POLYPHOSPHORIC ACID ASSAY

Size: px
Start display at page:

Download "POLYPHOSPHORIC ACID ASSAY"

Transcription

1 POLYPHOSPHORIC ACID ASSAY Introduction This Technical Information Report describes the sampling technique and method of analysis recommended to perform rapid and reliable polyphosphoric acid assays for both inventory and quality control requirements. The analytical method presented is referred to as the "chain length method". It has been tested against the classical ammonium phosphomolybdate precipitation method and the widely used titration method, both of which depend on hydrolysis of the polyphosphoric acid to its ortho equivalent. The results of these tests, which demonstrate the validity of the chain length method, are presented. Theory and calculations Every polyphosphoric acid is a mixture of molecules of different chain lengths or number of phosphorus atoms per molecule. Within a given sample, the distribution of different chain lengths tends to equilibrate according to the sample strength (P 2 O 5 content) and temperature. References 1 and 2 offer some quantitative data on this process. While the distribution may vary, the average chain length within a sample remains constant. This is true whether or not the sample is at equilibrium. Further, the average chain length between samples is a singlevalued function of P 2 O 5 content. Thus, if the average chain length is determined, the P 2 O 5 content or assay is known. This forms the basis of the chain length method. An unhydrolyzed acid sample is titrated with caustic to two end points or inflections. The first inflection corresponds to strongly acid protons of which there is one per phosphorous atom. The second corresponds to weakly acid protons of which there are two per chain, one at each end. For V1, the volume of titrant to the first inflection, the total number of phosphorus atoms is proportional to V1. For VT, the total titrant to the second inflection, the number of chains is proportional to (VT V1)/2. The average chain length, n, is the total number of phosphorus atoms divided by the number of chains, and since the proportionality constant in both above relations is the same, V1 2V1 N= = (VT V1) /2 (VT V1) The average chain of length n can be visualized as which has a formula weight of 80n The equivalent amounts of H 3 PO 4 with formula weight 98 and P 2 O 5 with formula weight 142 are given by 98n and (142/2)n = 71n, respectively. Thus, Equiv. %H 3 PO 4 =

2 98n 71n X X 100% and Equiv. % P 2 O 5 = 100% 80n n + 18 From these equations, the relationship between n and %H 3 PO 4 or %P 2 O 5 is constructed (Table 1). Validation The chain length method depends upon titration of an unhydrolyzed sample. Any hydrolysis will create new chains which may invalidate the results. On the other hand, sample weight and titrant normality, which are contained in the proportionality constant in the derivation above, cancel out of the calculations and are only important to the extent they control titrant volumes. Polyphosphoric acid is highly hygroscopic and rapidly absorbs moisture when exposed to air. Besides making accurate weighing of a sample difficult, the absorbed moisture begins the hydrolysis process. When water is added to the sample, the hydrolysis process is free to proceed to completion. Quantitative data on rate of hydrolysis is scarce. At room temperature the rate is slow. For those analytical methods based on titration or reaction of a totally hydrolyzed sample (orthophosphoric acid), the sample must be boiled in water for 30 minutes to an hour or more. To determine the significance of hydrolysis effects on the validity of the chain length method, each of six polyphosphoric acid samples ranging between 113 and 118% H 3 PO 4 was analyzed in four different laboratories, and in most cases by more than one analyst in each laboratory. Chain length, phosphomolybdate, and titration methods were employed. The results, as presented in Table 2, demonstrate the validity of the chain length method. Table 1 Relation of average chain length to % H 3 PO 4 and % P 2 O 5 Chain Length % H 3 PO 4 % P 2 O

3

4 Table 2 Results of Comparison of Methods for Analysis of Polyphosphoric Acid Lab Sample A B C D E F Chain Length Method ( % H 3 PO 4 ) Mean Std. Dev (+/) Phosphomolybdate Method (% H 3 PO 4 )

5 Mean Std. Dev (+/) Hydrolysis Method ( % H 3 PO 4 ) Mean Std. Dev (+/) Sampling procedure equipment A sample dipper or pipet with a handle several feet long is required. It should be constructed of 316 stainless steel. A pipet design suitable for cars, trucks or drums is given in Figure 1. The sample container should be a 16 oz. Wide mouth bottle with no recesses which are difficult to clean or rinse. Nalgene or similar material is recommended to avoid breakage form thermal or mechanical shock. The sample bottle is best handled in or over a polypropylene tray or bucket to contain spills and drips resulting from the sampling operation. The viscous acid will cling to the equipment, then run off rapidly as it is diluted by atmospheric moisture. Techniques and safeguards CAUTION: Polyphosphoric acid is unloaded and transferred hot to reduce its viscosity. When sampling, heavy padded rubber gloves must be worn to protect the hands from chemical and thermal burns. Samples should always be taken through the top of a truck or car and well into the bulk liquid. Drums are heated to 200 to 230 F (90 to 115 C) and sampled through the bung and midway into the drum. Samples taken from unloading connections or anywhere that the acid has been exposed to atmospheric moisture are not reliable. The sampling device should be clean and dry. It is first filled and drained back into the truck or car and then wiped with a clean gloved hand or other device as the sampler is withdrawn. The bottle is contained in or held over the tray or bucket. The sample bottle is capped immediately.

6 All sampling procedures should be carried out as rapidly as possible. The gloves and other safety equipment required for safe handling of the acid hinder rapid manual manipulation of the sampling equipment. Some practice is required to develop speed in handling without sacrificing safety. Any polyphosphoric acid spilled on clothing or skin should be removed immediately. Where skin contact occurs, follow the instructions provided in the Innophos Material Safety Data Sheet on polyphosphoric acid. Chain length method procedure This procedure assumes manual titration using a ph meter. An automatic titrimeter is equally suitable. Apparatus Buret 50ml with Teflon plug. Beakers 250ml. Graduated cylinder 100ml. magnetic stirrer with stirring bar on or a glass stirring rod. ph meter or automatic titrimeter. Figure 1. Polyphosphoric acid sampling pipet. Reagent Sodium hydroxide solution (approximately 0.5N). dissolve 20 grams NaOH, reagent grade, in about 150ml of deionized water and transfer to a 1 liter container. Fill to volume, cool, refill to volume and mix thoroughly. Procedure 1. Calibrate the ph meter with ph 4 and ph 7 buffers 2. Mount the buret beside the ph meter and fill with the sodium hydroxide solution. 3. Weigh approximately 1 gram of room temperature sample directly into a clean 250ml beaker using a top loading balance. 4. Add 100ml of deionized water and a stirring bar. 5. Place the beaker on the magnetic stirrer and under the buret, and immerse the ph electrodes.

7 6. Add 20ml of sodium hydroxide solution in 5ml increments, recording ph after each addition. Continue by slowly adding 1ml increments and recording ph until near the first inflection (ph 4.0 to 4.5). At the inflection, reduce the increments to 0.5ml. 7. Following the first inflection, add two 10ml increments of solution and then reduce to 1ml increments, recording ph as before. Reduce to 0.5 increments at the second inflection (ph 9.0 to 9.5). 8. Plot the ph versus milliliters of sodium hydroxide on suitable graph paper and determine the volumes of sodium hydroxide solution to the two inflection points. For V1, the volume to the first, and VT, the volume to the second, the average chain length is calculated a n in N = 2V1 (VT V1) 9. Obtain the % H 3 PO 4 or % P 2 O 5 by interpolation from Table 1 or by calculation, where 98n 71n % H 3 PO 4 = X 100% or % P 2 O 5 = X 100% 80n n + 18 Notes Care should be taken that the magnetic stirrer does not heat the solution being titrated. It is often helpful to make a preliminary rapid titration to locate the inflection points and then follow with the detailed procedure. References Huhti, AnnaLiisa, Gartagamis, Phodbus A., Canadian Journal of Chemistry 34:790, Toy, Arthur D.F., Phosphorus Chemistry in Everyday Living, American Chemical Society (1976) NL Baroid, Houston, TX, private communications. TRADEMARKS: Nalgene is a registered trademark of Nalge Co. And Teflon is a registered trademark of E.I. dupont denemours & Co., Inc. TIR7 September 1991 See your Innophos Sales Representative or call our Order and Sales Customer Service Department at for more information about products discussed in this Technical Information Report. Innophos believes all information given in this report is accurate. It is offered in good faith, but supplied without consideration or guarantee. Innophos assumes no obligation or liability for the accuracy or sufficiency of the information given or the results obtained, all such information being given or accepted at user s risk. The use(s) referred are listed for purposes of illustration only and the user is urged to investigate and establish the suitability of application of such use(s) in every case. Nothing herein contained is to be construed as a recommendation for uses which infringe valid patents or as extending a license under valid patents or as advising or authorizing practice of any patents or patent applications owned by Innophos or others.

Chemistry Determination of Mixed Acids

Chemistry Determination of Mixed Acids Chemistry 3200 Acid-base titration is one of the most common operations in analytical chemistry. A solution containing an unknown amount of ionizable hydrogen can be titrated with a solution of standard

More information

Total Carboxylic Acid Group Content Applicable Products: Carbopol * Polymers and Pemulen * Polymeric Emulsifiers

Total Carboxylic Acid Group Content Applicable Products: Carbopol * Polymers and Pemulen * Polymeric Emulsifiers LUBRIZOL TEST PROCEDURE TP-1318-A Edition: August, 2010 Total Carboxylic Acid Group Content Applicable Products: Carbopol * Polymers and Pemulen * Polymeric Emulsifiers Scope: This procedure is used for

More information

GETTING THE END POINT TO APPROXIMATE. Two hours

GETTING THE END POINT TO APPROXIMATE. Two hours Chem 1312 Handout Experiment ONE Laboratory Time Required Special Equipment and Supplies Objective Safety First Aid GETTING THE END POINT TO APPROXIMATE THE EQUIVALENCE POINT Two hours Balance Potassium

More information

Acid-Base Titration. Evaluation copy

Acid-Base Titration. Evaluation copy Acid-Base Titration Computer 7 A titration is a process used to determine the volume of a solution that is needed to react with a given amount of another substance. In this experiment, your goal is to

More information

Standardizing a Solution of Sodium Hydroxide. Evaluation copy

Standardizing a Solution of Sodium Hydroxide. Evaluation copy Standardizing a Solution of Sodium Hydroxide Computer 6 It is often necessary to test a solution of unknown concentration with a solution of a known, precise concentration. The process of determining the

More information

Acid-Base Titration. Sample

Acid-Base Titration. Sample Acid-Base Titration Computer 7 A titration is a process used to determine the volume of a solution that is needed to react with a given amount of another substance. In this experiment, your goal is to

More information

Titration of a Cola Product INSTRUCTOR RESOURCES

Titration of a Cola Product INSTRUCTOR RESOURCES Titration of a Cola Product INSTRUCTOR RESOURCES The CCLI Initiative Computers in Chemistry Laboratory Instruction LEARNING OBJECTIVES The objective of this laboratory experiment is to determine the molar

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Part A. Preparation of Vitamin C Tablet Solutions 1. Obtain two vitamin C tablets. Place a plastic weighing boat on the balance, and press zero to tare the

More information

O H 3 O 1 1 A. O 1 1 OH (K w

O H 3 O 1 1 A. O 1 1 OH (K w CHAPTER 8 Acid Base Titration Curves Objectives The objectives of this experiment are to: Understand the titration curves for the following solutions: a strong acid: hydrochloric acid, HCl. a weak acid:

More information

Acid-Base Titration. Computer OBJECTIVES

Acid-Base Titration. Computer OBJECTIVES Acid-Base Titration Computer 7 A titration is a process used to determine the volume of a solution that is needed to react with a given amount of another substance. In this experiment, your goal is to

More information

Conductometric Titration & Gravimetric Determination of a Precipitate

Conductometric Titration & Gravimetric Determination of a Precipitate Conductometric Titration & Gravimetric Determination of a Precipitate Experiment 9 In this experiment, you will monitor conductivity during the reaction between sulfuric acid, H2SO4, and barium hydroxide,

More information

RAPID KJELDAHL BENCHNOTES

RAPID KJELDAHL BENCHNOTES RAPID KJELDAHL BENCHNOTES Methodology for the Determination of Alcohol in a Mixture by Direct Distillation with the RapidStill II Principle: This method covers the determination of percent alcohol in distilled

More information

ph Titration of H 3 PO 4 Mixtures Calculation of K 1, K 2, and K 3

ph Titration of H 3 PO 4 Mixtures Calculation of K 1, K 2, and K 3 ph Titration of H 3 PO 4 Mixtures Calculation of K 1, K 2, and K 3 Purpose In this experiment the titration of pure H 3 PO 4 and H 3 PO 4 with HCl or NaH 2 PO 4 is followed by measuring the ph of the solution

More information

PRETREATMENT TECHNICAL DATA SHEET A CHROME-FREE FINAL RINSE PRODUCT DESCRIPTION

PRETREATMENT TECHNICAL DATA SHEET A CHROME-FREE FINAL RINSE PRODUCT DESCRIPTION INDUSTRIAL COATINGS CS59 PRETREATMENT TECHNICAL DATA SHEET A CHROME-FREE FINAL RINSE PRODUCT DESCRIPTION is a chromium-free concentrate for use as a final rinse after phosphate with CHEMFOS iron or zinc

More information

Tex-620-J, Determining Chloride and Sulfate Contents in Soil

Tex-620-J, Determining Chloride and Sulfate Contents in Soil Contents in Soil Contents: Section 1 Overview...2 Section 2 Sample Preparation...3 Section 3 Ion Chromatography Method...5 Section 4 Wet Chemical Method...9 Section 5 Archived Versions...15 Texas Department

More information

Acid-Base Titration. Volume NaOH (ml) Figure 1

Acid-Base Titration. Volume NaOH (ml) Figure 1 LabQuest 24 A titration is a process used to determine the volume of a solution needed to react with a given amount of another substance. In this experiment, you will titrate hydrochloric acid solution,

More information

PRETREATMENT TECHNICAL DATA SHEET CHROMIUM-FREE ORGANIC PASSIVATING RINSE PRODUCT DESCRIPTION

PRETREATMENT TECHNICAL DATA SHEET CHROMIUM-FREE ORGANIC PASSIVATING RINSE PRODUCT DESCRIPTION INDUSTRIAL COATINGS CS19 PRETREATMENT TECHNICAL DATA SHEET CHROMIUM-FREE ORGANIC PASSIVATING RINSE PRODUCT DESCRIPTION is a chromium-free passivating rinse. It is formulated to provide improved adhesion

More information

Conductimetric Titration and Gravimetric Determination of a Precipitate

Conductimetric Titration and Gravimetric Determination of a Precipitate Conductimetric Titration and Gravimetric Determination of a Precipitate LabQuest 16 In this experiment, you will monitor conductivity during the reaction between sulfuric acid, H 2 SO 4, and barium hydroxide,

More information

Determining the K sp of Calcium Hydroxide

Determining the K sp of Calcium Hydroxide Determining the K sp of Calcium Hydroxide (Titration Method) Computer 23 Calcium hydroxide is an ionic solid that is sparingly soluble in water. A saturated, aqueous, solution of Ca(OH) 2 is represented

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Introduction This experiment illustrates how titration, the process of slowly adding one solution to another until the reaction between the two is complete,

More information

Determination of the K a Value and Molar Mass of an Unknown Weak Acid

Determination of the K a Value and Molar Mass of an Unknown Weak Acid 10 Determination of the K a Value and Molar Mass of an Unknown Weak Acid Introduction In this experiment you will titrate a monoprotic weak acid with a strong base, and measure the titration curve with

More information

PRETREATMENT TECHNICAL DATA SHEET CHROMIUM-FREE ORGANIC PASSIVATING RINSE PRODUCT DESCRIPTION

PRETREATMENT TECHNICAL DATA SHEET CHROMIUM-FREE ORGANIC PASSIVATING RINSE PRODUCT DESCRIPTION INDUSTRIAL COATINGS CS100 PRETREATMENT TECHNICAL DATA SHEET CHROMIUM-FREE ORGANIC PASSIVATING RINSE PRODUCT DESCRIPTION is a chromium-free organic passivating rinse. It is formulated to provide improved

More information

Titration 2: CH 3 COOH Titrated with NaOH

Titration 2: CH 3 COOH Titrated with NaOH Titration 2: CH 3 COOH Titrated with NaOH Titration 1: Acid is CH 3 COOH, phenolphthalein as the indicator 1. Obtain about 60 ml of the standardized ( 0.1 M) NaOH solution. CAUTION: Sodium hydroxide solution

More information

Determination of Isocyanate Equivalent Weight (in toluene solution)

Determination of Isocyanate Equivalent Weight (in toluene solution) Product Information ISONATE Pure and Modified Test Procedures Pure and Modified This bulletin describes the nonstandard test methods used to determine values for several physical properties of Isonate

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Introduction This experiment illustrates how titration, the process of slowly adding one solution to another until the reaction between the two is complete,

More information

Conductimetric Titration and Gravimetric Determination of a Precipitate

Conductimetric Titration and Gravimetric Determination of a Precipitate Conductimetric Titration and Gravimetric Determination of a Precipitate Handheld 16 In this experiment, you will monitor conductivity during the reaction between sulfuric acid, H 2 SO 4, and barium hydroxide,

More information

Determination of the Equivalent Weight and Ionization Constant of a Weak Acid

Determination of the Equivalent Weight and Ionization Constant of a Weak Acid Determination of the Equivalent Weight and Ionization Constant of a Weak Acid Introduction: The object of this experiment will be to determine the ionization constant, K a, and the equivalent weight of

More information

This lab will be conducted in groups but the lab report must be completed and submitted individually.

This lab will be conducted in groups but the lab report must be completed and submitted individually. CHM 106 Potentiometric Titration of Phosphoric Acid BACKGROUND Potentiometric titrations are a useful method of determining unknown concentrations in many different types of chemical systems. They may

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Introduction This experiment illustrates how titration, the process of slowly adding one solution to another until the reaction between the two is complete,

More information

TEC. Titration curves and buffering capacity with Cobra4

TEC. Titration curves and buffering capacity with Cobra4 Related concept Strong and weak electrolytes, hydrolysis, dissociation of water, amphoteric electrolytes, isoelectric point, law of mass action, indicators, glass electrode, activity coefficient, buffering

More information

Some data and solubility information for Sodium Chlorate

Some data and solubility information for Sodium Chlorate Some data and solubility information for Sodium Chlorate Technical Data And Physical Properties General: The chemical formula of sodium chlorate is NaClO 3 CAS No.7775-09-9. Molecular weight is 106.44.

More information

Standardization of a Primary Standard & Determination of Concentration by Acid-Base Titration

Standardization of a Primary Standard & Determination of Concentration by Acid-Base Titration Standardization of a Primary Standard & Determination of Concentration by Acid-Base Titration It is often necessary to test a solution of unknown concentration with a solution of a known, precise concentration.

More information

To measure ph s in a variety of solutions and mixtures and to account for the results obtained.

To measure ph s in a variety of solutions and mixtures and to account for the results obtained. Acid-Base Studies PURPOSE To measure ph s in a variety of solutions and mixtures and to account for the results obtained. GOALS 1 To learn to use ph paper and a ph meter to measure the ph of a given solution.

More information

For this lab, you will determine the purity of the aspirin by titration and by spectrophotometric analysis.

For this lab, you will determine the purity of the aspirin by titration and by spectrophotometric analysis. Introduction: ommercially prepared aspirin tablets are not considered 100% pure acetylsalicylic acid. Most aspirin tablets contain a small amount of binder which helps prevent the tablets from crumbling.

More information

PRETREATMENT TECHNICAL DATA SHEET MULTIMETAL IRON PHOSPHATE CONVERSION COATING PRODUCT DESCRIPTION

PRETREATMENT TECHNICAL DATA SHEET MULTIMETAL IRON PHOSPHATE CONVERSION COATING PRODUCT DESCRIPTION INDUSTRIAL COATINGS CF146FD CHEMFOS 146FD MULTIMETAL IRON PHOSPHATE CONVERSION COATING PRODUCT DESCRIPTION CHEMFOS 146FD is a dual action chemical process which can be used to simultaneously clean and

More information

Reaction Stoichiometry

Reaction Stoichiometry Reaction Stoichiometry PURPOSE To determine the stoichiometry of acid-base reactions by measuring temperature changes which accompany them. GOALS To learn to use the MicroLab Interface. To practice generating

More information

Ka of Unknown Acid In this experiment you will determine the Ka of an unknown acid by titration with the sodium hydroxide.

Ka of Unknown Acid In this experiment you will determine the Ka of an unknown acid by titration with the sodium hydroxide. Ka of Unknown Acid In this experiment you will determine the Ka of an unknown acid by titration with the sodium hydroxide. Because you will be titrating an unknown acid again, you will be using many of

More information

Acid Base Titration Experiment ACID - BASE TITRATION LAB

Acid Base Titration Experiment ACID - BASE TITRATION LAB ACID - BASE TITRATION LAB MATERIALS and CHEMICALS Burette 50 ml Burette clamp Ring stand Stirring rod Plastic funnel Beakers (50 ml, 100 ml, 400 ml) Graduated cylinder (25 ml, 50 ml) 0.10 M NaOH 0.10 M

More information

Percentage of Acetic Acid in Vinegar

Percentage of Acetic Acid in Vinegar Microscale Percentage of Acetic Acid in Vinegar When sweet apple cider is fermented in the absence of oxygen, the product is an acid, vinegar. Most commercial vinegars are made by fermentation, but some,

More information

Determination of the K a of a Weak Acid and the K b of a Weak Base from ph Measurements

Determination of the K a of a Weak Acid and the K b of a Weak Base from ph Measurements Experiment 6 Determination of the K a of a Weak Acid and the K b of a Weak Base from ph Measurements Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that

More information

PRETREATMENT TECHNICAL DATA SHEET IRON PHOSPHATE CLEANER COATER / CONVERSION COATING PRODUCT DESCRIPTION

PRETREATMENT TECHNICAL DATA SHEET IRON PHOSPHATE CLEANER COATER / CONVERSION COATING PRODUCT DESCRIPTION INDUSTRIAL COATINGS CF51HD CHEMFOS 51HD IRON PHOSPHATE CLEANER COATER / CONVERSION COATING PRODUCT DESCRIPTION CHEMFOS 51HD is a heavy duty dual action chemical cleaner-coater designed to remove soils

More information

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets Chem 2115 Experiment #7 Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets OBJECTIVE: The goals of this experiment are to learn titration

More information

Chemical Reactions: Titrations

Chemical Reactions: Titrations 1 Chemical Reactions: Titrations ORGANIZATION Mode: laboratory work, work in pairs Grading: lab notes, lab performance (titration accuracy), and post-lab report Safety: goggles, lab coat, closed-toe shoes,

More information

PRETREATMENT TECHNICAL DATA SHEET IRON PHOSPHATE CONVERSION COATING PRODUCT DESCRIPTION

PRETREATMENT TECHNICAL DATA SHEET IRON PHOSPHATE CONVERSION COATING PRODUCT DESCRIPTION INDUSTRIAL COATINGS CF158 CHEMFOS 158 IRON PHOSPHATE CONVERSION COATING PRODUCT DESCRIPTION CHEMFOS 158 is a premium chlorate accelerated iron phosphate product. It s designed for use in five or six stage

More information

Chapter 12 Tex-617, Determining Chloride in Concrete

Chapter 12 Tex-617, Determining Chloride in Concrete Chapter 12 Tex-617, Determining Chloride in Contents: Section 1 Overview... 12-2 Section 2 Apparatus... 12-3 Section 3 Preparing Solutions... 12-4 Section 4 Procedures... 12-5 Section 5 Calculations...

More information

TITRATION CURVES INTRODUCTION. Read and/or review Sections 4.10 and 16.7 in your textbook.

TITRATION CURVES INTRODUCTION. Read and/or review Sections 4.10 and 16.7 in your textbook. 1 TITRATION CURVES Copyright: Department of Chemistry, University of Idaho, Moscow, ID 83844-2343. 2013. INTRODUCTION Read and/or review Sections 4.10 and 16.7 in your textbook. In an acid - base titration,

More information

# 12 ph-titration of Strong Acids with Strong Bases

# 12 ph-titration of Strong Acids with Strong Bases # 12 ph-titration of Strong Acids with Strong Bases Purpose: A strong acid solution is titrated with a strong base solution. A titration curve is then used to determine the endpoint and find the concentration

More information

Determination of Orthophosphate Ion

Determination of Orthophosphate Ion Determination of Orthophosphate Ion Introduction Phosphorous, in the form of phosphate, is one of several important elements in the growth of plants. Excessive algae growth in water is stimulated by the

More information

Approximate Volatile Acids by Titration

Approximate Volatile Acids by Titration SOP AMBL-101-A Page 1 of 5 Standard Operating Procedure AMBL-101-A Prepared: April 12, 2006 Revised: July 16, 2014 Prepared by: Terry E. Baxter Reviewed by: Approximate Volatile Acids by Titration METHOD

More information

Apply the ideal gas law (PV = nrt) to experimentally determine the number of moles of carbon dioxide gas generated

Apply the ideal gas law (PV = nrt) to experimentally determine the number of moles of carbon dioxide gas generated Teacher Information Ideal Gas Law Objectives Determine the number of moles of carbon dioxide gas generated during a reaction between hydrochloric acid and sodium bicarbonate. Through this investigation,

More information

Acid-Base Titration. M M V a

Acid-Base Titration. M M V a Acid-Base Titration Pre-Lab Discussion In the chemistry laboratory, it is sometimes necessary to experimentally determine the concentration of an acid solution or a base solution. A procedure for making

More information

Procedures for Preparing Reagents and Media used in Firearm and Tool Mark Examinations

Procedures for Preparing Reagents and Media used in Firearm and Tool Mark Examinations Procedures for Preparing Reagents and Media used in Firearm and Tool Mark Examinations North Carolina State Bureau of Investigation Firearm and Tool Mark Section July 10, 1996 Revised February 23, 1998

More information

INTRODUCTION TO ACIDS, BASES AND TITRATION

INTRODUCTION TO ACIDS, BASES AND TITRATION Experiment INTRODUCTION TO ACIDS, BASES AND TITRATION The CCLI Initiative Computers in chemistry Laboratory Instruction LEARNING OBJECTIVES The objectives of this experiment are to... introduce the nature

More information

GENERAL INSTRUCTIONS GENERAL PREPARATION

GENERAL INSTRUCTIONS GENERAL PREPARATION GENERAL INSTRUCTIONS Introduction The Van London-pHoenix Company Fluoroborate Ion Selective Electrode is used to quickly, simply, accurately, and economically measure Fluoroborate in aqueous solutions.

More information

EXPERIMENT 9 ENTHALPY OF REACTION HESS S LAW

EXPERIMENT 9 ENTHALPY OF REACTION HESS S LAW EXPERIMENT 9 ENTHALPY OF REACTION HESS S LAW INTRODUCTION Chemical changes are generally accompanied by energy changes; energy is absorbed or evolved, usually as heat. Breaking chemical bonds in reactants

More information

To use calorimetry results to calculate the specific heat of an unknown metal. To determine heat of reaction ( H) from calorimetry measurements.

To use calorimetry results to calculate the specific heat of an unknown metal. To determine heat of reaction ( H) from calorimetry measurements. Calorimetry PURPOSE To determine if a Styrofoam cup calorimeter provides adequate insulation for heat transfer measurements, to identify an unknown metal by means of its heat capacity and to determine

More information

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II)

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II) : Absorption Spectroscopy of Cobalt(II) OBJECTIVES In successfully completing this lab you will: prepare a stock solution using a volumetric flask; use a UV/Visible spectrometer to measure an absorption

More information

Titration with an Acid and a Base

Titration with an Acid and a Base Skills Practice Titration with an Acid and a Base Titration is a process in which you determine the concentration of a solution by measuring what volume of that solution is needed to react completely with

More information

Experimental Procedure

Experimental Procedure Experimental Procedure Overview The ph meter is used in conjunction with a titration apparatus and a standardized sodium hydroxide solution to determine the molar concentration of a weak acid solution

More information

STANDARD OPERATING PROCEDURE No. 52 STATIC ACID GENERATION (NAG) TEST

STANDARD OPERATING PROCEDURE No. 52 STATIC ACID GENERATION (NAG) TEST Questa Rock Pile Stability Study SOP 52v6 Page 1 STANDARD OPERATING PROCEDURE No. 52 STATIC ACID GENERATION (NAG) TEST REVISION LOG Revision Number Description Date 52v0 Original SOP by STM 6/9/2004 52v1

More information

EXPERIMENT 6. Properties of Buffers INTRODUCTION

EXPERIMENT 6. Properties of Buffers INTRODUCTION EXPERIMENT 6 Properties of Buffers INTRODUCTION A chemical buffer is any substance in a solution that tends to stabilize the hydronium ion concentration by neutralizing any added acid or base. Buffers

More information

Chloride, HR, Direct Measurement ISE Method Method g/l to 35 g/l Cl Powder Pillow ISA

Chloride, HR, Direct Measurement ISE Method Method g/l to 35 g/l Cl Powder Pillow ISA , 10255 DOC316.53.01322 Direct Measurement ISE Method Method 10255 3.55 g/l to 35 g/l Cl Powder Pillow ISA Scope and Application: For the determination of high concentrations (1 M) of chloride in brine

More information

Determination of Orthophosphate Ion

Determination of Orthophosphate Ion Determination of Orthophosphate Ion Introduction Phosphorous, in the form of phosphate, is one of several important elements in the growth of plants. Excessive algae growth in water is stimulated by the

More information

Titration 3: NH 3 Titrated with HCl

Titration 3: NH 3 Titrated with HCl Titration 3: NH 3 Titrated with HCl Titration 1: Base is NH 3, Brom Blue in the indicator 1. Obtain about 60 ml of the standardized ( 0.1 M) HCl solution. CAUTION: Avoid spilling it on your skin or clothing.

More information

NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l)

NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l) EXPERIMENT 21 Molarity of a Hydrochloric Acid Solution by Titration INTRODUCTION Volumetric analysis is a general term meaning any method in which a volume measurement is the critical operation; however,

More information

12.01 Determination of the isoelectric point of an amino acid (glycine)

12.01 Determination of the isoelectric point of an amino acid (glycine) Biochemistry LEB 12 Determination of the isoelectric point of an amino acid (glycine) What you can learn about Isoelectric point Acidic anions Basic cations Zwitterions Equivalence (inflection) points

More information

TITRATION OF AN ACID WITH A BASE

TITRATION OF AN ACID WITH A BASE TITRATION OF AN ACID WITH A BASE 1 NOTE: You are required to view the podcast entitled Use of Burets for Titrations before coming to lab this week. To view the podcast, consisting of eight episodes, go

More information

Measuring Enthalpy Changes

Measuring Enthalpy Changes Measuring Enthalpy Changes PURPOSE To observe changes in enthalpy in chemical processes. GOALS To identify exothermic and endothermic processes. To relate enthalpy changes and entropy changes to changes

More information

Introduction to Strong and Weak Acids

Introduction to Strong and Weak Acids Introduction to Strong and Weak Acids Please review the techniques for pipetting a solution, using a buret and performing a titration. There is a link on the 152LL page next to the activity. Introduction:

More information

6 Acid Base Titration

6 Acid Base Titration E x p e r i m e n t Acid Base Titration Experiment : http://genchemlab.wordpress.com/-titration/ objectives To understand the concept of titration. To explain the difference between the analyte and standard

More information

GRIGNARD REACTION Synthesis of Benzoic Acid

GRIGNARD REACTION Synthesis of Benzoic Acid 1 GRIGNARD REACTION Synthesis of Benzoic Acid In the 1920 s, the first survey of the acceleration of chemical transformations by ultrasound was published. Since then, many more applications of ultrasound

More information

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution and the analysis of antacid tablets

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution and the analysis of antacid tablets Chem 2115 Experiment #7 Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution and the analysis of antacid tablets OBJECTIVE: The goals of this experiment are to learn titration

More information

Experiment 7: ACID-BASE TITRATION: STANDARDIZATION OF A SOLUTION

Experiment 7: ACID-BASE TITRATION: STANDARDIZATION OF A SOLUTION Experiment 7: ACID-BASE TITRATION: STANDARDIZATION OF A SOLUTION Purpose: Determine molarity of a solution of unknown concentration by performing acid-base titrations Performance Goals: Apply the concepts

More information

Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law)

Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law) Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law) Name: Date: The formation or destruction of chemical bonds is always accompanied by an energy exchange between the reactant molecules and the

More information

Chemistry 119: Experiment 6. Sampling and Analysis of a Solid Drain Cleaner

Chemistry 119: Experiment 6. Sampling and Analysis of a Solid Drain Cleaner Chemistry 119: Experiment 6 Sampling and Analysis of a Solid Drain Cleaner An important factor in any analysis is the collection of the sample. How this is done depends upon the use to which the analytical

More information

The Thermodynamics of the Solubility of Borax

The Thermodynamics of the Solubility of Borax Experiment 10 Pre-Lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. The questions should be answered on a separate

More information

Buffer Preparation. Learning Objectives:

Buffer Preparation. Learning Objectives: Proteomics Buffer Preparation Buffer Preparation Maintaining the optimum ph during the biological sample processing is to maintain the proper functional and structural aspects of the sample. It is important

More information

Analytical Procedures for Monitoring Farmbased Anaerobic Digestion (AD) Systems: PROTOCOL III

Analytical Procedures for Monitoring Farmbased Anaerobic Digestion (AD) Systems: PROTOCOL III Analytical Procedures for Monitoring Farmbased Anaerobic Digestion (AD) Systems: PROTOCOL III Prepared by Rodrigo Labatut & Curt Gooch Copyright Cornell University All rights reserved Updated July, 2012

More information

METHOD 9040B. ph ELECTROMETRIC MEASUREMENT

METHOD 9040B. ph ELECTROMETRIC MEASUREMENT METHOD 9040B ph ELECTROMETRIC MEASUREMENT 1.0 SCOPE AND APPLICATION 1.1 Method 9040 is used to measure the ph of aqueous wastes and those multiphase wastes where the aqueous phase constitutes at least

More information

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Rate Law Determination of Crystal Violet Hydroxylation Revised 5/22/12 RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997

More information

Alkalinity. LabQuest INTRODUCTION

Alkalinity. LabQuest INTRODUCTION Alkalinity LabQuest 11 INTRODUCTION The alkalinity of water is a measure of how much acid it can neutralize. If any changes are made to the water that could raise or lower the ph value, alkalinity acts

More information

ph Measurement and its Applications

ph Measurement and its Applications ph Measurement and its Applications Objectives: To measure the ph of various solutions using indicators and ph meters. To perform a ph titration. To create and study buffer solutions. To determine the

More information

CHEM 132 Lab 11 Western Carolina University

CHEM 132 Lab 11 Western Carolina University Name Lab Section Chemistry 132 Lab 11 How Effective is Your Antacid? Prelaboratory Exercise 1. How many grams of NaOH will you need to make 250 of 0.5 M NaOH solution? 2. What is the purpose of the first,

More information

GENERAL INSTRUCTIONS GENERAL PREPARATION

GENERAL INSTRUCTIONS GENERAL PREPARATION GENERAL INSTRUCTIONS Introduction The Van London-pHoenix Company Ammonium Ion Selective Electrode is used to quickly, simply, accurately, and economically measure potassium in aqueous solutions. Required

More information

Related concepts Electrolyte, electrical conductance, specific conductance, ion mobility, ion conductivity, conductometry, volumetry.

Related concepts Electrolyte, electrical conductance, specific conductance, ion mobility, ion conductivity, conductometry, volumetry. Conductometric titration with Cobra4 TEC Related concepts Electrolyte, electrical conductance, specific conductance, ion mobility, ion conductivity, conductometry, volumetry. Principle The electric conductivity

More information

Titration of a strong acid with a strong base with Cobra4

Titration of a strong acid with a strong base with Cobra4 Titration of a strong acid with a strong base with Cobra4 TEC Related topics Strong and weak acids and bases, ph value, titration curves, equivalence point, potentiometry. Principle Hydrochloric acid is

More information

Synthesis of Benzoic Acid

Synthesis of Benzoic Acid E x p e r i m e n t 5 Synthesis of Benzoic Acid Objectives To use the Grignard reagent in a water free environment. To react the Grignard reagent with dry ice, CO 2(s). To assess the purity of the product

More information

Mixtures of Acids and Bases

Mixtures of Acids and Bases Mixtures of Acids and Bases PURPOSE To investigate the resulting ph s of different mixtures of acid and base solutions. GOALS To calculate the ph of pure acid and base solutions. To calculate the ph of

More information

Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Crystal Violet with Hydroxide Ion

Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Crystal Violet with Hydroxide Ion Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Introduction In this experiment, you will observe the reaction between crystal violet and sodium hydroxide. Crystal violet

More information

Volumetric Measurement Techniques. Technique #1 Use of a Burette. Technique #2 Use of a Pipette. Technique #3 Use of a Volumetric Flask

Volumetric Measurement Techniques. Technique #1 Use of a Burette. Technique #2 Use of a Pipette. Technique #3 Use of a Volumetric Flask Volumetric Measurement Techniques Technique #1 Use of a Burette Technique #2 Use of a Pipette Technique #3 Use of a Volumetric Flask Technique #4 Use of a Bottle-Top Dispenser Last updated 12/6/2009 5:46

More information

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar.

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar. The titration of Acetic Acid in Vinegar In this laboratory exercise we will determine the percentage Acetic Acid (CH CO H) in Vinegar. We will do this by Titrating the Acetic Acid present with a Strong

More information

COLE-PARMER LABORATORY CALCIUM ION ELECTRODE INSTRUCTION MANUAL

COLE-PARMER LABORATORY CALCIUM ION ELECTRODE INSTRUCTION MANUAL COLE-PARMER LABORATORY CALCIUM ION ELECTRODE INSTRUCTION MANUAL Cole-Parmer Instrument Company (800)323-4340 Fax:(847)247-2929 625 East Bunker Court, Vernon Hills, Illinois 60061 http://www.coleparmer.com

More information

ASTM Designation: D Standard Test Method for Determination of Iodine Number of Activated Carbon

ASTM Designation: D Standard Test Method for Determination of Iodine Number of Activated Carbon ASTM Designation: D4607-94 Standard Test Method for Determination of Iodine Number of Activated Carbon 1. Scope 1.1 This test method covers the determination of the relative activation level of unused

More information

EXPERIMENT A7: VINEGAR TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

EXPERIMENT A7: VINEGAR TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 Learning Outcomes EXPERIMENT A7: VINEGAR TITRATION Upon completion of this lab, the student will be able to: 1) Prepare a solution of primary standard 2) Determine the molar concentration of a solution

More information

Lab 3: The titration of amino acids

Lab 3: The titration of amino acids Chemistry 123 Objective: Lab 3: The titration of amino acids Introduction: Alpha amino acids are the building blocks of proteins. Almost all proteins consist of various combinations of the same 20 amino

More information

experiment7 Explaining the difference between analyte and standard solutions. Know the definition of equivalence point.

experiment7 Explaining the difference between analyte and standard solutions. Know the definition of equivalence point. 93 experiment7 Determining an Unknown Concentration Understanding the concept of titration. LECTURE AND LAB SKILLS EMPHASIZED Explaining the difference between analyte and standard solutions. Know the

More information

Measurements with Ion Selective Electrodes: Determination of Fluoride in Toothpaste

Measurements with Ion Selective Electrodes: Determination of Fluoride in Toothpaste Experiment ISE: Measurements with Ion Selective Electrodes: Determination of Fluoride in Toothpaste 67 You have been hired by the government to check the fluoride concentration labelling on some major

More information

PURPOSE: To determine the Rate Law for the following chemical reaction:

PURPOSE: To determine the Rate Law for the following chemical reaction: PURPOSE: To determine the Rate Law for the following chemical reaction: H 2 O 2 (aq) + 2 I - (aq) + 2 H 3 O + (aq) 4 H 2 O(l) + I 2 (aq) Hydrogen Iodide Hydronium Water Iodine Peroxide Ion Ion PRINCIPLES:

More information

EXPERIMENT 4. Identifying a Substance by Acid-Base Titration

EXPERIMENT 4. Identifying a Substance by Acid-Base Titration EXPERIMENT 4 Identifying a Substance by Acid-Base Titration SAFETY WARNING In this experiment you will be working with NaOH pellets and using 0.25 M NaOH as a titrant. Sodium hydroxide is extremely basic,

More information

Determination of Chloride using Potentiometry

Determination of Chloride using Potentiometry Determination of Chloride using Potentiometry 1. Purpose This procedure will determine the concentration of chloride ion with a chloride specific ion electrode using potentiometry. 2. Background Potentiometry

More information