A Kinetic Study of Copper(II) Extraction using LIX84-I Impregnated Polymeric Particles with Different Structures

Size: px
Start display at page:

Download "A Kinetic Study of Copper(II) Extraction using LIX84-I Impregnated Polymeric Particles with Different Structures"

Transcription

1 Solvent Extraction Research and Development, Japan, Vol. 25, No 1, (2018) A Kinetic Study of Copper(II) Extraction using LIX84-I Impregnated Polymeric Particles with Different Structures Nov Irmawati INDA 1, Masaya FUKUMARU 2, Takashi SANA 2, Shiro KIYOYAMA 3, Takayuki TAKEI 4, Masahiro YOSHIDA 4, Akira NAKAJIMA 5 and Koichiro SHIOMORI 2,* 1 Department of Environment and Resource Sciences, Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki , Japan; 2 Department of Applied Chemistry, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki , Japan; 3 Department of Chemical Science and Engineering, National Institute of Technology, Miyakonojo College, Yoshio-cho, Miyakonojo , Japan; 4 Department of Chemical Engineering, Graduate School of Engineering, Kagoshima University, Korimoto, Kagoshima , Japan; 5 Department of Biotechnology, Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Miyazaki , Japan (Received February 3, 2017; Accepted September 25, 2017 ) Polymeric particles impregnated with LIX84-I having different structures, such as large interconnected -spherical pores (PDVB), small pores (XAD-4) and multi cores (PVA/NaAlg-GA crosslinked gel), were used for copper(ii) extraction from an aqueous phase. The extraction kinetics of copper(ii) from the aqueous solution into three different types of polymeric particles was influenced by the amount of LIX84-I impregnated in the polymeric particles and also their structures. The amount of copper(ii) adsorbed into all types of the polymeric particles increased with time and reached a plateau after a longer contact time. The extraction mechanism of copper(ii) into all types of polymeric particles impregnated with LIX84-I was found to obey Pseudo-second order kinetics. It is suggested that complex-formation and mass-transfer diffusion is the predominant rate-determining step in the copper(ii) extraction process from aqueous solution into the polymeric particles. 1. Introduction Polymeric particles have been widely employed for metal ion recovery by impregnating then with ligands [1-7]. Polymeric particles are considered to be easily usable in metal ion separation processes because the selection of ligands is possible [8]. Polymeric particles as supporting materials have several advantages: (1) large specific interfacial area, (2) the core and semipermeable membranes of the polymeric particle can be used as independent phases which can then support the different ligands, (3) easy separation

2 of the two phases [9]. Several types of polymeric particle have been identified, including chitosan/sporopollenin [10], P(St-EGDMA) [11-14], P(APP-EGDMA) [15], P(Divinylbezene) [16-23], polysulfone [24-26], alginate [27-30], and XAD-4 [31]. There are a few types of polymeric particle such as single-core, multicore, and matrix type [8]. Recently, we prepared three types of polymeric particles containing an extractant: (1) small pore type (XAD-4), (2) multi core type (PVA/Alg-GA) [32] and (3) large interconnected spherical pore type (PDVB) [33]. Commercial XAD particles are hard and insoluble particles, and provide differences in surface properties [34]. These polymeric particles show a wide range of adsorption (via van der Waals forces) behavior, a highly porous structure with a diameter of 0.5 mm, and many small micro-pores exist whose diameters are 10-7 m [31]. Multi-core type particles, PVA/Alg-GA, were prepared through O/W emulsion gelation then crosslinked with glutaraldehyde [32]. The interconnected spherical pore type polymeric particles were prepared from an W/O/W emulsion wherein NaCl aqueous solution was added as an inner aqueous phase in order to form large interconnected spherical pores [5]. Furthermore, these types of polymeric particles were impregnated with LIX84-I (1-(2-hydroxy-5-nonylphenyl) ethanone oxime) for copper(ii) ion extraction [33]. Polymeric particles can act as supporting material containing LIX84-I, so they would have the characteristics of both an ion exchange resin and a ligand used in a liquid-liquid extraction system [8]. In hydrometallurgy, polymeric particles would present an effective adsorbent in separation, removal and recovery of metal ions from aqueous solutions [12]. Several researchers have focused on producing polymeric particles using a common monomer and polymerization initiators [1-2]. Meanwhile, other researchers have focused on the extraction rate behavior of metal ions into polymeric particles by using different kinetic models [8, 12, 17, 35]. In this work, we studied the extraction rate behavior of copper(ii) ion using three different types of polymeric particles impregnated with LIX84-I. In most cases, the extraction process includes a chemical reaction between the adsorbent and the metal ions to remove the metal ions by a mechanism called chemiextraction [12]. Kamio et al. [8] reported that the overall metal ion extraction process into the polymeric particles would be ruled by a mass transfer process accompanied by a chemical reaction that allows the metal ions to be separated and concentrated from the aqueous feed solution toward the acceptor. On the other hand, Araneda et al. reported that the rate of extraction of metal ions (cadmium(ii) and copper(ii)) into the polymeric particles fitted well with a pseudo-second order kinetic model [12]. Based on the kinetic study conducted by Araneda et al. [12] and Kamio et al. [8], we employed the pseudo-second order model as the kinetic model and the mass transfer as the diffusion model. 2. Experimental procedures 2.1 Reagents 1-(2-hydroxy-5-nonylphenyl) ethanone oxime (LIX84-I, Cognis Co. Ltd.) was used as the extractant. Monomeric divinylbenzene (DVB) was purchased from Wako Pure Chemical Industries, Ltd. and washed

3 with 10wt% NaOH aqueous solution to remove the polymerization inhibitor. The monomers were stored in a refrigerator until use. Tri-n-octylamine (TOA), 2,2 - azobis (4-methoxy- 2,4-dimethylvaleronitrile) (ADVN), polyvinyl alcohol (PVA, polymerization degree about 500), sodium dodecylsulphate (SDS), ammonium sulfate, copper sulfate hexahydrate, hexane, ethanol, sodium alginate (Viscosity mpa s), glutaraldehyde, calcium chloride and hydrochloric acid were purchased from Wako Pure Chemical Industries, Ltd. Hexaglycerin ricinoleic acid (818SX) was purchased from Taiyo Kagaku Co. The commercial Amberlite XAD-4 was purchased from Sigma-Aldrich Chemicals. It was washed with ethanol three times to remove the aqueous solution from the wetted XAD-4 and dried under vacuum. 2.2 Preparation of PDVB polymeric particles The PDVB polymeric particles were prepared by the same procedure as given in the previous paper [33] and were immersed in a hexane solution of LIX84-I overnight. Hexane was removed from the polymeric particles using a rotary evaporator and the polymeric particles containing LIX84-I were obtained after drying under vacuum. 2.3 Preparation of XAD-4 polymeric particles A defined amount of commercial XAD-4 particles immersed in 100 ml of ethanol in the 200 ml Erlenmeyer flask for 24 hrs, then filtrated, and dried. The XAD-4 (3 g) were then immersed in 60 ml hexane with various weights of LIX84-I in the eggplant shaped flask for 72 hrs. A rotary evaporator was used for hexane removal. The XAD-4 particles impregnated with LIX84-I were then dried under vacuum overnight. The pore size and pore volume of the commercial XAD-4 were 100 Å and 0.98 ml/g, respectively. 2.4 Preparation of PVA/Alginate-Glutaraldehyde crosslinked gel polymeric particles The PVA/Alg-GA multi core type polymeric particles were prepared as reported in the previous paper using LIX84-I [32]. The organic phase, which is LIX84-I (5, 10 and 20wt%), was added to an aqueous solution containing PVA (5wt%), Na-Alginate (1wt%) and distilled water (89, 84 and 74wt%), then homogenized to obtain an (O/W) emulsion. The (O/W) emulsion was fed by peristaltic pump onto a CaCl 2 aqueous solution (10wt%) through a tube having a diameter of 1 mm, stirred for 30 mins and allowed to solidify. Thus, PVA/alginate gel polymeric particles were obtained. The obtained PVA/alginate gel polymeric particles were transferred to HCl 0.1 M containing glutaraldehyde and stirred for 2 hrs. The PVA/Alginate-glutaraldehyde crosslinked gel polymeric particles containing LIX84-I were washed with water and stored in distilled water until used. 2.5 Measurement of the LIX84-I content of the polymeric particles In order to determine the amount of LIX84-I impregnated in the polymeric particles, the polymeric particles were added to ethanol to elute the LIX84-I from the polymeric particles, and the amount of LIX84-I in the ethanol solution was measured using the weight measurement method [33]. The molar content of LIX84-I, E based on LIX84-I purity was calculated from Eq. (1);

4 ,, x purity 100 mmol 1 g where W pp+lix84-i,ini, W pp+lix84-i, and Mw LIX84-I are the total initial weight of the polymeric particles and LIX84-I (before impregnation), the total weight of polymeric particles and LIX84-I (after impregnation), and the molar mass of LIX84-I, respectively. 2.6 Observation and analysis of the polymeric particle The morphologies of the polymeric particles containing LIX84-I were observed by scanning electron microscopy (Hitachi, TM-1000 or SU3500, SEM) and a digital microscope (KEYENCE, VHX-600 system). The diameter of the polymeric particles was measured using the digital microscope. 2.7 Extraction properties of copper(ii) using PDVB, XAD-4 and PVA/Alg-GA gel polymeric particles impregnated with LIX84-I A defined amount of the polymeric particles impregnated with LIX84-I was added to 200 mg/l of copper(ii) sulphate in 0.5 mol/l (NH 4 ) 2 SO 4 at 303 K. A small amount (3 ml) of the aqueous solution was collected using a plastic pipet, which has a welded Millipore filter (0.22mm) at its tip, at given time intervals. The concentrations of copper(ii) in the collected and the feed solutions were measured by ICP-AES (Shimadzu, ICPS-8100). The amount of copper(ii) extracted into the polymeric particles, q t, was calculated from Eq. (2); (,,, ) [mmol/g] (2) where C Cu,aq,ini, C Cu,aq, V aq, M Cu and W PP are the initial concentration of copper(ii) in the aqueous phase, the equilibrium concentration of copper(ii) in the aqueous solution after extraction, the volume of the aqueous phase, the atomic weight of copper(ii) and the weight of the polymeric particles used for the extraction, respectively. 3. Results and Discussions 3.1 Observation of PDVB, XAD-4 and PVA/Alg-GA crosslinked gel polymeric particles The surface and cross section images of PDVB, XAD-4 and PVA/Alg-GA polymeric particles impregnated with LIX84-I are shown in Figure 1. SEM images show the spherical structure of all the various types of polymeric particle. PDVB has a rough surface and inner aqueous droplets are observed on the surface Figure 1. SEM photographs of PDVB, XAD-4 and PVA/Alg-GA crosslinked gel polymeric particles impregnated with LIX84-I

5 of the particle and in the cross section of the SEM images. The inner aqueous droplets formed large spherical pores which are interconnected. XAD-4 has a dense structure observed on the surface and in the cross section of the SEM images. Because of the long contact time of LIX84-I and the polymeric particles in hexane for PDVB and XAD-4, we assume that the LIX84-I would exist on the surface of the polymeric particle wall and in the pores of the polymeric particles. On the other hand, PVA/Alg-GA has a dense surface and some small depressions can be seen on the surface of the SEM image. It is considered the depressions were caused by the droplets of LIX84-I which were released from the surface of the particle during the crosslinking of the alginate. The cross section image shows the rough structure which contains a lot of round shaped particles, empty spaces between the particles and many isolated spherical pores with dense shells surrounded by the particles. The particles and the shell wall are considered to be the hydrophilic polymer of PVA/Alg-GA. The spherical pores are considered to be the traces of the droplets of LIX84-I which were released during the sample preparation under SEM observation. These droplets of LIX84-I in the spherical pores would act as an organic extraction media in the PVA/Alg-GA polymeric particle. According to Crotts and Park, 1995, porosity is a critical factor for the extraction rate due to the viscosity of the LIX84-I liquid phase entrapped in the surface portion of the polymeric particle. Polymeric particles with very small pores or without pores would hinder the diffusion process, meanwhile, polymeric particles with large pores would present little diffusional resistance due to their high interfacial area [36]. 3.2 Extraction rate of copper(ii) into PDVB, XAD-4 and PVA/Alg-GA polymeric particles Figure 2 shows the effect of the amount of LIX84-I immobilized in the PDVB polymeric particles on the rate of uptake of copper(ii) at different contact times from a 200 mg/l solution of copper(ii). It can be seen that the amount of copper(ii) uptake increased with contact time, and at some point in time reached an almost constant value where the amount of copper(ii) being removed from the aqueous solution onto the polymeric particles is in a state of dynamic equilibrium with the amount of copper(ii) desorbed from the polymeric particles. For the range of contact time under which the experiments were conducted, the amount of copper(ii) extracted from the solution was higher depending on the amount of LIX84-I present in the Figure 2. Rate of copper(ii) extraction with PDVB polymeric particles at different amount of LIX84-I content in the polymeric particles and the different amounts of polymeric particles used

6 polymeric particles. However, the copper(ii) uptake rate using the various types of polymeric particles was different as shown in Figure 3. For the PDVB polymeric particles, the copper(ii) uptake rate was found to be extremely rapid at the initial stage, slowed down as the extraction proceeds and reached an almost constant value after 60 minutes of contact time. Otherwise, for the XAD-4 polymeric particles, the copper(ii) uptake rate slowly increased initially and reached an almost constant value after 360 minutes. On the other hand, the PVA/Alg-GA polymeric particles also show initially a slow uptake rate of copper(ii) and slowly reached an almost constant value after 120 minutes. The higher initial extraction rate may be due to a large number of vacant sites available initially, which results in an increased concentration gradient between the adsorbate in solution and the adsorbate on the adsorbent surface [37]. The PDVB polymeric particles present a larger surface area for the extraction due to the small particle size and the existence of interconnected spherical pores, which tend to rapidly increase the initial copper(ii) extraction rate. As time proceeds the concentration gradient is reduced due to the accumulation of copper(ii) in the vacant sites, leading to a decrease in extraction rate at the later stage of the extraction. For the XAD-4 polymeric particles, a slow extraction rate of copper(ii) was observed with the large number of vacant sites on the surface of the polymeric particles because of the morphology of the polymeric particles which are dense, with a smooth surface and really small pores as shown in Figure 1. The dense structure and small pores could be hindering the diffusion of copper(ii) onto the active sites of the polymeric particles [36]. On the other hand, the copper(ii) uptake rate into the PVA/Alg-GA polymeric particles also slowly increased at the initial stages due to the particle size of the polymeric particles. According to Ofomaja [37], a small particle size presents a larger surface for extraction and leads to a rapidly increase in the extraction rate at the initial stages. The particle size of the PVA/Alg-GA polymeric particles is approximately 3 mm. These results reveal that the PDVB polymeric particles impregnated with LIX84-I are preferable for copper(ii) extraction from aqueous solution due to the morphology of the PDVB polymeric particles compred with that of the other two types of polymeric particles. For further investigation, a kinetic study of copper(ii) extraction with the different types of Figure 3. Rate of copper(ii) extraction with various types of polymeric particles

7 polymeric particles has also been employed to analyze our experimental data. Based on the kinetic study of Kamio et al. [8,35] and Araneda et al. [12], we prefer to employ the pseudo-second order kinetic and the mass-transfer diffusion models to fit our experimental data Analysis of the extraction rate by the pseudo-second order kinetic model Many adsorption kinetic models have been proposed to clarify the mechanism of metal ion sorption from aqueous solution onto an adsorbent. In most cases, the metal ion adsorption process involves a chemical reaction between the metal ion with the adsorbent by a mechanism called chemisorption through sharing or exchanging of electrons. The adsorbent contains functional groups and/or active sites, which are negatively charged and therefore will bond to the metal ions through coordination compound formation, salt formation and ion-pair formation, thereby extracting them from the aqueous solution. Ho (2006) has thoroughly reviewed the pseudo-second order kinetic models of metal ion extraction using solid adsorbents [38]. A pseudo-second order kinetic model can be used to describe very well chemisorption involving valency forces through sharing or exchanging of electrons between the adsorbent and the metal ion, as covalent forces, and ion exchange. The rate of the second-order reaction is dependent on the amount of divalent metal ions on the surface of the adsorbent and the amount of divalent metal ions adsorbed at equilibrium [38]. Kamio [8,35] reported that the sorption behavior of Ga(III) and In(III) and lanthanides into microcapsules loaded with an alkylphosphonic acid extractant involve both chemical reaction and diffusion processes as the rate-determining step. Based on Araneda [12] who considers that, practically, the extractant would be present in a pure state and at high concentration on the surface of the polymeric particle through an evaporation process and, as reported by Sobkowsk [39], that second-order models could be applied to higher concentrations of the extractant on the surface of the adsorbent, the pseudo-second order kinetic model was applied to analyze our experimental data. Our previous paper reported that the overall reaction of copper(ii) ion in the polymeric particles can be written as follows [40]: Cu (HR) CuR 2 + 2H + HR:LIX84-I (3) In the polymeric particles, LIX84-I is present at high concentrations on the surface and inside the pores of the polymeric particles [12] and the extraction rate is dependent on the amount of copper(ii) on the surface of the polymeric particles and the amount of copper(ii) adsorbed at equilibrium. Thus, the driving force, (q e q t ), is proportional to the available fractions of active sites. The kinetic rate equations can be rewritten as follows:, (4) where k 2 is the rate constant of copper(ii) ion extraction, q e and q t are the amounts of copper(ii) ion sorbed at equilibrium and time, t. Integrating Eq. (4) for the boundary conditions t = 0 to t = t and q t = 0 to q t = q t gives:

8 which has a linear form of, (5). (6) The constants can be determined experimentally by plotting t/q t against t and the initial extraction rate is. (7) Figure 4. Experimental data and pseudo-second order kinetic model for copper(ii) ion extraction

9 Figure 4 shows the applicability of the pseudo-second order kinetic model to the experimental data generated for the extraction of copper(ii) from aqueous solution using polymeric particles impregnated with LIX84-I. The initial extraction rate, h, the pseudo-second order rate constant, k 2, the amount of copper(ii) extracted at equilibrium, q e, and the corresponding linear regression R 2, for copper(ii) ions are given in Table 1. It shows the amount of LIX84-I impregnated in the polymeric particles influence the amount of copper(ii) sorbed onto the polymeric particles. For a large amount of LIX84-I impregnated in the polymeric particles, the amount of copper(ii) sorbed also increased and reached a constant value after a long contact time. The experimental data was found to fit the pseudo-second order kinetic model well. The pseudo-second order kinetic model assumes that the rate-determining step is chemical extraction or chemiextraction involving covalent forces through sharing or the exchange of electrons between the sorbent and sorbate. LIX84-I is a phenolic oxime which has phenol and oxime as functional groups. In contact with water and with increasing ph, these groups become negatively charged and are likely sites for chemical reaction on the polymeric particle surface. According to Kamio et al. [8], a monomolecular layer of extractant would be formed on the surface of the polymeric particles. LIX84-I exists as a monomolecular layer on the surface of the polymeric particles. Table 1. Pseudo-second order kinetic parameters obtained from experimental data analysis. Polymeric particle types D pp Pseudo-second order kinetic ( 10-3 ) k 2 h q e R 2 PDVB XAD PVA/Alg-GA k 2 = g/mmol min; h = mmol/g min; q e = mmol/g; D pp = diameter of the polymeric particle (m) Analysis of extraction rate using the mass-transfer diffusion model Sorptive removal of copper(ii) from aqueous solution involves solute transfer, which is usually characterized by either external mass transfer (boundary layer diffusion) or intraparticle diffusion or both. The extraction process can be described by four consecutive steps [41]: (1) Transport in the bulk of the solution; (2) Diffusion across the liquid film surrounding the sorbent particle; (3) Particle diffusion in the liquid contained in the pores and in the sorbate along the pore walls; and (4) Extraction within the particle in and on the external surface (This step is considered to be an equilibrium reaction and is assumed to be rapid and considered negligible). The overall rate of extraction will be controlled by the slowest step, which would be either film diffusion or pore diffusion. According to Boyd [42], if film diffusion is rate-determining, the rate constant will vary inversely with the particle size and film thickness; if the exchange is chemically rate-determining, the rate constant

10 will be independent of particle diameter and flow rate and it will depend only on the concentrations of the ions in solution and the temperature. By considering that extractants exist inside the pores of the polymeric particles, the global mechanism also includes the diffusion of metal ions through the aqueous film and diffusion of metal complexes through the pores of the polymeric particles, so any of these may be the rate-determining step of the overall process [12]. In order to characterize what the actual rate-controlling step involved in the copper(ii) extraction process is, the experimental data were further analyzed by the kinetic expression given by Boyd [9]: 1 exp (8) Substituted n = 1 and n = 2, Eq. (8) can be rearranged and simplified as in Eqs. (9) and (10), respectively: ln 1. (9) ln 1. (10) where k MD is the overall rate constant as follows: (11) where q t, q e and k MD represent the amount sorbed (mmol/g) at any time, infinite time and the mass-transfer diffusion rate constant, respectively. The slope obtained from the straight line plot of ln(1-q t /q e ) versus t and ln(1-(q t /q e ) 2 ) is defined as the film/surface diffusion and intraparticle/pore diffusion rate constant, respectively. Figures 5 and 6 shows the relationship between t against ln(1 q t /q e ) and t against ln(1-(q t /q e ) 2 ) for different types of polymeric particles, respectively. In both Figures 5 and 6, PDVB polymeric particles are not fitted with Eq. (9) and Eq. (10) at an early stage. However, PDVB polymeric particles fit quite well at the later stage with Eq. (9) and Eq. (10). It is assumed that intraparticle/pore diffusion becomes the rate-determining step for the copper(ii) ion adsorption process at the later stage (after 180 minutes of contact time). PDVB polymeric particles have large interconnected spherical pores on the surface and in the body of the PDVB polymeric particles thus giving the metal ion easy access for reaction with the free active sites in the polymeric particles. When the LIX84-I on the surface of the polymeric particle reacted with copper(ii) ions, forming a complex and accumulating on the surface of the polymeric particle, the complex molecules would diffuse through the organic phase in the polymeric particle to offset the accumulation of the complex on the surface of the polymeric particle. Hence, we consider that complex-formation is the predominant rate-determining step for the extraction of copper(ii) in the PDVB polymeric particle. Otherwise when the complex molecules accumulate on the surface of the polymeric particle, film and intraparticle diffusion become the rate-determining step for copper(ii) extraction. The XAD-4 and PVA/Alg-GA polymeric particles fit well with Eq. (9) as shown in Figure 5. We

11 suggest that film diffusion is the rate-determining step in copper(ii) ion adsorption from aqueous solution onto the polymeric particles. For the XAD-4 polymeric particles, LIX84-I would form a boundary layer on the surface of particle. Copper(II) ion adsorbed from aqueous solution would form a complex in the interface area of the particle and diffuse through the boundary layer to offset the accumulation of the copper(ii) complex on the surface of the polymeric particles. In order to equilibrate accumulation of complex formation on the surface and at the boundary layer, the copper(ii) complex would diffuse through the organic phase in the polymeric particles. Hence, the intraparticle/pore diffusion has become the rate-determining step for copper(ii) adsorption at the later stage as shown in Figure 6. Figure 5. Relationship between t against ln(1-q t /q e ) for different types of polymeric particles. a) PDVB, b) XAD-4 and c) PVA/Alg-GA particles. Figure 6. Relationship between t against - ln(1-(q t /q e ) 2 ) for different types of polymeric particles. a) PDVB, b) XAD-4 and c) PVA/Alg-GA particles

12 Therefore, for the PVA/Alg-GA polymeric particles, LIX84-I would exist as a droplet in the particle pore. Copper(II) ions would diffuse from the aqueous solution into the particles through the particle wall and form a complex on the surface of the LIX84-I droplets existing in the pore. The complex molecule would diffuse to fill the internal pore. Therefore, film diffusion is the rate-determining step in copper(ii) adsorption. When the copper(ii)-lix84-i complex filling the internal pores of the polymeric particle becomes saturated, the copper(ii) ions adsorbed from aqueous solution would slowly increase and have to pass the microdoplets of the complex. Hence, intraparticle/pore diffusion is the rate-determining step at the later stage (slowest step) as shown in Figure 6. In order to provide an effective diffusion coefficient, D i (m 2 /s), the calculated K MD value in Eq. (11) is used, where r represents the radius of the particles obtained by digital microscopy. The D i values of the XAD-4 and PVA/Alg-GA polymeric particle are m 2 /s and m 2 /s, respectively for n = 1. The intraparticle diffusion coefficient of the PVA/Alg-GA polymeric particles is higher by considering the water content in the polymeric particles. As reported by Krys, et al. (2013), the intraparticle diffusion coefficient of wet beads is higher than for dried beads [43]. Overall, in PDVB and XAD-4 polymeric particles, copper(ii) ions react on the surface of the polymeric particles loaded with LIX84-I, HR, [8], which exists in its dimerized form [44]. Reaction (3) itself proceeds through a four-step mechanism in which (1) copper(ii) ions in aqueous solution diffuse through the aqueous solution up to the polymeric particle surface; (2) LIX84-I loaded on the surfaces of the polymeric particles dissociates into a proton and an anion, (3) copper(ii) ions will react with the anion and form a complex on the surface of the polymeric particle (interface interaction), (4) the complex of copper(ii)-lix84-i will diffuse through the organic phase in the polymeric particles to offset its accumulation on the surface of the polymeric particles. Whereas, in PVA/Alg-GA polymeric particles, (1) copper(ii) ion will diffuse through the aqueous solution and the particle wall, (2) LIX84-I which exist in the spherical pores of the particles dissociates into a proton and anion, (3) formation of the copper(ii)-lix84-i complex molecule on the surface of the LIX84-I droplets and diffusion of the complex molecule through the organic phase to fill the internal pores (LIX84-I droplet), (4) the remaining copper(ii) ions from the aqueous solution have to pass the microdroplets of the complex molecule at the later stage. For the fourth step mechanism, mass-transfer diffusion becomes the rate-determining step. In other words, the copper(ii) extraction rate in the polymeric particles will be controlled by either complex-formation reaction or mass-transfer diffusion. 4. Conclusion The present study used three types of polymeric particles: PDVB, XAD-4 and PVA/Alg-GA polymeric particles impregnated with LIX84-I for copper(ii) extraction from aqueous solution. These types of polymeric particles have a spherical structure and show a good performance in copper(ii) extraction. The amount of copper(ii) ions extracted from the aqueous solution into the polymeric particles increased with

13 time and reached a plateau at longer contact times. A pseudo-second order kinetic model was employed in modeling the extraction mechanism of the copper(ii) ions in various types of polymeric particles. It was found that the experimental data obeyed the pseudo-second order kinetic model which assumes that complex-formation is the predominant rate-controlling step for copper(ii) ion extraction in the polymeric particles. A mass-transfer diffusion model was found to be involved in the rate-controlling step for copper(ii) extraction at the later stage. In conclusion, the extraction mechanism for copper(ii) from aqueous solution into the polymeric particles was found to be surface extraction (complex-formation reaction) and the copper(ii) diffusion rate was governed by the existence of the pores. A further study will focus on the diffusivity of metal ion extraction rate in polymeric particles with pores, without pores and interconnected spherical pores. References 1) S. Nishihama, G. Nishimura, T. Hirai, I. Komasawa, Ind. Eng. Chem. Res., 43, (2004). 2) K. Shiomori, H. Yoshizawa, K. Fujikubo, Y. Kawano, Y. Hatate, Y. Kitamura, Sep. Sci. Technol. 38, (2003). 3) K. Minamihata, S. Kiyoyama, K. Shiomori, M. Yoshida, Y. Hatate, Ars Sep. Acta, 5, (2007) 4) K. Kondo, M. Ishihara, M. Matsumoto, Solvent Extr. Res. Dev. Jpn, 17, (2010). 5) A. Matsushita, T. Sana, S. Kiyoyama, M. Yoshida, K. Shiomori, Solvent Extr. Res. Dev. Jpn., 18, (2011). 6) K. Kondo, Y. Nishiguchi, T. Matsuo, M. Matsumoto, J. Chem. Chem. Eng., 5, (2011). 7) K. Kondo, M. Sawada, M. Matsumoto, J. Water Process Eng., 1, (2014). 8) E. Kamio, M. Matsumoto, F. Valenzuela, K. Kondo, Ind. Eng. Chem. Res., 44, (2005) 9) H. Watarai, S. Hatakeyama, Anal. Sci., 7, (1991). 10) I. Sargin, M. Kaya, G. Arslan, T. Baran, T. Ceter, Bioresour. Technol., 177, 1-7 (2015). 11) S. Fujii, D.P. Randall, S. P. Armes, Langmuir, 20, (2004). 12) C. Araneda, C. Fonseca, J. Sapag, C. Basualto, M. Yazdani-Pedram, K. Kondo, E. Kamio, F. Valenzuela, Sep. Purif. Technol., 63, (2008). 13) H. Yan, Y. Chen, Y. Zhang, W. Wu, e-polymers, 30, 1-12 (2010). 14) A. Alcazar, A. Perez, A. De Lucas, M. Carmona, J. F. Rodriguez, J. Chem. Sci. Technol., 2, (2013). 15) J. Wilsno, J. Yoeza, N. Philip, J. Epiphan, G. Mdoe, Org. Polym. Materials, 4, (2014). 16) M. Matsumoto, K. Kondo, Solvent Extr. Res. Dev. Jpn., 8, (2001) 17) E. Kamio, K. Kondo, Ind. Eng. Chem. Res., 41, (2002). 18) E. Kamio, M. Matsumoto, K. Kondo, Ind. Eng. Chem. Res., 46, (2007). 19) K. Shiomori, K. Fujikubo, Y. Kawano, Y. Hatate, Y. Kitamura, H. Yoshizawa, Sep. Sci. Technol., 39, (2004)

14 20) S. Kiyoyama, S. Yonemura, M. Yoshida, K. Shiomori, H. Yoshizawa, Y. Kawano, Y. Hatate, React. Funct. Polym., 76, (2007). 21) K. Kondo, M. Ishihara, M. Matsumoto, E. Kamio, J. Chem. Eng. Jpn., 40, (2007). 22) P. Chaiyasat, A. Chaiyasat, W. Boontung, S. Promdsorn, S. Thipsit, Materials Sci. Appl., 2, (2011). 23) S. Namwong, M. Z. Islam, S. Noppalit, P. Tangboriboonrat, P. Chaiyasat, A. Chaiyasat, J. Macromol. Sci. Part A: Pure Appl. Chem., 53, (2016). 24) W. W. Yang, G. S. Luo, F. Y. Wu, F. Chen, X. C. Gong, React. Funct. Polym., 61, 91-9 (2004). 25) S. Francis, L. Varshney, K. Tirumalesh, S. Sabharwal, Rad. Phys. Chem., 78, (2009). 26) X. Gong, Y. Lu, J. Yu, Y. Zou, G. Luo, J. Microencapsul., 25, (2008). 27) A. Ocio, F. Mijangos, M. Elizalde, J. Chem. Technol. Biotechnol., 81, (2006). 28) M. Outokesh, H. Mimura, Y. Niibori, K. Tanaka, Ind. Eng. Chem. Res., 45, (2006). 29) A. Ngomsik, F. Ngomsik, A. Bee, J. Siaugue, M. Siaugue, V. Cabuil, G. Cote, Water Res., 40, (2006). 30) H. Mimura, H. Ohta, K. Akiba, Y. Onodera, J. Nucl. Sci. Technol., 38, (2001). 31) E. H. Crook, R. P. McDonnell, J. T. McNulty, Ind. Eng. Chem. Prod. Res. Dev., 14, (1975). 32) S. Komatsu, S. Kiyoyama, T. Takei, M. Yoshida, K. Shiomori, Resour. Process., 62, (2015). 33) T. Kitabayashi, T. Sana, S. Kiyoyama, T. Takei, M. Yoshida, K. Shiomori, Solvent. Extr. Res. Dev. Jpn., 20, (2013). 34) R. L. Gustafson, (to Rohm and Haas Co.), U. S. Patent 3,531,463 (Sept 29, 1970). 35) E. Kamio, Y. Fujiwara, M. Matsumoto, F. Valenzuela,. K. Kondo, Chem. Eng. J.,139, (2008). 36) G. Crotts, T. G. Park, J. Controlled Released, 35, (1995). 37) A. E. Ofomaja, Chem. Eng. J., 143, (2008). 38) Y. -S. Ho, J. Hazard. Mater. B, 136, (2006). 39) J. Sobkowsk, A. Czerwinski, J. Electroanal. Chem., 55, (1974). 40) N. I. Inda, M. Fukumaru, T. Sana, S. Kiyoyama, T. Takei, M. Yoshida, A. Nakajima and K. Shiomori, J. Chem. Eng. Jpn., 50, (2017). 41) Y. S. Ho, C. Y. Ng, G. McKey, Sep. Pur. Methods, 29, (2000). 42) G. E. Boyd, A. W. Adamson, L. S. MyersJr, J. Am. Chem. Soc., 69, (1947). 43) P. Krys, F. Testa, A. Trochimczuk, C. Pin, J. -M. Taulemesse, T. Vincent and E. Guibal, J. Coll. Interface Sci., 409, (2013). 44) F. Valenzuela, M. Yazdani-Pedram, C. Araneda, C. Basualto, E. Kamio, K. Kondo, J. Chil. Chem. Soc., 50, (2005)

XX-th ARS SEPARATORIA Szklarska Poręba, Poland 2005

XX-th ARS SEPARATORIA Szklarska Poręba, Poland 2005 PREPARATIONS AND EXTRACTION PROPERTIES OF MICROCAPSULES CONTAINING EXTRACTANTS K. SHIOMORI 1, S. KIYOYAMA 2, H. YOSHIZAWA 3, Y. HATATE 4, Y. KAWANO 1 1 Department of Applied Chemistry, University of Miyazaki,

More information

宮崎大学学術情報リポジトリ. Extraction Rate of Nickel with 5- Title Dodecylsalicylaldoxime in a Vibro-M. SANA, Takashi; SHIOMORI, Koichiro; Author(s) Yoshinobu

宮崎大学学術情報リポジトリ. Extraction Rate of Nickel with 5- Title Dodecylsalicylaldoxime in a Vibro-M. SANA, Takashi; SHIOMORI, Koichiro; Author(s) Yoshinobu 宮崎大学学術情報リポジトリ Extraction Rate of Nickel with 5- Title Dodecylsalicylaldoxime in a Vibro-M SANA, Takashi; SHIOMORI, Koichiro; Author(s) Yoshinobu Separation and purification Citation 165 technol URL http://hdl.handle.net/10458/784

More information

Selective Recovery of Indium from Acid Sulfate Media with Solvent Impregnated Resin of Bis(4-cyclohexylcyclohexyl)phosphoric Acid as an Extractant

Selective Recovery of Indium from Acid Sulfate Media with Solvent Impregnated Resin of Bis(4-cyclohexylcyclohexyl)phosphoric Acid as an Extractant Ion Exchange Letters 2 (2009) 22-26 iel.vscht.cz Selective Recovery of Indium from Acid Sulfate Media with Solvent Impregnated Resin of Bis(4-cyclohexylcyclohexyl)phosphoric Acid as an Extractant T. Nakamura,

More information

Pickering emulsion engineering: Fabrication of materials with multiple cavities

Pickering emulsion engineering: Fabrication of materials with multiple cavities Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 014 Electronic Supplementary Infomaton Pickering emulsion engineering: Fabrication of materials

More information

Screening of Algae Material as a Filter for Heavy Metals in Drinking Water

Screening of Algae Material as a Filter for Heavy Metals in Drinking Water 1 Screening of Algae Material as a Filter for Heavy Metals in Drinking Water 2 ABSTRACT Calcium alginate beads generated from alginic acid sodium salt from brown algae were 3 used to explore the adsorption

More information

Selective Separation and Recovery of Mo(VI) by Hybrid Microcapsules Containing Organic Extractants-10179

Selective Separation and Recovery of Mo(VI) by Hybrid Microcapsules Containing Organic Extractants-10179 Selective Separation and Recovery of Mo(VI) by Hybrid Microcapsules Containing Organic Extractants-10179 Kaoru Ikeda, Yan Wu, Hitoshi Mimura, Yuichi Niibori, Dept. of Quantum Science & Energy Engineering,

More information

A Facile and High-Recovery Material for Rare Metals Based on a Water- Soluble Polyallylamine with Side-Chain Thiourea Groups

A Facile and High-Recovery Material for Rare Metals Based on a Water- Soluble Polyallylamine with Side-Chain Thiourea Groups Manuscript for Supporting Information A Facile and High-Recovery Material for Rare Metals Based on a Water- Soluble Polyallylamine with Side-Chain Thiourea Groups Daisuke Nagai*, Megumi Yoshida, Takuya

More information

Synthesis and adsorption property of hypercross-linked sorbent

Synthesis and adsorption property of hypercross-linked sorbent Journal of Scientific & Industrial Research 52 J SCI IND RES VOL 68 JANUARY 29 Vol. 68, January 29, pp. 52-56 Synthesis and adsorption property of hypercross-linked sorbent Li Dongguang*, Zhang Yanli and

More information

Environment Protection Engineering REMOVAL OF HEAVY METAL IONS: COPPER, ZINC AND CHROMIUM FROM WATER ON CHITOSAN BEADS

Environment Protection Engineering REMOVAL OF HEAVY METAL IONS: COPPER, ZINC AND CHROMIUM FROM WATER ON CHITOSAN BEADS Environment Protection Engineering Vol. 3 No. 3 4 KATARZYNA JAROS*, WŁADYSŁAW KAMIŃSKI*, JADWIGA ALBIŃSKA**, URSZULA NOWAK* REMOVAL OF HEAVY METAL IONS: COPPER, ZINC AND CHROMIUM FROM WATER ON CHITOSAN

More information

Efficient removal of heavy metal ions with EDTA. functionalized chitosan/polyacrylamide double network

Efficient removal of heavy metal ions with EDTA. functionalized chitosan/polyacrylamide double network Supporting Information Efficient removal of heavy metal ions with EDTA functionalized chitosan/polyacrylamide double network hydrogel Jianhong Ma a,b, Guiyin Zhou c, Lin Chu c, Yutang Liu a,b, *, Chengbin

More information

Solvent Extraction Research and Development, Japan, Vol. 23, No 2, (2016)

Solvent Extraction Research and Development, Japan, Vol. 23, No 2, (2016) Solvent Extraction Research and Development, Japan, Vol. 23, No 2, 181 186 (216) Formaldehyde Removal by Using Solid Phase Extraction with an Imination Reaction on an Amine Type Trident Molecule-Impregnated

More information

Extraction Behaviour of Cu 2+ Ions with Used Cooking Oil-Based Organic Solvent

Extraction Behaviour of Cu 2+ Ions with Used Cooking Oil-Based Organic Solvent International Proceedings of Chemical, Biological and Environmental Engineering, V0l. 96 (2016) DOI: 10.7763/IPCBEE. 2016. V96. 4 Extraction Behaviour of Cu 2+ Ions with Used Cooking Oil-Based Organic

More information

Protein separation and characterization

Protein separation and characterization Address:800 S Wineville Avenue, Ontario, CA 91761,USA Website:www.aladdin-e.com Email USA: tech@aladdin-e.com Email EU: eutech@aladdin-e.com Email Asia Pacific: cntech@aladdin-e.com Protein separation

More information

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Adsorption Processes. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Adsorption Processes Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Principles of adsorption Types of adsorption Definitions Brief history Adsorption isotherms Mechanism

More information

Metal Recovery Using Polyphenols Prepared by Enzymatic Reactions of Horseradish Peroxidase

Metal Recovery Using Polyphenols Prepared by Enzymatic Reactions of Horseradish Peroxidase Science and Technology 2012, 2(1): 25-29 DOI: 10.5923/j.scit.20120201.05 Metal Recovery Using Polyphenols Prepared by Enzymatic Reactions of Horseradish Peroxidase Hidetaka Kawakita Department of Applied

More information

Adsorption and Elution Behavior of Cesium and Rubidium on Ammonium Tungstophosphate (AWP)-CaALG Alginate Microcapsules

Adsorption and Elution Behavior of Cesium and Rubidium on Ammonium Tungstophosphate (AWP)-CaALG Alginate Microcapsules Adsorption and Elution Behavior of Cesium and Rubidium on Ammonium Tungstophosphate (AWP)-CaALG Alginate Microcapsules - 918 Yan Wu, Hitoshi Mimura, Yuichi Niibori, Dept. of Quantum Science & Energy Engineering,

More information

Dumpling-Like Nanocomplex of Foldable Janus Polymer Sheet and Sphere

Dumpling-Like Nanocomplex of Foldable Janus Polymer Sheet and Sphere Dumpling-Like Nanocomplex of Foldable Janus Polymer Sheet and Sphere Lei Gao, Ke Zhang, and Yongming Chen* Supporting Information Experimental Section Materials The triblock terpolymer, P2VP 310 -b-ptepm

More information

EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE

EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE INTRODUCTION Electrolytes are compounds that are present in solution as ions. They are more likely to be soluble in water than in most other liquids

More information

Supplementary Information. Synthesis of soft colloids with well controlled softness

Supplementary Information. Synthesis of soft colloids with well controlled softness Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary Information Synthesis of soft colloids with well controlled softness Fuhua Luo, Zhifeng

More information

RECOVERY OF INDIUM FROM SPENT FLAT PANEL DISPLAY WITH SOLVENT-IMPREGNATED RESINS. K. Inoue, M. Nishiura, H. Kawakita, K.Ohto, and H.

RECOVERY OF INDIUM FROM SPENT FLAT PANEL DISPLAY WITH SOLVENT-IMPREGNATED RESINS. K. Inoue, M. Nishiura, H. Kawakita, K.Ohto, and H. RECOVERY OF INDIUM FROM SPENT FLAT PANEL DISPLAY WITH SOLVENT-IMPREGNATED RESINS K. Inoue, M. Nishiura, H. Kawakita, K.Ohto, and H. Harada Department of Applied Chemistry, Saga University, Honjo 1, Saga

More information

Electronic supplementary information

Electronic supplementary information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic supplementary information Heterogeneous nucleation and growth of highly crystalline

More information

pechischeva@gmail.ru germanium from the poor raw materials and for the arsenic removal from the technological solutions ties studies were performed. The mechanical activation in the high-energy planetary

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2013 69451 Weinheim, Germany Colloidal Clusters by Using Emulsions and Dumbbell-Shaped Particles: Experiments and Simulations** Bo Peng,* Frank Smallenburg,* Arnout Imhof,

More information

a variety of living species. Therefore, elimination of heavy metals/dyes from water and

a variety of living species. Therefore, elimination of heavy metals/dyes from water and Chapter IV Studies on the adsorption of metal ions and dyes The presence of heavy metals/dyes in the aquatic environment can be detrimental to a variety of living species. Therefore, elimination of heavy

More information

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material

MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material MOF-76: From Luminescent Probe to Highly Efficient U VI Sorption Material Weiting Yang, a Zhi-Qiang Bai, b Wei-Qun Shi*, b Li-Yong Yuan, b Tao Tian, a Zhi-Fang Chai*, c Hao Wang, a and Zhong-Ming Sun*

More information

Removal of Colloidal Particles Utilizing Gelation Reaction of Sodium Alginate

Removal of Colloidal Particles Utilizing Gelation Reaction of Sodium Alginate Korean J. Chem. Eng., 17(5), 574-578 (2000) Removal of Colloidal Particles Utilizing Gelation Reaction of Sodium Alginate Masashi Iwata Department of Industrial Chemistry, Suzuka National College of Technology,

More information

Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Ke Zhang, Ying Dan Liu and Hyoung Jin Choi

Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Ke Zhang, Ying Dan Liu and Hyoung Jin Choi Supporting Information: Carbon nanotube coated snowman-like particles and their electro-responsive characteristics Ke Zhang, Ying Dan Liu and Hyoung Jin Choi Experimental Section 1.1 Materials The MWNT

More information

Preparation and Characterization of Hydrogels

Preparation and Characterization of Hydrogels Chapter 2 Preparation and Characterization of Hydrogels 2.1 Materials and Methods 2.1.1 Materials 2-Acrylamido-2-methylpropane sulfonic acid (AMPS) was obtained from Vinati Organic Ltd. Acrylamide (AM),

More information

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY CRYSTALLIZATION: PURIFICATION OF SOLIDS ANSWERS TO PROBLEMS: 1. (a) (b) (c) (d) A plot similar to line A in Figure 5.1 on page 559 will be obtained. The line will be slightly curved. All of the substance

More information

Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski

Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski ADSORPTION OF CADMIUM IONS ON CHITOSAN MEMBRANES: KINETICS AND EQUILIBRIUM STUDIES Katarzyna Zielińska, Alexandre G. Chostenko, Stanisław Truszkowski Chair of Nuclear and Radiation Chemistry Faculty of

More information

Effective diffusion coefficients measurement in polysaccharide based hydrogels.

Effective diffusion coefficients measurement in polysaccharide based hydrogels. Effective diffusion coefficients measurement in polysaccharide based hydrogels. Aim of the work To estimate effective diffusion coefficients of substrate diffusion from limited volume of solution into

More information

Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal

Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal Application of Fe 2 O 3 nanoparticles in Heavy Metal Removal 5.1 Introduction Different contaminants are released to water bodies due to the rapid industrialization of human society, including heavy metal

More information

Solid-Supported DNA for Asymmetric Synthesis: a Stepping Stone toward Practical Applications

Solid-Supported DNA for Asymmetric Synthesis: a Stepping Stone toward Practical Applications Solid-Supported DA for Asymmetric Synthesis: a Stepping Stone toward Practical Applications Soyoung Park, * a Keiichi Ikehata, a and iroshi Sugiyama*,a,b,c a Department of Chemistry, Graduate School of

More information

Gravity driven separation of emulsified oil/water mixtures utilizing in-situ polymerized superhydrophobic and superoleophilic nanofibrous membranes

Gravity driven separation of emulsified oil/water mixtures utilizing in-situ polymerized superhydrophobic and superoleophilic nanofibrous membranes Gravity driven separation of emulsified oil/water mixtures utilizing in-situ polymerized superhydrophobic and superoleophilic nanofibrous membranes Meiling Huang, ab Yang Si, bc Xiaomin Tang, ab Zhigao

More information

A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals

A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals A General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self- Assembly Process in Inverse Opals Zhenkun Sun,, Yong Liu, Bin Li, Jing Wei, Minghong Wang, Qin Yue, Yonghui Deng,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Polystyrene Sulfonate Threaded in MIL-101Cr(III) as Stable and

More information

Adsorption of Uranium by Chitin Phosphate and Chitosan Phosphate*

Adsorption of Uranium by Chitin Phosphate and Chitosan Phosphate* Agric. Biol Chem., 45 (10), 2191-2195, 1981 2191 Adsorption of Uranium by Chitin Phosphate and Chitosan Phosphate* Takashi Sakaguchi, Takao Horikoshi and Akira Nakajima Department of Chemistry, Miyazaki

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 214 Supporting Information Lei Liu, ab Yijie Xia, b Jie Zhang* b a) China Center for Modernization

More information

Extraction Behavior of Gold from Hydrochloric Acid Solutions with Ionic Liquids as Extractants

Extraction Behavior of Gold from Hydrochloric Acid Solutions with Ionic Liquids as Extractants Solvent Extraction Research and Development, Japan, Vol. 19, 63 68 (212) Extraction Behavior of Gold from Hydrochloric Acid Solutions with Ionic Liquids as Extractants Takahiko KAKOI 1 *, Mayumi YOSHIYAMA

More information

Adsorption of Humic acid on Powdered Activated Carbon (PAC)

Adsorption of Humic acid on Powdered Activated Carbon (PAC) Adsorption of Humic acid on Powdered Activated Carbon (PAC) Department of Civil and Environmental Engineering, MSU, East Lansing, MI, 48824, USA Abstract Removal capacity and rate of Humic Acid (HA) onto

More information

SOLVENT EXTRACTION OF RARE EARTH METAL BY A CONTINUOUS STIRRED VESSEL

SOLVENT EXTRACTION OF RARE EARTH METAL BY A CONTINUOUS STIRRED VESSEL Journal of Engineering Science and Technology Special Issue on SOMCHE 2014 & RSCE 2014 Conference, January (2015) 87-96 School of Engineering, Taylor s University SOLVENT EXTRACTION OF RARE EARTH METAL

More information

Moisture holding capacity 61 to 69 % Shipping Weight Specific gravity 1.06 to 1.08 Particle size

Moisture holding capacity 61 to 69 % Shipping Weight Specific gravity 1.06 to 1.08 Particle size Product Data Sheet AMBERLITE XAD7HP Industrial Grade Polymeric Adsorbent Introduction AMBERLITE XAD7HP is a polymeric adsorbent, supplied as white insoluble beads. It is a non ionic aliphatic acrylic polymer

More information

Babak Karimi* and Majid Vafaeezadeh

Babak Karimi* and Majid Vafaeezadeh Electronic upplementary Material (EI) for RC Advances This journal is The Royal ociety of Chemistry 2013 BA-15 functionalized sulfonic acid confined hydrophobic and acidic ionic liquid: a highly efficient

More information

Adsorption Studies of Astrozon Blue Dye onto Acrylic Resin

Adsorption Studies of Astrozon Blue Dye onto Acrylic Resin ANALELE ŞTIINłIFICE ALE UNIVERSITĂłII Al. I. CUZA IAŞI Seria Chimie, Tomul XVI, 2008 Adsorption Studies of Astrozon Blue Dye onto Acrylic Resin Adriana Bârsănescu a*, Rodica Buhăceanu, a and Viorica Dulman

More information

Supporting Information. Temperature dependence on charge transport behavior of threedimensional

Supporting Information. Temperature dependence on charge transport behavior of threedimensional Supporting Information Temperature dependence on charge transport behavior of threedimensional superlattice crystals A. Sreekumaran Nair and K. Kimura* University of Hyogo, Graduate School of Material

More information

Supporting Information

Supporting Information Supporting Information Janus Hollow Spheres by Emulsion Interfacial Self-Assembled Sol-Gel Process Fuxin Liang, Jiguang Liu, Chengliang Zhang, Xiaozhong Qu, Jiaoli Li, Zhenzhong Yang* State Key Laboratory

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Micro- and mesoporous poly(schiff-base)s

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Selective Diels-Alder cycloaddition on semiconducting single-walled carbon nanotubes for potential separation application Jiao-Tong Sun, Lu-Yang Zhao, Chun-Yan Hong,

More information

Dispersion-Flocculation Behavior of Fine Lead Particles in an Organic Solvent

Dispersion-Flocculation Behavior of Fine Lead Particles in an Organic Solvent Materials Transactions, Vol. 49, No. 9 (2) pp. 2119 to 2123 #2 The Mining and Materials Processing Institute of Japan Dispersion-Flocculation Behavior of Fine Lead Particles in an Organic Solvent Masami

More information

Microkinetics of H 2 S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere

Microkinetics of H 2 S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere Journal of Natural Gas Chemistry 12(2003)43 48 Microkinetics of H 2 S Removal by Zinc Oxide in the Presence of Moist Gas Atmosphere Huiling Fan, Chunhu Li, Hanxian Guo, Kechang Xie State Key Lab of C1

More information

Properties of Solutions and Kinetics. Unit 8 Chapters 4.5, 13 and 14

Properties of Solutions and Kinetics. Unit 8 Chapters 4.5, 13 and 14 Properties of Solutions and Kinetics Unit 8 Chapters 4.5, 13 and 14 Unit 8.1: Solutions Chapters 4.5, 13.1-13.4 Classification of Matter Solutions are homogeneous mixtures Solute A solute is the dissolved

More information

Preparation and adsorption properties of cyclodextrin modified chitosan inclusion compound crosslinked by glutaraldehyde

Preparation and adsorption properties of cyclodextrin modified chitosan inclusion compound crosslinked by glutaraldehyde Preparation and adsorption properties of cyclodextrin modified chitosan inclusion compound crosslinked by glutaraldehyde Junfeng Wei a, Jinglan Liu, Jianjun Zheng, Zhongli Li, Ze Shi, Zhongxin Zhang and

More information

Adsorption at the solid/liquid interface

Adsorption at the solid/liquid interface 1. Ion exchanger Adsorption at the solid/liquid interface Ion exchange process means an exchange of ions between an electrolyte solution and a solid (ionite). In most cases the term is used to denote the

More information

Adsorption behavior of methylene blue onto gellan gum-bentonite composite beads for bioremediation application

Adsorption behavior of methylene blue onto gellan gum-bentonite composite beads for bioremediation application World Journal of Pharmaceutical Sciences ISSN (Print): 2321-3310; ISSN (Online): 2321-3086 Published by Atom and Cell Publishers All Rights Reserved Available online at: http://www.wjpsonline.org/ Original

More information

Solvent Extraction Research and Development, Japan, Vol. 23, No 2, (2016)

Solvent Extraction Research and Development, Japan, Vol. 23, No 2, (2016) Solvent Extraction Research and Development, Japan, Vol. 23, No 2, 175 180 (2016) Effect of Quaternary Ammonium Salts on the Extraction of 1,3-Propanediol with Phenylboronic Acid Michiaki MATSUMOTO*, Kikuko

More information

Supplementary Material (ESI) for CrystEngComm. An ideal metal-organic rhombic dodecahedron for highly efficient

Supplementary Material (ESI) for CrystEngComm. An ideal metal-organic rhombic dodecahedron for highly efficient Supplementary Material (ESI) for CrystEngComm An ideal metal-organic rhombic dodecahedron for highly efficient adsorption of dyes in an aqueous solution Yuan-Chun He, Jin Yang,* Wei-Qiu Kan, and Jian-Fang

More information

Pre-seeding -assisted synthesis of high performance polyamide-zeolite nanocomposie membrane for water purification

Pre-seeding -assisted synthesis of high performance polyamide-zeolite nanocomposie membrane for water purification Electronic Supporting Information: Pre-seeding -assisted synthesis of high performance polyamide-zeolite nanocomposie membrane for water purification Chunlong Kong, a Takuji Shintani b and Toshinori Tsuru*

More information

Supplementary Material (ESI) for Chemical Communication

Supplementary Material (ESI) for Chemical Communication Supplementary Material (ESI) for Chemical Communication Syntheses and Characterization of Polymer-Supported Organotrifluoroborates: Applications in Radioiodination Reactions Li Yong; Min-Liang Yao; James

More information

Removal of cationic surfactants from water using clinoptilolite zeolite

Removal of cationic surfactants from water using clinoptilolite zeolite 2098 From Zeolites to Porous MOF Materials the 40 th Anniversary of International Zeolite Conference R. Xu, Z. Gao, J. Chen and W. Yan (Editors) 2007 Elsevier B.V. All rights reserved. Removal of cationic

More information

ALGINATE MICRO-BIOREACTORS DELIVERING PROTEINS: AN EXAMPLE DRUG DELIVERY SYSTEM

ALGINATE MICRO-BIOREACTORS DELIVERING PROTEINS: AN EXAMPLE DRUG DELIVERY SYSTEM ALGINATE MICRO-BIOREACTORS DELIVERING PROTEINS: AN EXAMPLE DRUG DELIVERY SYSTEM Chen, Guisang Daphne and Wang, Chi-Hwa Chemical & Biomolecular Engineering National University of Singapore 1 Lower Kent

More information

Isolation & Purification of Proteoglycans (PGs) and Glycosaminoglycans (GAGs) PEG Trainee Lecture July 23, 2012

Isolation & Purification of Proteoglycans (PGs) and Glycosaminoglycans (GAGs) PEG Trainee Lecture July 23, 2012 Isolation & Purification of Proteoglycans (PGs) and Glycosaminoglycans (GAGs) PEG Trainee Lecture July 23, 2012 Most Common Extraction Procedure for PGs 4 M Guanidine-HCl Detergents such as 2% CHAPS or

More information

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite.

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite. Chapter 17 Applying equilibrium 17.1 The Common Ion Effect When the salt with the anion of a is added to that acid, it reverses the dissociation of the acid. Lowers the of the acid. The same principle

More information

Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects.

Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects. Brass, a solid solution of Zn and Cu, is used to make musical instruments and many other objects. 14.1 General Properties of Solutions 14.2 Solubility 14.3 Rate of Dissolving Solids 14.4 Concentration

More information

Solvent Extraction Research and Development, Japan, Vol. 21, No 2, (2014)

Solvent Extraction Research and Development, Japan, Vol. 21, No 2, (2014) Solvent Extraction Research and Development, Japan, Vol., No, 7 6 () Recovery of Indium(III) from a Hydrochloric Acid Medium with Two Types of Solvent Impregnated Resins Containing Sec-octylphenoxy Acetic

More information

SEPARATION OF CITRIC AND LACTIC ACID FROM FERMENTATION LIQUID BY THE CHROMATOGRAPHIC METHOD MODELING AND PARAMETERS ESTIMATION

SEPARATION OF CITRIC AND LACTIC ACID FROM FERMENTATION LIQUID BY THE CHROMATOGRAPHIC METHOD MODELING AND PARAMETERS ESTIMATION SEPARATION OF CITRIC AND LACTIC ACID FROM FERMENTATION LIQUID BY THE CHROMATOGRAPHIC METHOD MODELING AND PARAMETERS ESTIMATION Paweł GLUSZCZ and Jerzy PETERA Faculty of Process and Environmental Engineering,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Supporting Information AgPd nanoparticles supported on MIL-11 as high performance

More information

ProPac WCX-10 Columns

ProPac WCX-10 Columns ProPac WCX-10 Columns Guidance for column use Tips to maximize column lifetime ProPac WCX-10 Column Tips and Tricks This guide provides essential information and invaluable guidelines for mobile phases,

More information

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity

Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity 1 Electronic Supplementary Information (ESI) Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO 2 capture capacity for Chao Chen, Seung-Tae Yang, Wha-Seung Ahn* and

More information

Supporting Information for Polybenzimidazolium Salts: A New Class of. Anion-Conducting Polymer

Supporting Information for Polybenzimidazolium Salts: A New Class of. Anion-Conducting Polymer Supporting Information for Polybenzimidazolium Salts: A ew Class of Anion-Conducting Polymer Owen D. Thomas, Kristen J. W. Y. Soo, Timothy J. Peckham, Mahesh P. Kulkarni and Steven Holdcroft* Department

More information

Physical Chemistry Laboratory I Experiment 3 Effect of Ionic Strength on the Solubility of CaSO 4 (Revised, 01/13/03)

Physical Chemistry Laboratory I Experiment 3 Effect of Ionic Strength on the Solubility of CaSO 4 (Revised, 01/13/03) Physical Chemistry Laboratory I Experiment 3 Effect of Ionic Strength on the Solubility of CaSO 4 (Revised, 01/13/03) It is generally assumed that solutions of strong electrolytes are completely dissociated

More information

Chapter 7 Adsorption thermodynamics and recovery of uranium

Chapter 7 Adsorption thermodynamics and recovery of uranium Chapter 7 Adsorption thermodynamics and recovery of uranium 99 Chapter 7. Adsorption thermodynamics and recovery of uranium from aqueous solutions by Spatoglossum 7.1. Materials 7.1.1. Preparation of sorbent

More information

Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan

Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan Supporting Information Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan Guangyi Li, a,b Ning Li, a Shanshan Li, a,b Aiqin Wang, a Yu Cong, a Xiaodong Wang a and Tao Zhang a * a State

More information

Sacrifical Template-Free Strategy

Sacrifical Template-Free Strategy Supporting Information Core/Shell to Yolk/Shell Nanostructures by a Novel Sacrifical Template-Free Strategy Jie Han, Rong Chen and Rong Guo* School of Chemistry and Chemical Engineering, Yangzhou University,

More information

A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin

A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin This journal is The Royal Society of Chemistry 11 Electronic Supplementary Information (ESI) A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin Xiujuan Xu, a Jing Huang,

More information

Removal of Cu 2+, Cd 2+, Hg 2+, and Ag + from Industrial Wastewater by Using Thiol-Loaded Silica Gel

Removal of Cu 2+, Cd 2+, Hg 2+, and Ag + from Industrial Wastewater by Using Thiol-Loaded Silica Gel Universities Research Journal 2011, Vol. 4, No. 3 Removal of Cu 2+, Cd 2+, Hg 2+, and Ag + from Industrial Wastewater by Using Thiol-Loaded Silica Gel Aye Aye Myat 1, Kyaw Naing 2 and San San Myint 1 Abstract

More information

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents 6. Extraction A. Background Extraction is a frequently used technique to selectively transfer a compound of interested from one solvent to another. Extraction is based on solubility characteristics of

More information

A Hydrophilic/Hydrophobic Janus Inverse-Opal

A Hydrophilic/Hydrophobic Janus Inverse-Opal Supporting information A Hydrophilic/Hydrophobic Janus Inverse-Opal Actuator via Gradient Infiltration Dajie Zhang #, Jie Liu //#, Bo Chen *, Yong Zhao, Jingxia Wang * //, Tomiki Ikeda, Lei Jiang //. CAS

More information

SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications

SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications SBA-15-functionalized sulfonic acid confined acidic ionic liquid: a powerful and water-tolerant catalyst for solvent-free esterifications Babak Karimi* a, Majid Vafaeezadeh a a Department of Chemistry,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2633 Mechanically controlled radical polymerization initiated by ultrasound Hemakesh Mohapatra, Maya Kleiman, Aaron P. Esser-Kahn Contents 1. Materials and methods 2 2. Procedure for

More information

R C OR' H 2 O carboxylic acid alcohol ester water side product

R C OR' H 2 O carboxylic acid alcohol ester water side product EXPERIMENT 7 SYNTHESIS OF ESTERS USING ACETIC ANHYDRIDE 1 Materials Needed 2.0 ml of an alcohol to be chosen from the following: 1-propanol (n-propyl alcohol), 3-methyl 1-butanol (isoamyl alcohol, isopentyl

More information

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane

Supplementary Information. ZIF-8 Immobilized Ni(0) Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Supplementary Information ZIF-8 Immobilized Ni() Nanoparticles: Highly Effective Catalysts for Hydrogen Generation from Hydrolysis of Ammonia Borane Pei-Zhou Li, a,b Kengo Aranishi, a and Qiang Xu* a,b

More information

Adsorption (Ch 12) - mass transfer to an interface

Adsorption (Ch 12) - mass transfer to an interface Adsorption (Ch 12) - mass transfer to an interface (Absorption - mass transfer to another phase) Gas or liquid adsorption (molecular) onto solid surface Porous solids provide high surface area per weight

More information

High-Purity Separation of Gold Nanoparticle Dimers and Trimers

High-Purity Separation of Gold Nanoparticle Dimers and Trimers -Supporting Information- High-Purity Separation of Gold Nanoparticle Dimers and Trimers Gang Chen, Yong Wang, Li Huey Tan, Miaoxin Yang, Lee Siew Tan, Yuan Chen and Hongyu Chen* Division of Chemistry and

More information

The Effect of Water and Confinement on Self-Assembly of

The Effect of Water and Confinement on Self-Assembly of Supporting Information: The Effect of Water and Confinement on Self-Assembly of Imidazolium Based Ionic Liquids at Mica Interface H.-W. Cheng, J.-N. Dienemann, P. Stock, C. Merola, Y.-J. Chen and M. Valtiner*

More information

Supporting Information. Synthesis and Upconversion Luminescence of BaY 2

Supporting Information. Synthesis and Upconversion Luminescence of BaY 2 Supporting Information Synthesis and Upconversion Luminescence of BaY 2 F 8 :Yb 3+ /Er 3+ Nanobelts 5 Guofeng Wang, Qing Peng, and Yadong Li* Department of Chemistry and State Key Laboratory of New Ceramics

More information

Heavy metal ion uptake properties of polystyrene-supported chelating polymer resins

Heavy metal ion uptake properties of polystyrene-supported chelating polymer resins Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 115, No. 3, June 2003, pp 155 160 Indian Academy of Sciences Heavy metal ion uptake properties of polystyrene-supported chelating polymer resins 1. Introduction

More information

Selective adsorption for indium(iii) from industrial wastewater using chemically modified sawdust

Selective adsorption for indium(iii) from industrial wastewater using chemically modified sawdust Korean J. Chem. Eng., 29(12), 1730-1734 (2012) DOI: 10.1007/s11814-012-0069-1 INVITED REVIEW PAPER Selective adsorption for indium(iii) from industrial wastewater using chemically modified sawdust Taik-Nam

More information

Enantioselective Transamination in Continuous Flow Mode with Transaminase Immobilized in a Macrocellular Silica Monolith. Supporting Information

Enantioselective Transamination in Continuous Flow Mode with Transaminase Immobilized in a Macrocellular Silica Monolith. Supporting Information Enantioselective Transamination in Continuous Flow Mode with Transaminase Immobilized in a Macrocellular Silica Monolith Ludivine van den Biggelaar 1, Patrice Soumillion 2 and Damien P. Debecker 1, * 1

More information

CP Chapter 15/16 Solutions What Are Solutions?

CP Chapter 15/16 Solutions What Are Solutions? CP Chapter 15/16 Solutions What Are Solutions? What is a solution? A solution is uniform that may contain solids, liquids, or gases. Known as a mixture Solution = + o Solvent The substance in abundance

More information

Adsorption Performance of Proteins to CM Sepharose FF and DEAE Sepharose FF Adsorbents

Adsorption Performance of Proteins to CM Sepharose FF and DEAE Sepharose FF Adsorbents Korean J. Chem. Eng., 20(1), 93-98 (2003) Adsorption Performance of Proteins to CM Sepharose FF and DEAE Sepharose FF Adsorbents Shan-Jing Yao, Yi-Xin Guan and Li-Hua Yu Department of Chemical and Biochemical

More information

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex

A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex Supporting Information (SI) A dual-model and on off fluorescent Al 3+ /Cu 2+ - chemosensor and the detection of F /Al 3+ with in situ prepared Al 3+ /Cu 2+ complex Xiaoya Li, Mingming Yu, Faliu Yang, Xingjiang

More information

Kinetic Isotope Effects

Kinetic Isotope Effects 1 Experiment 31 Kinetic Isotope Effects Isotopic substitution is a useful technique for the probing of reaction mechanisms. The change of an isotope may affect the reaction rate in a number of ways, providing

More information

Supporting Information:

Supporting Information: Supporting Information: In Situ Synthesis of Magnetically Recyclable Graphene Supported Pd@Co Core-Shell Nanoparticles as Efficient Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane Jun Wang,

More information

Synthesis of Polyesters by Emulsion Polycondensation Reaction in Water

Synthesis of Polyesters by Emulsion Polycondensation Reaction in Water Polymer Journal, Vol. 35, No. 4, pp 359 363 (2003) Synthesis of Polyesters by Emulsion Polycondensation Reaction in Water Hozumi TANAKA, and Toru KURIHASHI Tsukuba Research Laboratories, TOYO INK MFG.,

More information

Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods. Yuh-Shan Ho

Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods. Yuh-Shan Ho Polish Journal of Environmental Studies Vol. 1, No. 1 (26), 81-86 Original Research Isotherms for the Sorption of Lead onto Peat: Comparison of Linear and Non-Linear Methods Department of Environmental

More information

Physicochemical Processes

Physicochemical Processes Lecture 3 Physicochemical Processes Physicochemical Processes Air stripping Carbon adsorption Steam stripping Chemical oxidation Supercritical fluids Membrane processes 1 1. Air Stripping A mass transfer

More information

Sorption of Pb(II), Cd(II), and Ni(II) Toxic Metal Ions by Alginate-Bentonite

Sorption of Pb(II), Cd(II), and Ni(II) Toxic Metal Ions by Alginate-Bentonite Journal of Environmental Protection, 2013, 4, 51-55 doi:10.4236/jep.2013.41b010 Published Online January 2013 (http://www.scirp.org/journal/jep) 51 Sorption of Pb(II), Cd(II), and Ni(II) Toxic Metal Ions

More information

Working with Hazardous Chemicals

Working with Hazardous Chemicals A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training

More information

Influence of Nonionic Surfactant Concentration on Physical Characteristics of Resorcinol-Formaldehyde Carbon Cryogel Microspheres

Influence of Nonionic Surfactant Concentration on Physical Characteristics of Resorcinol-Formaldehyde Carbon Cryogel Microspheres Influence of Nonionic Surfactant Concentration on Physical Characteristics of Resorcinol-Formaldehyde Carbon Cryogel Microspheres Seong-Ick Kim, Takuji Yamamoto, Akira Endo, Takao Ohmori, and Masaru Nakaiwa

More information

Solvent Extraction Research and Development, Japan, Vol. 21, No 2, (2014)

Solvent Extraction Research and Development, Japan, Vol. 21, No 2, (2014) Solvent Extraction Research and Development, Japan, Vol. 21, No 2, 129 135 (2014) One Step Effective Separation of Platinum and Palladium in an Acidic Chloride Solution by Using Undiluted Ionic Liquids

More information