Chap. 3 Conformational Analysis and Molecular Mechanics

Size: px
Start display at page:

Download "Chap. 3 Conformational Analysis and Molecular Mechanics"

Transcription

1 hap. 3 onformational Analysis and Molecular Mechanics onformation:ne of several different spatial arrangements that a molecule can achieve by rotation about single bonds between atoms. Notations: -sc -ac -sc B A B A A ap ap A B 0 ~ dihedral angle A θ= 0 eclipsed θ= 60 gauche (staggered) (skew) θ= 120 eclipsed 30 ~ ~ ~ ~ ~ ~270 -ac -sp 270 ~ ~ ~360 -ap +sp +ap 3 θ= 240 eclipsed 60 ~90 90 ~120 +sc +ac +sc +ac B + sc - sc 3 + sc - sc A B A B θ= 180 anti (trans) θ= 300 gauche (staggered) (skew) syn- anti- periplanar- clinal determining substituent: 1.If all three are diff. the one with highest priority 2.If all three are identical, the one gives smallest θ 3.If two are identical, the third one

2 s-trans (Z) s-cis s-cis (Z) s-trans s-cis czc s-cis czt N the - N bond rotation is hindered and conformation isomer could be isolated. I I N N t-bu 3 t-bu 3 m.p. 64~65 m.p. 105~ Me δ + δ - δ - δ + Me Me δ + δ - δ - Me δ + Me SnBu 3 Pd-/ 2 most stablized Me Me Me Me Me Me major

3 1. Torsional Strain ( due to deviation from staggered bonds on adj. carbons) kcal 2.9 mol E(φ) = 0.5V(1+cos 3φ ) 2. van der Waals strain ( repulsion due to overlap of electron clouds on non-bonded atoms) kcal 6.0 mol kcal 2.6 mol 3 3 kcal 0.8 mol 3 3 kcal 3.4 mol 3 a superimposition of torsional strain of ethane and van der waals strain Kcal/mole Kcal/mole Kcal/mole gauche anti ΔG = Δ -TΔS = Kcal/mol ( ln 2 ) = = Kcal/mol ΔG = - RT ln K K= anti/gauche = % anti

4 Barrier foldedness Ethane and butane have a three-fold rotational profile. Rotation around 3-65 has a six-fold profile. An n-fold rotor and an m-fold rotor give a barrier with F = (nxm)/q Where q is the number of eclipsing bond in the TS Tetraalkylethane 3 anti 3 3 gauche two gauche three gauche expected composition: 70:30 anti to gauche experimental composition: 1:2, = 0! geminal repulsion aggravate the vicinal repulsion in anti form and destabilize the anti form more than the gauche form A general case for R 2 R 2 molecules, nly gauche form -stabilizing London interaction, distance sum of van der Waals radii Å 3 l l gauche anti gauche is favored by 0.3 Kcal ± 0.3 intramolecular -bond

5 3. Angle Strain ( Bayer strain), ( deviation from standard bond angle.) Bayer s Theory based on planer geometry Angle Strain/ 2 total Angle Strain expt l Strain/2 cycloprapane Angle Strain 1 cyclobutane = ( ) 2 cyclopentane = cyclohexane kcal/mol cyclodecane The discrepancy is due to non-planar geometry cyclopropane yclopropane - bond are short (1.51Å) than normal - bond (1.54Å) -- bond angle open up (115 ) than the value for -- (106 ) in the 2 of propane. - of cyclopropane are more acidic than normal alkanes. rehybridization, smaller -- bond angle, more p character is used. Then more s character for - bonds. Strain energy of cycloporpane 27.5 kcal/mole, may come from angle strain and also the eclipsing - bonds (eclipsing effect, a torsional strain) cyclobutane kcal barrier Puckered Butterfly motion -- < 90 angle strain increase torsional strain decrease - bond length 1.55 Å, strain energy 26.5 kcal/mol -- = 90 higher torsional strain all - bonds eclipsed

6 cyclopentane envelope barrier <2kcal Twist (half chair) Planar, all eclipsed with high torsional strain, 5 kcal/mol above the conformation is constantly changing pseudo rotation, strain energy 6.2 kcal/mol, mostly due to torsional, some angle strain cyclohexane van der Waal repulsion (distance 1.83Å Sum of -van de Walls radii 2.4Å) torsional strain by e - -diffraction torsional angle 55.9 (slightly flattened) all staggered release the flag pole van der Waal strain and torsional strain the chair form and twist boat form are separated by a high energy barrier. substituted cyclohexane 3 equatorial 3 axial 1,3-diaxial interaction = gauche interaction in butane (1 gauche ~ 0.8kcal) ~ 1.6kcal less stable gauche (exp t 1.74kcal)

7 equatorial preference = 1.74 kcal/mol A-value conformational free energy [ eq] 95 ΔG = -RTlnK K= = =19 [ ax] 5 useful locking gp. K Δ(kcal) entropy determines the trend ΔS(eu) t-butyl is a locking gp. so that it dictates the conformation. if two substituents are non-interaction, the A-values are additive ψ 3 ψ ΔG= -1.13

8 two interacting substituents cis e,e e,a a,a 3 trans-1,2-dimethylcyclohexane 3 3 cis-1,2-dimethylcyclohexane for trans the e,e form has one gauche interaction for cis the e,a form= a,e form, has 2 1,3-diaxial+1 gauche inter trans more stable by 2 1,3-diaxial ~1.8 kcal(expt l 1.87) a,e 3 ΔG = 2.7 kcal only e,e form > cis 3 trans 3 3 trans > 3 Exception for favored equatorial preference may exist due to shape. cis 3 but Et Et Et Et Et Effect of dipole interaction van der Waals strain plus dipole interaction l l Br Br transdipole interaction 75% 25% 50% 50% l Br l Br effect of -bonding trans-diol diaxial incr.

9 For larger rings, more conformations are possible due to the flexibility, but the strain may increase. cycloheptane twist-chair most stable chair boat twist-boat cyclooctane boat-chair most stable cyclodecane boat-boat crown boat-chair-boat van der Waals repulsion, release of this repulsion by twisting will introduce torsional strain. angle & torsional torsional strain cross-ring vdw strain

10 For simple bicyclic system, the strain is close to the sum of individual rings. e.g. for bicyclo[3,1,0]heptane = 33.7 (expt l 33.9) Exception for smaller rings due to extra strain by fusion. ycloalkene The trans-double bond introduces strain in a cyclic system. The smaller the ring is, the higher the strain is. Bredt s rule: For bicyclo[a,b,c], the smallest number S=a+b+c that can accommodate a bridgehead double bond. The stability of bridgehead olefins follow the stability pattern of trans cyclic olefins.

11 Table 3.3 Rotational Energy Barriers of ompounds of the Type 3 -X ompound 1-Alkene Barrier height (kcal/mol) Alkanes Å ( 3 ) ( 3 ) Si 3 Si- 1.7 aloethanes 1.87Å F l vdw inc Br bond length inc I 3.2 eteroatom substitution N 2 no. of eclipsed Ethane N 3 bonds , more sensitive , due to shorter bond A B D eclipsed bisected more stable, and B is slightly more stable than A (by 0.15kcal) increase the size of group at -3 increase the preference for B by M.. interpretation bisected form eclipsed form Major repulsive interaction between filled methyl and filled π

12 For carbonyl cpds. 3 more stable by 0.9 kcal, (may due to non-bonded interaction between the - of the methyl and oxygen. hydrogen bonding) diene 3 if 3 become t-bu, the -eclipsed becomes favored R' anti R even more stable S-trans more stable S-cis maximize πoverlap R' R gauche 2 2 skew less πoverlap S-trans only S-trans 73% 3 S-trans 28% S-cis 27% 3 S-cis 82%

13 ΔG 10.8kcal 2 7.7kcal 2 reduced torsional (sp 2 -sp 2 ) strain in ring inversion reduced steric requirement for =2, ΔG 4.9kcal 1,3-diaxial eclipsed, favored reduced 1,3-diaxial ΔG = -1.3~1.4 α-haloketone effect l dipole smaller favored in l 4 smaller than that for cyclohexane l dipole larger favored in methanol 4. allylic strain ΔG = -2.6kcal 3 equatorial preference is smaller

14 Anomeric Effects 2 32% α-d-glucopyranose 2 68% α-d-mannose 2 64% β-d-glucopyranose 2 32% β-d-mannose ( By A of % exp ted ) 3 32:1 l Suggested interpretations 1. dipolar interaction μ μ 2. Molecular orbital interaction n 3 μ destabilized l μ Some anomeric effect are solvent dependent X σ * stabilized longer -X bond shorter - bond X-ray data agrees V-B term X

15 Special onformations X X X X X F l Br I ΔE t-g gauche anti favored the gauche form increases with more electronegative atoms X + X cis trans X F l Br Me ΔE t-g gauche incr. for electronegative atoms bent-bond interpretation:with more electronegative atom X Small --X angle expected bent F F F F anti F gauche - bond length longer by 0.01Å (By ab initio calc.) better overlap bond length shorter

16 Molecular Mechanics use classical mechanics, atoms and bonds are treated as mass and springs, to calculate the total energy of a conformation. MM1, MM2, MM3, UFF, N.L. Allinger MM2 Total steric energy E steric =E( r ) +E(θ) +E(Φ) +E( d ) E( r ):the energy of stretching or compressing an individual bond E(θ):energy of distorting a bond angle from ideal value E(Φ):torsional strain (due to non-staggered bonds) E( d ):non-bonded interaction, van der Waals force E( r ) = 0.5k r (Δr) 2 ( 1+S Δr) k r :force constant Δr:deformation of bond length S:cubic stretching constant E(θ) = 0.5k θ (Δθ) 2 ( 1+SF Δθ 4 ) stretching-bending E SB strain energy may be added. E(Φ) = 0.5V 0 ( 1+ cos 3Φ) more General term E(Φ) = 0.5V 1 ( 1+ cosφ) + 0.5V 2 ( 1- cos 2Φ) + 0.5V 3 ( 1+ cos 3Φ) E(d) depends on extent and pattern of substitution. The interaction is attractive as the distance decreases, then repulsive at small distance. ther terms include electrostatic interactions, hydrogen bonding

17

18 To calculate the strain, an initial conformation is assigned and iterative minimization of total strain energy is carried out. a minimum in total energy may contain components that is not the lowest among all conformers the calculation approaches local minimum, which may not be a global minimum, so that initial assignment of conformation is important. yclohexane case

19 onformational effects on reactivity cis- trans- Rel. rate of oxidation 3.23 : 1 Rel. rate of acetylation 1 : 3.7 the rate is determined by the transition state energy > 0.7kcal 3 3 energy difference in T.S. increases due to larger gp. cis trans 0.7kcal cis-acetate trans-acetate r + - r + - cis trans In transition state, the diaxial interaction is released by going from sp 3 sp 2

20 Effect of angle strain on reactivity Smaller rings are more strained and more reactive. 3 3 Br Br + Br 2 ( 3 ) 2 + Br Br Br Br ~60% 20% 20% l l 2 + l l + l 2 l 45% 4% 41% + 2 l l I I 2 + ( 3 ) 2 2 I 2 3 I oplanarity of double bond substituents can only exists transiently. trans-cyloalkene, with ring size 11, the trans-isomers become more stable

21 Bridge head double bond Bred t rule:the existence of = or =N bonds (1924) at a bridgehead position in a polycyclic system is not possible, unless for large rings. Effect of Ring Size and Ring losure facility Roughly the rate of ring closure for a particular rxn 5 > 6 > 3 > 7 > 4 > 8~10 Scheme 3.4 Relative Rates of Ring losure as a Function of Ring Size Relative rate Reaction Ring size = Br( 2 ) x 2 - lactone 2. Br( 2 ) x N 2 cyclic amine Ph( 2 ) x 3. nucleophilic participation in solvolysis - 4. cyclic ether ( 2 ) x Br formation ArS 2 N( 2 ) x l cyclization Small ring disfavored by enthalpy Large ring disfavored by entropy

22 Baldwin s Rule Table 3.11 lassification of Ring-losure Types Exocyclic bonds Endocyclic bonds sp sp 2 sp 3 sp sp 2 Ring size (dig) (trig) (tet) (dig) (trig) 3 unfav fav fav fav fav 4 unfav fav fav fav unfav 5 fav fav fav fav unfav 6 fav fav fav fav fav 7 fav fav fav fav fav sp 3 ( tetrahedral) X + X - Nu - exo-tet Nu - X + X exo-trig exo-dig R R Z R 2 2 Nu - 5-endo-trig unfavored Z Nu - R Z Nu M LUM much deviate from planar geometry for 5-membered ring R Z Nu - 5-endo-dig Z Nu favored

23 ( 3 ) 2 Ph 3 3 Ph ( 3 ) 2 Ph 3 Na 3 3 Ph Effect of torsional strain reactivity NaB 4 rel. rate 23 : NaB 4 1 The rxn converts a sp 2 carbon to sp 3 carbon in 6-membered ring, all staggered bonds in 5-membered ring, eclipsing interaction increases acetolysis Ts 3 Ts acetolysis 3 faster In transition state, a sp 3 is converted to sp 2, eclipsing effect in 5-membered ring released.

24 Nu axial attack Nu Bulky reagents attack from the equatorial direction (steric control ) Smaller nucleophiles attack from axial direction Nu Nu - - axial attack Nu equational attack Nu or σ π * σ * π Stereo electronic effect distorted π * exo : endo exo : endo B ydroboration R Epoxidation 2, Pd hydrogenation

4. Stereochemistry of Alkanes and Cycloalkanes

4. Stereochemistry of Alkanes and Cycloalkanes 4. Stereochemistry of Alkanes and Cycloalkanes Based on McMurry s Organic Chemistry, 6 th edition, Chapter 4 2003 Ronald Kluger Department of Chemistry University of Toronto The Shapes of Molecules! The

More information

STEREOCHEMISTRY OF ALKANES AND CYCLOALKANES CONFORMATIONAL ISOMERS

STEREOCHEMISTRY OF ALKANES AND CYCLOALKANES CONFORMATIONAL ISOMERS STEREOCHEMISTRY OF ALKANES AND CYCLOALKANES CONFORMATIONAL ISOMERS 1 CONFORMATIONAL ISOMERS Stereochemistry concerned with the 3-D aspects of molecules Rotation is possible around C-C bonds in openchain

More information

Organic Chemistry 1 Lecture 6

Organic Chemistry 1 Lecture 6 CEM 232 Organic Chemistry I Illinois at Chicago Organic Chemistry 1 Lecture 6 Instructor: Prof. Duncan Wardrop Time/Day: T & R, 12:30-1:45 p.m. January 28, 2010 1 Self Test Question Which form of strain

More information

H C H H. sawhorse projection

H C H H. sawhorse projection Alkanes arbons are sp 3 hybridized. Bonds are σ-bonds. - bonds ~ 1.54Å; - bonds ~ 1.10Å. Bond angles ~ 109 o. Ethane sawhorse projection Newman projection Different arrangements of atoms in a molecule

More information

Conformational Isomers. Isomers that differ as a result of sigma bond rotation of C-C bond in alkanes

Conformational Isomers. Isomers that differ as a result of sigma bond rotation of C-C bond in alkanes Conformational Isomers Isomers that differ as a result of sigma bond Isomers that differ as a result of sigma bond rotation of C-C bond in alkanes Bond Rotation and Newman Projections As carbon-carbon

More information

Stereochemical Considerations in Planning Synthesis

Stereochemical Considerations in Planning Synthesis Chapter 2 Stereochemical Considerations in Planning Synthesis Chapter 2 Stereochemical Considerations in Planning Syntheses 2.1 Conformational Analysis Molecules that differ from each other by rotation

More information

Why am I learning this, Dr. P?

Why am I learning this, Dr. P? Chapter 4- Organic Compounds: Cycloalkanes and their Stereochemistry Ashley Piekarski, Ph.D. Why am I learning this, Dr. P? Cyclic compounds are commonly encountered in all classes of biomolecules: Proteins

More information

Chemistry 335 Supplemental Slides: Interlude 2

Chemistry 335 Supplemental Slides: Interlude 2 Interlude 2: Shapes of Cyclic Molecules Recall from 2 nd year: - Rotation around C C single bonds is generally fast. - This leads to a variety of different conformers for any given molecule. - To evaluate

More information

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry

Chemistry 123: Physical and Organic Chemistry Topic 1: Organic Chemistry Topic 1: Mechanisms and Curved Arrows etc Reactions of Alkenes:.Similar functional groups react the same way. Why? Winter 2009 Page 73 Topic 1: Mechanisms and Curved Arrows etc Reactivity:.Electrostatic

More information

Chapter 3 AN INTRODUCTION TO ORGANIC COMPOUNDS NOMENCLATURE, PHYSICAL PROPERTIES, REPRESENTATION OF STRUCTURE AND

Chapter 3 AN INTRODUCTION TO ORGANIC COMPOUNDS NOMENCLATURE, PHYSICAL PROPERTIES, REPRESENTATION OF STRUCTURE AND ORGANIC CHEMISTRY, 2 ND EDITION PAULA YURKANIS BRUICE Chapter 3 AN INTRODUCTION TO ORGANIC COMPOUNDS NOMENCLATURE, PHYSICAL PROPERTIES, AND REPRESENTATION OF STRUCTURE RAED M. AL-ZOUBI, ASSISTANT PROFESSOR

More information

Chapter 2 Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism

Chapter 2 Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism Chapter 2 Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism Alkanes are hydrocarbons containing only single Bonds saturated General formula: CnH2n+2 Drawing chemical structures Several

More information

Chapter 2: An Introduction to Organic Compounds

Chapter 2: An Introduction to Organic Compounds Chapter : An Introduction to Organic Compounds I. FUNCTIONAL GROUPS: Functional groups with similar structure/reactivity may be "grouped" together. A. Functional Groups With Carbon-Carbon Multiple Bonds.

More information

Alkanes. Introduction

Alkanes. Introduction Introduction Alkanes Recall that alkanes are aliphatic hydrocarbons having C C and C H bonds. They can be categorized as acyclic or cyclic. Acyclic alkanes have the molecular formula C n H 2n+2 (where

More information

Lab Workshop 1: Alkane and cycloalkane conformations

Lab Workshop 1: Alkane and cycloalkane conformations Lab Workshop : lkane and cycloalkane conformations ach student work group choose a Leader (reads activity out loud, poses questions to group), Facilitator (makes sure everyone is participating equally,

More information

STRUCTURE. Dr. Sheppard CHEM 2411 Spring 2015

STRUCTURE. Dr. Sheppard CHEM 2411 Spring 2015 STRUCTURE Dr. Sheppard CHEM 2411 Spring 2015 Klein (2nd ed.) sections 1.8-1.10, 1.12-1.13, 2.7-2.12, 3.2, 3.4-3.5, 3.8-3.9, 4.6-4.13, 4.14, 8.5, 15.16, 21.3 Topics Structure Physical Properties Hybridization

More information

Only by constructing a model does one at first appreciate fully how. cyclohexane can exist in a non-planar, beautifully symmetrical, and apparently

Only by constructing a model does one at first appreciate fully how. cyclohexane can exist in a non-planar, beautifully symmetrical, and apparently Text Related to Segment 5.05 2002 Claude E. Wintner Only by constructing a model does one at first appreciate fully how cyclohexane can exist in a non-planar, beautifully symmetrical, and apparently entirely

More information

Introduction to organic compounds

Introduction to organic compounds Chapter 2 Introduction to organic compounds Nomenclature Physical properties Conformation Organic compounds Ch 2 #2 in Organic Chemistry 1 hydrocarbons [R] alkanes alkenes alkynes alkyl halides [RX] ethers

More information

Conformational Analysis

Conformational Analysis onformational Analysis Free Rotation about arbon-arbon Single Bonds A carbon carbon single bond is formed by the end-on overlap of cylindrically symmetrical sp 3 orbitals. Therefore, attached carbon atoms

More information

Chapters 1, 2, & 3. CHAPTER 3 *** 3-D Molecular Model Set Needed*** Saturated Hydrocarbons (AKA: Alkanes) (AKA:Paraffins)

Chapters 1, 2, & 3. CHAPTER 3 *** 3-D Molecular Model Set Needed*** Saturated Hydrocarbons (AKA: Alkanes) (AKA:Paraffins) Sevada Chamras, Ph.D. Glendale Community College Chemistry 105 Exam. 1 Lecture Notes Chapters 1, 2, & 3 CAPTER 3 *** 3-D Molecular Model Set Needed*** Saturated ydrocarbons (AKA: Alkanes) (AKA:Paraffins)

More information

Organic Chemistry 1 Lecture 5

Organic Chemistry 1 Lecture 5 CEM 232 Organic Chemistry I Illinois at Chicago Organic Chemistry 1 Lecture 5 Instructor: Prof. Duncan Wardrop Time/Day: T & R, 12:30-1:45 p.m. January 26, 2010 1 Self Test Question Which of the following

More information

Alicyclic Hydrocarbons can be classified into: Cycloalkanes Cycloalkenes Cycloalkynes

Alicyclic Hydrocarbons can be classified into: Cycloalkanes Cycloalkenes Cycloalkynes Cycloalkanes Open-chain The carbon atoms are attached to one another to form chains Ex: CH 3 -CH 2 -CH 2 -CH 3 n-butane Cyclic compounds the carbon atoms are arranged to form rings called: cyclic compounds,

More information

Organic Chemistry, Fifth Edition

Organic Chemistry, Fifth Edition Organic Chemistry, Fifth Edition Janice Gorzynski Smith Modified by Dr. Juliet Hahn Chapter 4 Alkanes Copyright 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without

More information

When I lecture we will add more info, so leave spaces in your notes

When I lecture we will add more info, so leave spaces in your notes Title and Highlight Right side: NOTES! Topic: EQ: Date Date NOTES: Write out the notes from my website. Use different types of note-taking methods to help you recall info (different color pens/highlighters,

More information

Chapter 4 Alkanes: Nomenclature, Conformational Analysis, and an Introduction to Synthesis"

Chapter 4 Alkanes: Nomenclature, Conformational Analysis, and an Introduction to Synthesis Chapter 4 Alkanes: Nomenclature, Conformational Analysis, and an Introduction to Synthesis" Alkanes = saturated hydrocarbons" Simplest alkane = methane C 4" " We can build additional alkanes by adding

More information

Loudon Chapter 7 Review: Cyclic Compounds Jacquie Richardson, CU Boulder Last updated 8/24/2017

Loudon Chapter 7 Review: Cyclic Compounds Jacquie Richardson, CU Boulder Last updated 8/24/2017 Compounds with a single ring are monocyclic. For example: Assuming they have no double or triple bonds, they each have one degree of unsaturation. This means that their formulas follow the pattern C nh

More information

Chem 341 Organic Chemistry I Lecture Summary 10 September 14, 2007

Chem 341 Organic Chemistry I Lecture Summary 10 September 14, 2007 Chem 34 Organic Chemistry I Lecture Summary 0 September 4, 007 Chapter 4 - Stereochemistry of Alkanes and Cycloalkanes Conformations of Cycloalkanes Cyclic compounds contain something we call Ring Strain.

More information

(1) Recall the different isomers mentioned in this tutorial.

(1) Recall the different isomers mentioned in this tutorial. DAT Organic Chemistry - Problem Drill 08: Conformational Analysis Question No. 1 of 10 Question 1. Isomers that differ by rotation about a single bond are called: Question #01 (A) Stereoisomers (B) Constitutional

More information

CHEM50002: Orbitals in Organic Chemistry- Stereoelectronics. LECTURE 2 Stereoelectronics of Ground States Conformational Analysis

CHEM50002: Orbitals in Organic Chemistry- Stereoelectronics. LECTURE 2 Stereoelectronics of Ground States Conformational Analysis CEM50002: rbitals in rganic Chemistry- Stereoelectronics 1 LECTUE 2 Stereoelectronics of Ground States Conformational Analysis Alan C. Spivey a.c.spivey@imperial.ac.uk Feb-Mar 2018 2 Format & scope of

More information

CHEM Lecture 4

CHEM Lecture 4 CEM 494 Special Topics in Chemistry Illinois at Chicago CEM 494 - Prof. Duncan Wardrop October 1, 2012 Course Website http://www.chem.uic.edu/chem494 Syllabus Course Policies Other handouts Announcements

More information

Lecture 1. Conformational Analysis in Acyclic Systems

Lecture 1. Conformational Analysis in Acyclic Systems Lecture 1 Conformational Analysis in Acyclic Systems Learning Outcomes: by the end of this lecture and after answering the associated problems, you will be able to: 1. use Newman and saw-horse projections

More information

1. Discuss the the relative conformation analysis of 1,2-dimethylcyclohexane. H H H 3 C H H CH H 3 3 C H H

1. Discuss the the relative conformation analysis of 1,2-dimethylcyclohexane. H H H 3 C H H CH H 3 3 C H H 1. Discuss the the relative conformation analysis of 1,2-dimethylcyclohexane. If we consider cis isomer of 1,2-dimethylcyclohexane, the e,a and a,e both conformer is optically active ads no element of

More information

T6.2 Molecular Mechanics

T6.2 Molecular Mechanics T6.2 Molecular Mechanics We have seen that Benson group additivities are capable of giving heats of formation of molecules with accuracies comparable to those of the best ab initio procedures. However,

More information

SECOND YEAR ORGANIC CHEMISTRY - REVISION COURSE Lecture 1 MOLECULAR STRUCTURE 1: STEREOCHEMISTRY & CONFORMATIONAL ANALYSIS

SECOND YEAR ORGANIC CHEMISTRY - REVISION COURSE Lecture 1 MOLECULAR STRUCTURE 1: STEREOCHEMISTRY & CONFORMATIONAL ANALYSIS Prof Ben Davis SECND YEAR RGANIC CEMISTRY - REVISIN CURSE Lecture 1 MLECULAR STRUCTURE 1: STERECEMISTRY & CNFRMATINAL ANALYSIS Good books and reading: Carey and Sundberg, Part A, Ch 2 & 3 Stereochemistry

More information

Lecture 6: September 7, 2018

Lecture 6: September 7, 2018 CM 223 Organic Chemistry I Prof. Chad Landrie Lecture 6: September 7, 2018 Ch. 4: Nomenclature of Cylcoalkanes and their Physical and Chemical Properties (4.1-4.3) Conformational Isomers of Cycloalkanes

More information

Chapter 7 Cyclic Compounds. Stereochemistry of Reactions

Chapter 7 Cyclic Compounds. Stereochemistry of Reactions Instructor Supplemental Solutions to Problems 2010 Roberts and Company Publishers Chapter 7 Cyclic Compounds. Stereochemistry of Reactions Solutions to In-Text Problems 7.3 Following the procedure in the

More information

Organic Chemistry Unit #2: Structure of Alkanes, Cycloalkanes, and Alkenes

Organic Chemistry Unit #2: Structure of Alkanes, Cycloalkanes, and Alkenes Organic hemistry Unit #2: Structure of Alkanes, ycloalkanes, and Alkenes Bring your model kits to class we will to learn to use them! Objectives: by the end of this unit, you should be able to... Interconvert

More information

A. Structure and Nomenclature. Introduction of Organic Chemistry. Unit 2: Structure of Alkanes, Cycloalkanes, and Alkenes

A. Structure and Nomenclature. Introduction of Organic Chemistry. Unit 2: Structure of Alkanes, Cycloalkanes, and Alkenes Organic hemistry #2 1 Introduction of Organic hemistry. Unit 2: Structure of Alkanes, ycloalkanes, and Alkenes Bring your model kits to class we will to learn to use them! Objectives: by the end of this

More information

9/30/2010. Chapter 4 Organic Compounds: Cycloalkanes and Their Stereochemistry. Cyclics. 4.1 Naming Cycloalkanes

9/30/2010. Chapter 4 Organic Compounds: Cycloalkanes and Their Stereochemistry. Cyclics. 4.1 Naming Cycloalkanes John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 4 Organic Compounds: Cycloalkanes and Their Stereochemistry Richard Morrison University of Georgia, Athens Cyclics Most organic compounds

More information

Organic Chemistry, Second Edition. Janice Gorzynski Smith University of Hawai i. Chapter 4 Alkanes

Organic Chemistry, Second Edition. Janice Gorzynski Smith University of Hawai i. Chapter 4 Alkanes Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 4 Alkanes Prepared by Rabi Ann Musah State University of New York at Albany Copyright The McGraw-Hill Companies, Inc.

More information

LECTURE 3 STRUCTURE AND STEREOCHEMISTRY OF ALKANES

LECTURE 3 STRUCTURE AND STEREOCHEMISTRY OF ALKANES LECTURE 3 STRUCTURE AND STEREOCEMISTRY OF ALKANES 1. Molecular Formulas. Alkanes are hydrocarbons, which have only sp 3 -hybridized carbon atoms, i.e. carbon atoms that form only σ-bonds. Such hydrocarbons,

More information

unsaturated (one or more pi bonds) alkanes alkenes alkynes benzene naming alkanes C 4 H 10 C 5 H 12 C 6 H 14 C 7 H 16 C 8 H 18 C 9 H 20 C 10 H 22

unsaturated (one or more pi bonds) alkanes alkenes alkynes benzene naming alkanes C 4 H 10 C 5 H 12 C 6 H 14 C 7 H 16 C 8 H 18 C 9 H 20 C 10 H 22 hapter 4: Alkanes and ycloalkanes [Sections: 4.1-4.14] Basic Organic ompound Nomenclature hydrocarbons: comprised of just carbon and hydrogen saturated (no pi bonds) unsaturated (one or more pi bonds)

More information

Dr. Mishu Singh Chemistry Department Maharana Paratap Govt. P.G College Hardoi.

Dr. Mishu Singh Chemistry Department Maharana Paratap Govt. P.G College Hardoi. Dr. Mishu Singh Chemistry Department Maharana Paratap Govt. P.G College Hardoi. 1 Conformations The infinite number of arrangements of the atoms or groups of a molecule in three dimentional space which

More information

comes forward STEREOISOMERS ISOMERS THAT ARE DIFFERENT BECAUSE OF THEIR ORIENTATION IN SPACE

comes forward STEREOISOMERS ISOMERS THAT ARE DIFFERENT BECAUSE OF THEIR ORIENTATION IN SPACE STEREOCEMISTRY SOME DEFINITIONS WIT EXAMPLES PRESENTING STEREO STRUCTURES CIRAL CENTER REPRESENTAITON goes back goes back in the plane of the paper comes forward comes forward DOTTED LINE - WEDGE goes

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following is a tertiary amine? 1) A) B) C) D) E) D 2) There are 8 isomers that have

More information

Conformations. Lecture 15. Hydrocarbon Families (carbon and hydrogen only) Aliphatics and Alicyclics. Aromatics. Alkanes Alkenes Alkynes.

Conformations. Lecture 15. Hydrocarbon Families (carbon and hydrogen only) Aliphatics and Alicyclics. Aromatics. Alkanes Alkenes Alkynes. Alkanes represent one of four hydrocarbon families (having only carbon and hydrogen). These families include alkanes, alkenes, alkynes, and aromatics. The alkane family will provide our main examples for

More information

Molecules Are NOT Static Structures!

Molecules Are NOT Static Structures! Objective 6 Draw conformational isomers of chains (staggered, eclipsed) and rings (chair axial/equatorial, boat, cis/trans) using skeletal structures, Newman projections, wedge-dash, sawhorse. Identify

More information

ch03 Student: A. anti B. gauche C. skewed D. eclipsed 2. What is the IUPAC name of the compound shown in the following Newman projection?

ch03 Student: A. anti B. gauche C. skewed D. eclipsed 2. What is the IUPAC name of the compound shown in the following Newman projection? ch03 Student: 1. Identify the conformation of butane shown below. A. anti B. gauche C. skewed D. eclipsed 2. What is the IUPAC name of the compound shown in the following Newman projection? A. 1,1,2,2-tetramethylethane

More information

ORGANIC - BRUICE 8E CH.3 - AN INTRODUCTION TO ORGANIC COMPOUNDS

ORGANIC - BRUICE 8E CH.3 - AN INTRODUCTION TO ORGANIC COMPOUNDS !! www.clutchprep.com CONCEPT: INDEX OF HYDROGEN DEFICIENCY (STRUCTURAL) A saturated molecule is any molecule that has the maximum number of hydrogens possible for its chemical structure. The rule that

More information

Organic Chemistry. Alkanes (2)

Organic Chemistry. Alkanes (2) For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Alkanes (2) by Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my; iezwan@ump.edu.my

More information

3. An Introduction to Molecular Mechanics

3. An Introduction to Molecular Mechanics 3. An Introduction to Molecular Mechanics Introduction When you use Chem3D to draw molecules, the program assigns bond lengths and bond angles based on experimental data. The program does not contain real

More information

3. An Introduction to Molecular Mechanics

3. An Introduction to Molecular Mechanics 3. An Introduction to Molecular Mechanics Introduction When you use Chem3D to draw molecules, the program assigns bond lengths and bond angles based on experimental data. The program does not contain real

More information

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules

CHAPTER 2. Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules CHAPTER 2 Structure and Reactivity: Acids and Bases, Polar and Nonpolar Molecules 2-1 Kinetics and Thermodynamics of Simple Chemical Processes Chemical thermodynamics: Is concerned with the extent that

More information

NAME: SPRING 2015 MIDTERM

NAME: SPRING 2015 MIDTERM page 1 pts NAME: SPRING 2015 MIDTERM hemistry 231 Professor: Dr. Gergens take-home portion (DUE at the beginning of the period, 4/6) Do your best on this take-home portion of your mid-term. I may grade

More information

1 Basic Organic Nomenclature Two kinds: Common or trivial names IUPAC (International Union of Pure and Applied Chemists!), systematic naming system

1 Basic Organic Nomenclature Two kinds: Common or trivial names IUPAC (International Union of Pure and Applied Chemists!), systematic naming system Alkanes Introduction to 3D Structures Alkanes are hydrocarbons, i.e. organic molecules that contain only carbon () and hydrogen () atoms Alkanes are unsaturated (have no double/triple bonds), but may have

More information

Chemistry II (Organic): Introduction to Stereoelectronics

Chemistry II (Organic): Introduction to Stereoelectronics hemistry II (rganic): Introduction to Stereoelectronics STUTUE: onformational analysis and ground state stereoelectronics of selected functional groups Dr Alan Spivey; ffice: 834 1; e-mail: a.c.spivey@imperial.ac.uk;

More information

Organic Chemistry, Second Edition. Janice Gorzynski Smith University of Hawai i. Chapter 4 Alkanes

Organic Chemistry, Second Edition. Janice Gorzynski Smith University of Hawai i. Chapter 4 Alkanes Organic Chemistry, Second Edition Janice Gorzynski Smith University of Hawai i Chapter 4 Alkanes Prepared by Rabi Ann Musah State University of New York at Albany Copyright The McGraw-Hill Companies, Inc.

More information

ORGANIC - EGE 5E CH. 5 - ALKANES AND CYCLOALKANES.

ORGANIC - EGE 5E CH. 5 - ALKANES AND CYCLOALKANES. !! www.clutchprep.com CONCEPT: ALKANE NOMENCLATURE Before 1919, chemists literally had to memorize thousands of random (common) chemical names. IUPAC naming provides a systematic method to give every chemical

More information

Chapter 3. Stabilizing Effects in Hydrocarbon Chemistry. The goal of this chapter: Iden=fy the presence of strained stabilized systems

Chapter 3. Stabilizing Effects in Hydrocarbon Chemistry. The goal of this chapter: Iden=fy the presence of strained stabilized systems Stabilizing Effects in ydrocarbon Chemistry The goal of this chapter: Iden=fy the presence of strained stabilized systems Predict quan=ta=ve values of strain/stabiliza=on based on chemical equa=ons or

More information

ALICYCLIC AND NON-AROMATIC HETEROCYCLIC CHEMISTRY (Ed Smith) II Year

ALICYCLIC AND NON-AROMATIC HETEROCYCLIC CHEMISTRY (Ed Smith) II Year ALICYCLIC AND NON-AROMATIC ETEROCYCLIC CEMISTRY (Ed Smith) II Year Reference to the books noted in the synopsis will provide background reading to this course. What does Alicyclic mean? The Ali comes from

More information

Chemistry 3719 Fall 2000 Exam 1 Name: KEY. Anti Gauche Eclipsed 1 Eclipsed 2

Chemistry 3719 Fall 2000 Exam 1 Name: KEY. Anti Gauche Eclipsed 1 Eclipsed 2 hemistry 3719 Fall 2000 Exam 1 Name: KEY This exam is worth 100 points and you have 50 minutes to complete it. You may use molecular models to help you with any of the problems. Good luck. 1. (8 pts) 1,2-Dibromoethane

More information

Chemistry 3719, Fall 2002 Exam 1 Name:

Chemistry 3719, Fall 2002 Exam 1 Name: Chemistry 3719, Fall 2002 Exam 1 Name: This exam is worth 100 points out of a total of 600 points for Chemistry 3719/3719L. You have 50 minutes to complete the exam and you may use molecular models as

More information

1,2-Dienes: 1,2-Dienes have two double bonds both joined to a central carbon which is often represented by a dot: R 2 R 1 R 4

1,2-Dienes: 1,2-Dienes have two double bonds both joined to a central carbon which is often represented by a dot: R 2 R 1 R 4 LETURE 2 Alkenes: In alkenes we make the σ-bonds between carbon atoms by overlapping sp 2 hybrid orbitals which have been produced by the hybridisation of one s and only two p orbitals. These sp 2 hybrids

More information

ALKANES STRUCTURE, PROPERTIES, AND SYNTHESIS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO:

ALKANES STRUCTURE, PROPERTIES, AND SYNTHESIS A STUDENT WHO HAS MASTERED THE MATERIAL IN THIS SECTION SHOULD BE ABLE TO: ALKANES STRUCTURE, PROPERTIES, AND SYNTESIS A STUDENT WO AS MASTERED TE MATERIAL IN TIS SECTION SOULD BE ABLE TO: 1. Predict relative boiling points of alkanes, in comparison with other alkanes and with

More information

Chapter 4: Alkanes and Cycloalkanes

Chapter 4: Alkanes and Cycloalkanes 1. Nomenclature hapter 4: lkanes and ycloalkanes hydrocarbons: comprised of just carbon and hydrogen saturated (no pi bonds) [Sections: 4.1-4.14] unsaturated (one or more pi bonds) alkanes alkenes alkynes

More information

1. Problem 3-5 Use ChemDraw to generate the nine isomers of C 7 H 16.

1. Problem 3-5 Use ChemDraw to generate the nine isomers of C 7 H 16. Copyright 2002 Prentice-Hall, Inc. All rights reserved. Chapter 3 - Structure and Stereochemistry of Alkanes 1. Problem 3-5 Use ChemDraw to generate the nine isomers of C 7 H 16. Hint: Begin with a chain

More information

Tff 1.0 Kcallmol. edited transition stale. ay ay. AcydicsystemI. Poti. blt groups on adjacent. 1 add to 8. Ent

Tff 1.0 Kcallmol. edited transition stale. ay ay. AcydicsystemI. Poti. blt groups on adjacent. 1 add to 8. Ent Poti AcydicsystemI i ConformationalAnalysis ed diharisiate Ent edited transition stale Torsional strain caused by eclipsing atoms separatedby 3 bonds as eclipsing occurs there is a distortion of the C

More information

Full file at

Full file at Chapter 2 - Alkanes: The Nature of Organic Compounds 1. Which of the following functional group classifications do not contain oxygen? A. ether B. thiol C. aldehyde D. ester E. amide 2. To which functional

More information

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes Discovering Molecular Models #1: Constitutional Isomers Conformations of Alkanes & Cycloalkanes There are no additional tutorial or laboratory notes. Read bring your course notes, as they provide all of

More information

Practice Problems, November 27, 2000

Practice Problems, November 27, 2000 Practice Problems, ovember 27, 2000 1. Why do the following groups all have very similar A-values? R-Group A-Value (kcal mol -1 ) 3 1.74 2 3 1.79 2 1.77 2 Br 1.79 2 Sn( 3 ) 3 1.79 2 Si( 3 ) 3 1.65 2 Ph

More information

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes

Constitutional Isomers and Conformations of Alkanes & Cycloalkanes Discovering Molecular Models #1: Constitutional Isomers Conformations of Alkanes & Cycloalkanes There are no additional tutorial or laboratory notes. Read bring your course notes, as they provide all of

More information

INTRODUCTION TO ORGANIC CHEMISTRY: ALKANES

INTRODUCTION TO ORGANIC CHEMISTRY: ALKANES P a g e 1 Chapter 12 INTRODUCTION TO ORGANIC CHEMISTRY: ALKANES Organic chemistry: The study of carbon compounds. Carbon is tetravalent; it always forms four bonds. Organic molecules have covalent bonds.

More information

CHEMISTRY 241 Section 004 EXAMINATION I TUESDAY, October 11, :30-11:50 AM Professor William P. Dailey NAME: QUESTIONS POINTS SCORE

CHEMISTRY 241 Section 004 EXAMINATION I TUESDAY, October 11, :30-11:50 AM Professor William P. Dailey NAME: QUESTIONS POINTS SCORE CEMISTRY 241 Section 004 EXAMIATI I TUESDAY, ctober 11, 2005 10:30-11:50 AM Professor William P. Dailey AME: Student ID number : QUESTIS PITS SCRE 1. 16 2. 10 3. 12 4. 12 5. 12 6. 8 7. 9 8. 9 9. 15 10.

More information

Química Orgânica I TP1B

Química Orgânica I TP1B Química Orgânica I TP1B Nome Nº Curso Nota MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following is a tertiary amine? A) 1) B)

More information

NAME: SUMMER 2015 MIDTERM

NAME: SUMMER 2015 MIDTERM page 1 pts NAME: SUMMER 2015 MIDTERM hemistry 350 Professor: Dr. Gergens take-home portion (DUE at the beginning of the period, 6/16) Do your best on this take-home portion of your midterm. I may grade

More information

Exam 1 Chem 3045x Monday, October 1, 2001

Exam 1 Chem 3045x Monday, October 1, 2001 Exam 1 Chem 3045x Monday, October 1, 2001 Instructions: This is a closed book examination. Please print your name and social security number on the front page of the examination. Be sure to allot your

More information

Chapter 4 - Nomenclature and Conformations of Alkanes and Cycloalkanes 1

Chapter 4 - Nomenclature and Conformations of Alkanes and Cycloalkanes 1 Andrew Rosen Chapter 4 - Nomenclature and Conformations of Alkanes and Cycloalkanes 1 4.1 - Introduction to Alkanes and Cycloalkanes - Alkanes are hydrocarbons with all carbon-carbon single bonds - Alkenes

More information

Chapter 2. Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism

Chapter 2. Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism Chapter 2 Alkanes and Cycloalkanes; Conformational and Geometrical Isomerism Hydrocarbons are compounds that contain only carbon and hydrogen. There are three main classes of hydrocarbons, based on the

More information

Conjugated Systems, Orbital Symmetry and UV Spectroscopy

Conjugated Systems, Orbital Symmetry and UV Spectroscopy Conjugated Systems, Orbital Symmetry and UV Spectroscopy Introduction There are several possible arrangements for a molecule which contains two double bonds (diene): Isolated: (two or more single bonds

More information

1. The barrier to rotation around the C-C bonds for 2-methylpropane and 2,2-dimethylpropane are shown below.

1. The barrier to rotation around the C-C bonds for 2-methylpropane and 2,2-dimethylpropane are shown below. 1. The barrier to rotation around the C-C bonds for 2-methylpropane and 2,2-dimethylpropane are shown below. E Rot = 14.2 kj/mol E Rot = 19.6 kj/mol a. Why does the potential energy of a molecule increase

More information

An alkane homolog differs only in the number of CH 2 groups. Example: butane: CH 3 CH 2 CH 2 CH 3 and pentane CH 3 CH 2 CH 2 CH 2 CH 3 are homolgs.

An alkane homolog differs only in the number of CH 2 groups. Example: butane: CH 3 CH 2 CH 2 CH 3 and pentane CH 3 CH 2 CH 2 CH 2 CH 3 are homolgs. Structure and Stereochemistry of Alkanes Reading: Wade chapter 3, sections 3-1- 3-9 Study Problems: 3-33, 3-37, 3-39, 3-40, 3-42 Key Concepts and Skills: Explain and predict trends in the physical properties

More information

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions ALKANES Water-insoluble, low density C-C single bonds Higher MW -> higher BP, higher MP Branching -> lower BP, higher MP Forms cycloalkanes which can have ring strain Cyclohexane: chair vs. boat configuration

More information

Chapter 2: Alkanes MULTIPLE CHOICE

Chapter 2: Alkanes MULTIPLE CHOICE Chapter 2: Alkanes MULTIPLE CHOICE 1. Which of the following orbitals is properly described as an antibonding orbital? a. sp + 1s d. sp 2 1s b. sp 2 + 1s e. sp 2 + sp 2 sp 3 + 1s D DIF: Easy REF: 2.2 2.

More information

Homework Problem Set 4 Solutions

Homework Problem Set 4 Solutions Chemistry 380.37 Dr. Jean M. Standard omework Problem Set 4 Solutions 1. A conformation search is carried out on a system and four low energy stable conformers are obtained. Using the MMFF force field,

More information

c. Cl H Page 1 of 7 major P (E > Z and more substituted over less substituted alkene) LG must be axial are the same Cl -

c. Cl H Page 1 of 7 major P (E > Z and more substituted over less substituted alkene) LG must be axial are the same Cl - CEM 109A 1. Predict the products of the following reactions (a-c E2, d-f E1 KEY focuses only on elimination products, in most cases there will also be substitution products.) a. - LG must be axial - are

More information

Alkanes 3/27/17. Hydrocarbons: Compounds made of hydrogen and carbon only. Aliphatic (means fat ) - Open chain Aromatic - ring. Alkane Alkene Alkyne

Alkanes 3/27/17. Hydrocarbons: Compounds made of hydrogen and carbon only. Aliphatic (means fat ) - Open chain Aromatic - ring. Alkane Alkene Alkyne Alkanes EQ 1. How will I define Hydrocarbons? 2. Compare and contrast the 3 types of hydrocarbons (Alkanes, alkenes, alkynes). Hydrocarbons: Compounds made of hydrogen and carbon only. Aliphatic (means

More information

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1:

CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Text Sections (N0 1.9, 9-11) Homework: Chapter 1: CHEM 261 HOME WORK Lecture Topics: MODULE 1: The Basics: Bonding and Molecular Structure Atomic Structure - Valence Electrons Chemical Bonds: The Octet Rule - Ionic bond - Covalent bond How to write Lewis

More information

Exam Analysis: Organic Chemistry, Midterm 1

Exam Analysis: Organic Chemistry, Midterm 1 Exam Analysis: Organic Chemistry, Midterm 1 1) TEST BREAK DOWN: There are three independent topics covered in the first midterm, which are hybridization, structure and isomerism, and resonance. The test

More information

Growth in Known Compounds

Growth in Known Compounds Growth in Known ompounds 70,000,000 60,000,000 50,000,000 54,675,250 63,175,733 50,000,000 40,000,000 29,988,150 30,000,000 20,000,000 10,000,000 0 50,000 144,000 300,000 11,669,292 18,000,000 1892 1910

More information

CHEM 241 ALKANES AND CYCLOALKANES CHAP 3 ASSIGN H H

CHEM 241 ALKANES AND CYCLOALKANES CHAP 3 ASSIGN H H CEM 241 ALKANES AND CYCLOALKANES CAP 3 ASSIGN COMFORMATIONS AND cis-trans STEREOISOMERS 1. trans-1,2-dibromocyclohexane is represented by structure(s): D. II and III E. I and II 2. cis-1,3-dibromocyclohexane

More information

B. A transition state represents a maximum on the reaction path diagram and can be isolated.

B. A transition state represents a maximum on the reaction path diagram and can be isolated. Practice Hour Exam 2, Chemistry 2210, Organic Chemistry I 1. The most stable carbocation is: 2. Which of the following statements is true of transition states? A. A transition state represents a minimum

More information

Alkanes and Cycloalkanes

Alkanes and Cycloalkanes Chapter 3 Alkanes and Cycloalkanes Two types Saturated hydrocarbons Unsaturated hydrocarbons 3.1 Alkanes Also referred as aliphatic hydrocarbons General formula: CnH2n+2 (straight chain) and CnH2n (cyclic)

More information

Chem 201 Midterm Winter, 2013 Beauchamp

Chem 201 Midterm Winter, 2013 Beauchamp hem 0 Midterm Winter, 0 Beauchamp Name Problems Points redit. Functional Group Nomenclature. Degrees of Unsaturation & Functional Groups or Various Nomenclature Terms. D structure, Functional Groups 0.

More information

Exam I Review Solution Set

Exam I Review Solution Set Exam I Review Solution Set Paul Bracher hem 30 Fall 2004 Exam I Problem 1 (refer to the Evans pk a table and Solvents and Solvent Effects in rganic hemistry by. Reichardt). Explain the trend in relative

More information

Form 0 CHE321 Exam 1 9/26/2006

Form 0 CHE321 Exam 1 9/26/2006 CE321 Exam 1 9/26/2006 Multiple Choice Questions. 60 points 1. Draw the two best contributing structures for methylimidate. To get you started a partial structure is given. C C C Choose the incorrect statement.

More information

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008

Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Organic Chemistry I Lesson Objectives, Lesson Problems, Course Outline Spring 2008 Lesson Date Assignment Lesson Objective Description Lesson Problems 4 14-Jan Chapter 1 Quiz Describe how bond polarity

More information

Ch.4: Alkanes and Cycloalkanes. Dr. Srood Omer Rashid 2

Ch.4: Alkanes and Cycloalkanes. Dr. Srood Omer Rashid 2 Srood O. Rashid 1 Ch.4: Alkanes and Cycloalkanes Dr. Srood Omer Rashid 2 4.1 Classes of Hydrocarbons Hydrocarbons contain only carbon and hydrogen. Saturated hydrocarbons contain only carbon carbon single

More information

STEREOCHEMISTRY AND STEREOELECTRONICS NOTES

STEREOCHEMISTRY AND STEREOELECTRONICS NOTES - 1 - STEREOCHEMISTRY AND STEREOELECTRONICS NOTES Stereochemistry in Organic Molecules Conventions used in drawing molecules Also, Fischer projections can sometimes be useful for acyclic molecules with

More information

Alkana. Dept Teknik Kimia FTUI

Alkana. Dept Teknik Kimia FTUI Alkana C n 2n+2 Dept Teknik Kimia FTUI ydrocarbons Aliphatic Aromatic ydrocarbons Aliphatic Aromatic Alkana Alkena Alkuna ydrocarbons Aliphatic Alkanes are hydrocarbons in which all of the bonds are single

More information

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #2 - October 18, 2004 ANSWERS

Department of Chemistry SUNY/Oneonta. Chem Organic Chemistry I. Examination #2 - October 18, 2004 ANSWERS Department of hemistry SUNY/Oneonta hem 221 - Organic hemistry I Examination #2 - October 18 2004 ANSWERS INSTRUTIONS This examination is in multiple choice format; the questions are in this Exam Booklet

More information

3 - CONJUGATION. More than one double bond can be in a given compound: n=0

3 - CONJUGATION. More than one double bond can be in a given compound: n=0 3 - NJUGATIN 1. Terminology and Nomenclature (SF 13.1 13.6; SFS 13.1 13.6) A compound containing a double bond is called an alkene, olefin or maybe simply "ene". There are often other names associated

More information