + eq. H 2 O 2 + eq. H 2 O 2, /nm Figure S 2. Vis spectra of the solution in the presence of various amounts of H2O2 ([] mm, I =. M, ph 2). Absorbance,5,,5 after after /nm Figure S 2. Vis spectra of the solution before CPE (black), after CPE at.494 V (green), and after CPE at.944 V (red), ([] mm, I =. M PO4 3, ph = 2).

11 , [] [] after CPE [] + H 2 O 2 Absorbance, /nm Figure S 22. Vis spectra of the solution before CPE (red), after CPE at.494 V (black), and with ex. H2O2 (blue), ([] mm, I =. m PO4 3, ph = 2).

12 Surface Analysis Figure S 23. SEM pictures of the GC electrode after CPE employing mm solution of at ph = 2, applied potential of.49 V. Intensity (counts) C 3 Cu Spectrum O 2 Cu P Si Ca Cu Energy (kev) Intensity (counts) C O Spectrum Energy (kev) Figure S 24. EDX spectra of the GC electrode after CPE employing mm solution of at ph = 2, applied potential of.49 V; left picture: EDX spectrum, position see Figure S 22; Right: EDX spectrum 2, position see Figure S 22. 2

13 Figure S 25. SEM pictures of the GC electrode after CPE without the at ph = 2, applied potential of.49 V. Intensity (counts) C O Energy (kev) Figure S 26. EXD spectra of the GC electrode after CPE without the at ph = 2, applied potential of.49 V. 3

14 CPE with Cu(II)SO4 was used as reference system for copper deposition, which was reported by Meyer and co-worker. [2] A 3 mm Cu(II)SO4 solution (in. M Na2CO3) was electrolysed 3 minutes at.3 V (Figure S 8). Figure S 27. SEM pictures of the GC electrode after CPE employing 3 mm solution of CuSO4 at ph.8, applied potential of.3 V. 6 C Cu Intensity (counts) 4 2 O Cu Cu Energy (kev) Figure S 28. EDX spectra of the GC electrode after CPE employing 3 mm solution of CuSO4 at ph.8, applied potential of.3 V. Figure S 29. SEM pictures of a bare GC electrode. References [] A. Krężel, W. Bal, J. Inorg. Biochem. 24, 98, [2] Z. Chen, T. J. Meyer, Angew. Chem. Int. Ed. 23, 52, 7 73; Angew. Chem. 23, 25,

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral

A Robust and Highly Active Copper-Based Electrocatalyst. for Hydrogen Production at Low Overpotential in Neutral Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting information A Robust and Highly Active Copper-Based Electrocatalyst for Hydrogen Production

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information A Cu 2 Se-Cu 2 O Film Electrodeposited on Titanium Foil as a Highly Active

More information

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2

Single Catalyst Electrocatalytic Reduction of CO 2 in Water to H 2 :CO Syngas Mixtures with Water Oxidation to O 2 Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information Single Catalyst Electrocatalytic Reduction of CO 2

More information

Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water

Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water Supporting Information Achieving High Electrocatalytic Efficiency on Copper: A Low-Cost Alternative to Platinum for Hydrogen Generation in Water Jian Zhao, a,b,c,d Phong D. Tran,* a,c Yang Chen, a,c Joachim

More information

A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mv overpotential

A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 80 mv overpotential Supporting Information for A super-efficient cobalt catalyst for electrochemical hydrogen production from neutral water with 8 mv overpotential Lin Chen, a Mei Wang, *a Kai Han, a Peili Zhang, a Frederic

More information

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions

Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous

More information

Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) Analysis The samples were also characterized by scanning electron

Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) Analysis The samples were also characterized by scanning electron Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) Analysis The samples

More information

Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea

Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary information for Self-assembled Two-dimensional Copper Oxide

More information

ELECTROCATALYSIS OF THE HYDROGEN-EVOLUTION REACTION BY ELECTRODEPOSITED AMORPHOUS COBALT SELENIDE FILMS

ELECTROCATALYSIS OF THE HYDROGEN-EVOLUTION REACTION BY ELECTRODEPOSITED AMORPHOUS COBALT SELENIDE FILMS Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supplementary Information for: ELECTROCATALYSIS OF THE HYDROGEN-EVOLUTION

More information

Supporting Information

Supporting Information Supporting Information Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper (I) Oxide Catalysts Dan Ren, Yilin Deng, Albertus Denny Handoko, Chung Shou Chen, Souradip

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Supplementary Information The electrochemical discrimination of pinene enantiomers by

More information

Supporting Information Reagents. Physical methods. Synthesis of ligands and nickel complexes.

Supporting Information Reagents. Physical methods. Synthesis of ligands and nickel complexes. Supporting Information for Catalytic Water Oxidation by A Bio-inspired Nickel Complex with Redox Active Ligand Dong Wang* and Charlie O. Bruner Department of Chemistry and Biochemistry and Center for Biomolecular

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2010 Fluoride-Modulated Cobalt Catalysts for Electrochemical Oxidation of Water under Non-Alkaline Conditions James B.

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 215 Supplementary Information CdSe quantum dots/molecular cobalt catalyst co-grafted

More information

Electronic Supplementary Information for the Electrocatalytic Water Oxidation by Cu II Complexes with Branched Peptides

Electronic Supplementary Information for the Electrocatalytic Water Oxidation by Cu II Complexes with Branched Peptides Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information for the Electrocatalytic Water Oxidation by Cu II Complexes

More information

Single-walled carbon nanotubes as nano-electrode and nanoreactor to control the pathways of a redox reaction

Single-walled carbon nanotubes as nano-electrode and nanoreactor to control the pathways of a redox reaction Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 014 Supporting information Single-walled carbon nanotubes as nano-electrode and nanoreactor to control

More information

Supplementary information for Organically doped palladium: a highly efficient catalyst for electroreduction of CO 2 to methanol

Supplementary information for Organically doped palladium: a highly efficient catalyst for electroreduction of CO 2 to methanol Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 Supplementary information for rganically doped palladium: a highly efficient catalyst for

More information

[Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles

[Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles [Supplementary Information] One-Pot Synthesis and Electrocatalytic Activity of Octapodal Au-Pd Nanoparticles Jong Wook Hong, Young Wook Lee, Minjung Kim, Shin Wook Kang, and Sang Woo Han * Department of

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Experimental section Materials: Ti mesh (TM) was provided

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Precious-metal free photoelectrochemical water splitting

More information

Two-electron oxidation of water to form hydrogen peroxide catalysed by Silicon-porphyrins

Two-electron oxidation of water to form hydrogen peroxide catalysed by Silicon-porphyrins Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information for Two-electron oxidation of water to form

More information

Nanoporous metals by dealloying multicomponent metallic glasses. Chen * Institute for Materials Research, Tohoku University, Sendai , Japan

Nanoporous metals by dealloying multicomponent metallic glasses. Chen * Institute for Materials Research, Tohoku University, Sendai , Japan Supporting information for: Nanoporous metals by dealloying multicomponent metallic glasses Jinshan Yu, Yi Ding, Caixia Xu, Akihisa Inoue, Toshio Sakurai and Mingwei Chen * Institute for Materials Research,

More information

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water

Carbon Quantum Dots/NiFe Layered Double Hydroxide. Composite as High Efficient Electrocatalyst for Water Supplementary Information Carbon Quantum Dots/NiFe Layered Double Hydroxide Composite as High Efficient Electrocatalyst for Water Oxidation Di Tang, Juan Liu, Xuanyu Wu, Ruihua Liu, Xiao Han, Yuzhi Han,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Highly oriented MOF thin film-based electrocatalytic

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Electronic Supplementary Information Ultrathin and High-Ordered CoO Nanosheet

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Engineering Cu 2 O/NiO/Cu 2 MoS 4 Hybrid Photocathode for H 2 Generation in Water Chen Yang, a,b

More information

An inorganic-organic hybrid supramolecular nanotube as high-performance anode for lithium ion batteries

An inorganic-organic hybrid supramolecular nanotube as high-performance anode for lithium ion batteries Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 An inorganic-organic hybrid supramolecular nanotube as high-performance anode for lithium

More information

Electrocatalysis by Subcellular Liver Fractions Bound to Carbon Nanostructures for Stereoselective Green Drug Metabolite Synthesis

Electrocatalysis by Subcellular Liver Fractions Bound to Carbon Nanostructures for Stereoselective Green Drug Metabolite Synthesis Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Electrocatalysis by Subcellular Liver Fractions Bound to Carbon Nanostructures

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Experimental Section Materials: Ti

More information

N-doped Carbon-Coated Cobalt Nanorod Arrays Supported on a Titanium. Mesh as Highly Active Electrocatalysts for Hydrogen Evolution Reaction

N-doped Carbon-Coated Cobalt Nanorod Arrays Supported on a Titanium. Mesh as Highly Active Electrocatalysts for Hydrogen Evolution Reaction Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information N-doped Carbon-Coated Cobalt Nanorod

More information

Metal-Organic Framework Immobilized Cobalt Oxide Nanoparticles

Metal-Organic Framework Immobilized Cobalt Oxide Nanoparticles Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information Metal-Organic Framework Immobilized Cobalt Oxide

More information

Supplementary Information

Supplementary Information Supplementary Information Time-dependent growth of zinc hydroxide nanostrands and their crystal structure Xinsheng Peng, ab Jian Jin, a Noriko Kobayashi, a Wolfgang Schmitt, c and Izumi Ichinose* a a Organic

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Enhanced Catalytic Activity and Magnetization of Encapsulated

More information

Nickel Phosphine Catalysts with Pendant Amines. for the Electrocatalytic Oxidation of Alcohols

Nickel Phosphine Catalysts with Pendant Amines. for the Electrocatalytic Oxidation of Alcohols Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Nickel Phosphine Catalysts with Pendant Amines for the Electrocatalytic Oxidation of Alcohols Charles

More information

Efficient Water Oxidation Catalyzed by Cationic Cobalt Porphyrins: Critical Roles for the Buffer Base. Dong Wang and John T.

Efficient Water Oxidation Catalyzed by Cationic Cobalt Porphyrins: Critical Roles for the Buffer Base. Dong Wang and John T. Supporting Information Appendix for Efficient Water Oxidation Catalyzed by Cationic Cobalt Porphyrins: Critical Roles for the Buffer Base Dong Wang and John T. Groves* Department of Chemistry, Princeton

More information

High-Flux CO Reduction Enabled by Three-Dimensional Nanostructured. Copper Electrodes

High-Flux CO Reduction Enabled by Three-Dimensional Nanostructured. Copper Electrodes Supporting Information High-Flux CO Reduction Enabled by Three-Dimensional Nanostructured Copper Electrodes Yuxuan Wang, David Raciti, Chao Wang * Department of Chemical and Biomolecular Engineering, Johns

More information

Electrochemical Water Splitting by Layered and 3D Cross-linked Manganese Oxides: Correlating Structural Motifs and Catalytic Activity

Electrochemical Water Splitting by Layered and 3D Cross-linked Manganese Oxides: Correlating Structural Motifs and Catalytic Activity Electronic Supplementary Information Electrochemical Water Splitting by Layered and 3D Cross-linked Manganese Oxides: Correlating Structural Motifs and Catalytic Activity Arno Bergmann,* a Ivelina Zaharieva,*

More information

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light

Supporting Information. CdS/mesoporous ZnS core/shell particles for efficient and stable photocatalytic hydrogen evolution under visible light Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Supporting Information CdS/mesoporous ZnS core/shell particles for efficient

More information

Supplemental Information. Carbon Monoxide Gas Diffusion Electrolysis. that Produces Concentrated C 2 Products. with High Single-Pass Conversion

Supplemental Information. Carbon Monoxide Gas Diffusion Electrolysis. that Produces Concentrated C 2 Products. with High Single-Pass Conversion JOUL, Volume 3 Supplemental Information Carbon Monoxide Gas Diffusion Electrolysis that Produces Concentrated C 2 Products with High Single-Pass Conversion Donald S. Ripatti, Thomas R. Veltman, and Matthew

More information

3R Phase of MoS 2 and WS 2 Outperforms Corresponding 2H Phase for Hydrogen Evolution

3R Phase of MoS 2 and WS 2 Outperforms Corresponding 2H Phase for Hydrogen Evolution Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 3R Phase of MoS 2 and WS 2 Outperforms Corresponding 2H Phase for Hydrogen Evolution Rou Jun Toh,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2018 Supporting Information Precise-Control Synthesis of α-/β-mno 2 Materials by Adding

More information

Supporting Information. Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies

Supporting Information. Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies Supporting Information Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies Dorottya Hursán 1,2 and Csaba Janáky 1,2* 1 Department of Physical

More information

General Medicine 2016/17

General Medicine 2016/17 ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Buffers, buffer capacity. Oxidoreduction, electrode processes Practical lesson on medical biochemistry General Medicine Martin Vejražka, Tomáš

More information

Impurity Ion Complexation Enhances Carbon. Dioxide Reduction Catalysis

Impurity Ion Complexation Enhances Carbon. Dioxide Reduction Catalysis Supporting Information Impurity Ion Complexation Enhances Carbon Dioxide Reduction Catalysis Anna Wuttig, Yogesh Surendranath* Department of Chemistry, Massachusetts Institute of Technology, Cambridge,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal

More information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2011 Supplementary Information for Selective adsorption toward toxic metal ions results in selective response: electrochemical studies on polypyrrole/reduced graphene oxide nanocomposite Experimental Section

More information

Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen. reduction reaction Electronic Supplementary information (ESI)

Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen. reduction reaction Electronic Supplementary information (ESI) Tunable nitrogen-doped carbon aerogels as sustainable electrocatalysts in the oxygen reduction reaction Electronic Supplementary information (ESI) Stephanie-Angelika Wohlgemuth,* a Tim-Patrick Fellinger

More information

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially Supporting Information Electropolymerization of aniline on nickel-based electrocatalysts substantially enhances their performance for hydrogen evolution Fuzhan Song, Wei Li, Guanqun Han, and Yujie Sun*

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information NiSe 2 Pyramids Deposited on N-doped Graphene Encapsulated

More information

Electrochemical Synthesis of Luminescent MoS 2 Quantum Dots

Electrochemical Synthesis of Luminescent MoS 2 Quantum Dots Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Electronic Supplimentary Information Electrochemical Synthesis of Luminescent MoS

More information

Supplementary Information. A miniature solar device for overall water splitting consisting of. series-connected spherical silicon solar cells

Supplementary Information. A miniature solar device for overall water splitting consisting of. series-connected spherical silicon solar cells Supplementary Information A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells Yosuke Kageshima 1*, Tatsuya Shinagawa 2*, Takaaki Kuwata 3,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Bismuth Nanodendrites as High Performance Electrocatalysts

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Synthesis and Application of Hexagonal Perovskite BaNiO 3 with Quadrivalent

More information

Pt-Cu Hierarchical Quasi Great Dodecahedrons with Abundant

Pt-Cu Hierarchical Quasi Great Dodecahedrons with Abundant Electronic Supplementary Material Material (ESI) for (ESI) Chemical for ChemComm. Science. This journal is is The The Royal Royal Society Society of Chemistry of Chemistry 2017 2017 Supporting Information

More information

Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite

Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite electrode; (b) pyrolytic graphite electrode with 100 µl 0.5 mm

More information

Supplementary Information:

Supplementary Information: Supplementary Information: One-Step and Rapid Synthesis of Clean and Monodisperse Dendritic Pt Nanoparticles and Their High Performance Toward Methanol Oxidation and p-nitrophenol Reduction Jun Wang, Xin-Bo

More information

Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT) sample. (a, b) TEM images of CNT; (c) EDS of CNT.

Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT) sample. (a, b) TEM images of CNT; (c) EDS of CNT. 1 Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT sample. (a, b TEM images of CNT; (c EDS of CNT. Cobalt is not detected in the original CNT sample (Note: The accidentally

More information

Table S1. Structural parameters of shell-by-shell fitting of the EXAFS spectrum for reduced and oxidized samples at room temperature (RT)

Table S1. Structural parameters of shell-by-shell fitting of the EXAFS spectrum for reduced and oxidized samples at room temperature (RT) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting information Table S1. Structural parameters of shell-by-shell

More information

Electrogenerated Upconverted Emission from Doped Organic Nanowires

Electrogenerated Upconverted Emission from Doped Organic Nanowires Electrogenerated Upconverted Emission from Doped Organic Nanowires Qing Li, Chuang Zhang, Jian Yao Zheng, Yong Sheng Zhao*, Jiannian Yao* Electronic Supplementary Information (ESI) 1 Experimental details

More information

Supplementary Information

Supplementary Information Catalytically Efficient Palladium anoparticles Stabilized by Click rrocenyl Dendrimers Cátia rnelas, Lionel Salmon, Jaime Ruiz Aranzaes, Didier Astruc Supplementary Information Cyclic Voltammetry (CV),

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information One-Dimensional MoO2-Co2Mo3O8@C Nanorods: A Novel and High

More information

Metal-free electrocatalytic hydrogen oxidation using frustrated Lewis pairs and carbon-based Lewis acids

Metal-free electrocatalytic hydrogen oxidation using frustrated Lewis pairs and carbon-based Lewis acids Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Supplementary Information Metal-free electrocatalytic hydrogen oxidation using frustrated

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information MoS 2 nanosheet/mo 2 C-embedded N-doped

More information

Stable and Selective Electrochemical Reduction of Carbon Dioxide to Ethylene on Copper Mesocrystals

Stable and Selective Electrochemical Reduction of Carbon Dioxide to Ethylene on Copper Mesocrystals Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2014 Stable and Selective Electrochemical Reduction of Carbon Dioxide to Ethylene

More information

Huan Pang, Jiawei Deng, Shaomei Wang, Sujuan Li, Jing Chen and Jiangshan Zhang

Huan Pang, Jiawei Deng, Shaomei Wang, Sujuan Li, Jing Chen and Jiangshan Zhang 1 Electronic Supplementary Information (ESI) Facile synthesis of porous nickel manganite materials and their morphologies effect on electrochemical properties Huan Pang, Jiawei Deng, Shaomei Wang, Sujuan

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. a) SEM image of Cu foil after electropolishing (5 µm scale bar). SEM images of Cu foils treated with H 2 plasma at 100W for 2 minutes b) as prepared and

More information

Electronic Supplementary Information (ESI )

Electronic Supplementary Information (ESI ) Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information (ESI ) Hollow nitrogen-doped carbon spheres as an efficient

More information

Evidence for Covalent Bonding of Aryl Groups to MnO 2 Nanorods from Diazonium-Based Grafting

Evidence for Covalent Bonding of Aryl Groups to MnO 2 Nanorods from Diazonium-Based Grafting Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Information for Evidence for Covalent Bonding of Aryl Groups to MnO 2 Nanorods from

More information

Supporting Information

Supporting Information Supporting Information Trace Levels of Copper in Carbon Materials Show Significant Electrochemical CO 2 Reduction Activity Yanwei Lum,,,, Youngkook Kwon,,, Peter Lobaccaro,,,# Le Chen,, Ezra Lee Clark,,,#

More information

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China).

Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, (P. R. China). Electronic Supplementary Material (ESI) for Nanoscale Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction

More information

Supplementary Information. Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright,

Supplementary Information. Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright, Supplementary Information Electron transfer reactions at the plasma-liquid interface Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright, Chung-Chiun Liu, and R. Mohan Sankaran*,

More information

Plasma-functionalized carbon-layered separators for improved performance of

Plasma-functionalized carbon-layered separators for improved performance of Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

Solved Examples On Electrochemistry

Solved Examples On Electrochemistry Solved Examples On Electrochemistry Example 1. Find the charge in coulomb on 1 g-ion of Charge on one ion of N 3- = 3 1.6 10-19 coulomb Thus, charge on one g-ion of N 3- = 3 1.6 10-19 6.02 10 23 = 2.89

More information

Based Gas Diffusion Electrodes

Based Gas Diffusion Electrodes SUPPORTING INFORMATION FOR: High Rate Electrochemical Reduction of Carbon Monoxide to Ethylene Using Cu-Nanoparticle- Based Gas Diffusion Electrodes Lihao Han, 1,2 Wu Zhou, 1,2 and Chengxiang Xiang* 1,2

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supporting Information Single-crystalline Pd square nanoplates enclosed by {100}

More information

Three Dimensional Nano-assemblies of Noble Metal. Nanoparticles-Infinite Coordination Polymers as a Specific

Three Dimensional Nano-assemblies of Noble Metal. Nanoparticles-Infinite Coordination Polymers as a Specific Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Three Dimensional Nano-assemblies of Noble Metal Nanoparticles-Infinite

More information

photo-mineralization of 2-propanol under visible light irradiation

photo-mineralization of 2-propanol under visible light irradiation Electronic Supplementary Information for WO 3 modified titanate network film: highly efficient photo-mineralization of 2-propanol under visible light irradiation Experimental Preparation of STN, and WO

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Experimental section Materials: Tannic acid (TA), silver nitrate

More information

Fig. S1 The Structure of RuCE(Left) and RuCA (Right)

Fig. S1 The Structure of RuCE(Left) and RuCA (Right) Supporting information Fabrication of CZTS and CZTSSe photocathode CZTS photocathode was fabricated by sulfurization of a stacked film containing Cu, Zn and Sn. The stacked film was fabricated on Mo coated

More information

A BODIPY-based fluorescent probe for the differential

A BODIPY-based fluorescent probe for the differential Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 15 Supporting information A BODIPY-based fluorescent probe for the differential recognition of Hg(II)

More information

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential

Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires. with Controllable Overpotential Large-Scale Synthesis of Transition-metal Doped TiO 2 Nanowires with Controllable Overpotential Bin Liu 1, Hao Ming Chen, 1 Chong Liu 1,3, Sean C. Andrews 1,3, Chris Hahn 1, Peidong Yang 1,2,3,* 1 Department

More information

3D Boron doped Carbon Nanorods/Carbon-Microfiber Hybrid Composites: Synthesis and Applications as Highly Stable Proton Exchange Membrane Fuel Cell

3D Boron doped Carbon Nanorods/Carbon-Microfiber Hybrid Composites: Synthesis and Applications as Highly Stable Proton Exchange Membrane Fuel Cell Electronic Supplementary Information for Journal of Materials Chemistry 3D Boron doped Carbon Nanorods/Carbon-Microfiber Hybrid Composites: Synthesis and Applications as Highly Stable Proton Exchange Membrane

More information

Supporting Information for: Polyaniline-Modified Pt Catalyst for Improved Electrochemical Reduction of CO 2

Supporting Information for: Polyaniline-Modified Pt Catalyst for Improved Electrochemical Reduction of CO 2 Supporting Information for: Polyaniline-Modified Pt Catalyst for Improved Electrochemical Reduction of CO 2 David N. Abram, a Kendra P. Kuhl b, Etosha R. Cave c, Thomas F. Jaramillo a adepartment of Chemical

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Information (ESI) A thin-layered chromatography plate prepared from naphthalimide-based receptor immobilized SiO 2 nanoparticles as a portable chemosensor and adsorbent for Pb

More information

Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang *

Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang * Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang and Hong Yang * Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 114 Roger Adams Laboratory, MC-712, 600

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry Supporting Information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry Supporting Information Supporting Information A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as anode catalyst for direct methanol fuel cells Yi-Ge Zhou, Jing-Jing Chen, Feng-bin Wang*,

More information

CHEMISTRY 13 Electrochemistry Supplementary Problems

CHEMISTRY 13 Electrochemistry Supplementary Problems 1. When the redox equation CHEMISTRY 13 Electrochemistry Supplementary Problems MnO 4 (aq) + H + (aq) + H 3 AsO 3 (aq) Mn 2+ (aq) + H 3 AsO 4 (aq) + H 2 O(l) is properly balanced, the coefficients will

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Uniform and Rich Wrinkled Electrophoretic Deposited Graphene Film: A Robust Electrochemical Platform for TNT Sensing Longhua Tang, Hongbin Feng, Jinsheng Cheng and

More information

Supporting Information

Supporting Information Gold Nanoparticle-Modified ITO Electrode for Electrogenerated Chemiluminescence: Well-Preserved Transparency and Highly-Enhanced Activity Zuofeng Chen and Yanbing Zu * Department of Chemistry, The University

More information

Supporting Information. Selective detection of trace amount of Cu 2+ using semiconductor nanoparticles in photoelectrochemical analysis

Supporting Information. Selective detection of trace amount of Cu 2+ using semiconductor nanoparticles in photoelectrochemical analysis Supplementary Material (ESI) for Nanoscale This journal is The Royal Society of Chemistry Supporting Information Selective detection of trace amount of Cu + using semiconductor nanoparticles in photoelectrochemical

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information The Assembly of Vanadium (IV)-Substituted Keggin-type

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 217 Supporting Information Experimental Section Materials. Dicyandiamide(DCDA, C 2 H 4 N 4,

More information

of a Ruthenium(II) Pyridylimidazole Complex

of a Ruthenium(II) Pyridylimidazole Complex Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Supporting Information for: Proton Coupled Electron Transfer from the Excited State

More information

3) In CE separation is based on what two properties of the solutes? (3 pts)

3) In CE separation is based on what two properties of the solutes? (3 pts) Final Exam Chem 311 Fall 2002 December 16 Name 1) (3 pts) In GC separation is based on the following two properties of the solutes a) polarity and size b) vapor pressure and molecular weight c) vapor pressure

More information

Supporting information for

Supporting information for Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting information for N-doped Carbon Shelled Bimetallic Phosphates for Efficient Electrochemical

More information

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry Supplementary Information

Electronic Supplementary Material (ESI) for Dalton Transactions This journal is The Royal Society of Chemistry Supplementary Information Supplementary Information 1 2-(2-Hydroxyphenyl)-1H-benzimidazole-manganese oxide hybrid as a promising structural model for Tyrosine 161/Histidine 190-manganese cluster in Photosystem II Mohammad Mahdi

More information

Aim: What are electrochemical cells?

Aim: What are electrochemical cells? Aim: What are electrochemical cells? Electrochemistry Electrochemistry- involves a redox reaction and a flow of electrons TWO TYPES of ELECTROCHEMICAL CELLS 1.Voltaic (similar to a battery) 2.Electrolytic

More information

Supplementary information

Supplementary information Supplementary information Electrochemical synthesis of metal and semimetal nanotube-nanowire heterojunctions and their electronic transport properties Dachi Yang, ab Guowen Meng,* a Shuyuan Zhang, c Yufeng

More information

Supplementary Information

Supplementary Information Supplementary Information Visible Photocatalytic Water Splitting and Photocatalytic Two-Electron Oxygen Formation over Cu and Fe Doped g-c 3 N 4 Zhen Li a,b, Chao Kong a,b, Gongxuan Lu a* a State Key Laboratory

More information