Introduction to Spectroscopy: Analysis of Copper Ore

Size: px
Start display at page:

Download "Introduction to Spectroscopy: Analysis of Copper Ore"

Transcription

1 Absorbance Introduction to Spectroscopy: Analysis of Copper Ore Introduction The goal of this lab is to determine the unknown concentration of two different copper solution samples, taken from fictitious mining sites (sites A and B), by generating a standard curve, called a calibration curve. A calibration curve or standard curve is a mathematical tool used by chemists to determine the concentration of a substance based off a set of known reference points. First the reference point solutions (referred to as standard solutions here on out) need to be made and analyzed. Your group will make a series of diluted solutions of copper(ii) sulfate pentahydrate (CuSO4 5H2O). These diluted solutions will be your standard solutions. The relationship between concentration and absorption of these standard solutions will be analyzed using a spectrophotometer (Genesys Spec-20). Spectrophotometric analysis is one method used to determine the concentration of a colored substance in solution. Concentration is determined by calculating the amount of light that passes through a sample and hits a detector. The more light that gets through, the less concentrated the solution is (fewer molecules of the colored substance that absorb light). Concentration may be expressed in several ways. In this experiment, it is expressed as the milligrams of copper per milliliter of solution (mg/ml). To produce accurate results the appropriate wavelength at which to measure the absorbance of the standard and unknown solutions must be determined. To select the best wavelength for measurements, we must find the wavelength of maximum absorption. To do this, we plot wavelength (x-axis) versus absorbance (y-axis) for one of the solutions and simply find the wavelength that gives the maximum absorbance. The example below shows a peak absorbance occurring at about 610 nm. The concentrations of solutions A and B will then be determined using graphical analysis of the standard solutions data. A regression line representing the best straight-line fit of the absorbance data (y-axis) versus standard solutions concentrations (x-axis) will produce an equation of the form y = mx + b. This is considered a Beer s Law Plot (see below). The regression line equation will then be used to mathematically determine the concentration of the solutions taken from site A and B Beer's Law Plot y = mx + b R² = Concentration (mg/ml) GCC CHM 151LL: Intro to Spectroscopy GCC, 2018 page 1 of 11

2 For more information: Chemistry: Atom s First by OpenStax section 6.3 Molarity - Dilution of Solutions Equations to use for the calculations: Volume delivered: VTotal = VFinal VInitial Dilution Formula: M1V1=M2V2 y=mx + b Materials: 5 50-mL volumetric flasks with lids 25-mL buret CuSO4 5H2O stock solution buret stand small plastic pipets Genesys Spec-20 Spectrometer 2 plastic cuvettes Kim wipes access to Microsoft Excel or Google Charts plastic funnel DI water bottle calculator Procedure Part I: Preparing the Standard Solutions 1. Turn on the Genesys Spec-20 so it will have plenty of time (about 15 minutes) to warm up. 2. Record the concentration of the stock copper(ii) sulfate pentahydrate solution in the data section of your lab report. 3. Condition a clean ml buret with the stock copper(ii) sulfate pentahydrate solution and prepare it to deliver solutions into the 4 50-mL volumetric flasks. See technique Preparing Solutions. 4. Use the buret of stock copper solution to deliver volumes as close to whole numbers as you can measure. See technique Using a buret to deliver a solution. Record the initial volume from the buret and deliver as close to 1 ml as you can to the first volumetric flask. Record the final volume from the buret. Add deionized (DI) water from your wash bottle to the solution in the volumetric flask. When the meniscus gets close to the line, you may use the plastic pipet to add water drop-wise. Be sure the bottom of the meniscus does not go above the line. If it does, you will have to remake that solution! Stopper the flask and invert it several times to thoroughly mix the solution. 5. Repeat this process to make the next 4 solutions. Label your flasks with pencil or tape. Deliver approximately 1 ml, 2 ml, 4 ml, 6 ml, and 8 ml of stock solution, and fill each volumetric flask to the line with deionized water. Remember to record the exact volume of the buret before and after delivering the stock solution. GCC CHM 151LL: Intro to Spectroscopy GCC, 2018 page 2 of 11

3 6. Stopper all your labeled flasks, invert them several times to thoroughly mix the solutions, and set them aside for part III. Part II: Finding the Maximum Absorbance for Copper Solutions 1. Press the A / T / C button until an A appears in the upper right corner of the display. 2. Use a disposable pipet to fill one cuvette 2/3 full with DI water and a second cuvette 2/3 full with your last (8.00 ml stock) solution. Check each cuvette for air bubbles. If you see air bubbles clinging to the walls of a cuvette, tap the cuvette gently to get the bubbles to rise to the top of the solution and escape. Use a Kim-wipe to wipe off the outside of the cuvettes. 3. Follow steps a e below to determine the absorbance for each wavelength. a) Place the water cuvette in the holder with the clear sides aligned with the arrow. (This arrow shows the direction in which light is aimed.) b) Select the first wavelength to test (400 nm) using the up/down nm buttons. (They scroll quickly if you hold the button down.) c) Press the 0 Abs/100 % T button to calibrate the instrument for that wavelength. d) Remove the cuvette with water and replace it with the cuvette of solution. DO NOT press any buttons!!! e) Read the absorbance on the display for your solution. If it reads a small negative number, record a value of 0 for that reading. 4. Repeat steps a e for water and the first solution cuvettes at a wavelength of 500 nm. Record the absorbance values in the table under Part II on the Report sheet. Also repeat steps a-e to obtain absorbance readings at wavelengths of 600, 700, 800, and 900 nm. 5. Examine your absorbance readings to find the maximum value for the 100-nm intervals. Take readings 10, 20, and 30nm above and below the wavelength with the maximum absorbance. For example, if you found 600 nm to be the highest value, repeat steps a e for wavelengths of 610, 620, 630, 590, 580, and 570 nm. 6. Plot Part II - Plot and connect the 12 data points on the graph provided in the lab report sheet. The wavelength that gives the maximum absorbance, λ max (lambda max), is the wavelength you want to use for Part III of this experiment. Note: If the appropriate wavelength is not selected, the sample will not absorb enough light to make an accurate measurement. 7. Have your instructor sign off on your chosen wavelength before you continue to Part III. Part III: Measuring Absorbance Values for the Known and Unknown Solutions 1. Use a cuvette filled 2/3 full with deionized water to calibrate the Spec-20. Select the λ max wavelength found in part II that your instructor signed off on. Wipe the cuvette off with a clean Kim-Wipe, and place the water cuvette in the sample holder. Close the lid, and press the 0 Abs/100% T button to set the absorbance of the water sample to zero. Do NOT press this button again during Part III. 2. Empty the cuvette, and rinse it twice with small amounts of the 1 ml solution made in part I. Fill the cuvette 2/3 full with that solution. Wipe the cuvette off with a Kim-Wipe before GCC CHM 151LL: Intro to Spectroscopy GCC, 2018 page 3 of 11

4 placing it in the sample holder. After closing the lid, read and record the absorbance of that solution. 3. Repeat step 2 for all of the standard solutions you made in Part I (1 ml, 2 ml, 4 ml, 6 ml, and 8 ml). 4. Save the solutions until all data collection and graphing is complete. 5. There are two unknown solutions, A and B. The unknowns contain the same colored metal (copper) solutions as the standards you prepared, but at different concentrations. You will analyze your two undiluted unknowns in the same manner as the standards. The unknowns are in dropper bottles. Add enough unknown solution from the Site A bottle to rinse the cuvette with small amounts and then fill the cuvette 2/3 full. Wipe the cuvette off with a Kim-Wipe before placing it in the sample holder. 6. Without pressing any buttons on the spectrophotometer, place your cuvette with the unknown solution from Site A in the spectrophotometer and record its absorbance reading. 7. Repeat steps 5 and 6 with your unknown solution from Site B. 8. Plot Part III Creating a Beer s Law Plot (see page 1 of this lab report for an example of the correct Beer s Law Plot). Plot your data and results in either Microsoft Excel or Google Charts. Enter exact concentrations of the standard solutions only as the x-axis data and absorbance values as the y-axis data. Be sure to include the origin (0, 0) as a data point (from the calibration of water) for a total of 6 data points. Add a regression line to your data points to find the best fit of a linear equation to your data. See technique Graphing and trendlines. Please refer to the Laboratory Techniques Document on the CHM151LL Course Website for more detailed techniques and images of lab equipment. Clean-Up: Discard all waste in the specified containers in the hood. Rinse everything well with tap water followed by a quick DI water rinse. Clean your benchtop. Put all equipment back exactly where you found it. GCC CHM 151LL: Intro to Spectroscopy GCC, 2018 page 4 of 11

5 Name: Introduction to Spectroscopy Pre-lab assignment Date: Purpose: Summary of procedure: Drawing of apparatus used: Instructor signature: Pre-lab points: GCC CHM 151LL: Intro to Spectroscopy GCC, 2018 page 5 of 11

6 Page Intentionally Left Blank for Double-Sided Printing GCC CHM 151LL: Intro to Spectroscopy GCC, 2018 page 6 of 11

7 Name: Data: Introduction to Spectroscopy Lab Report Data Table 1: Standard Solution Buret Readings Data Table Solution Initial Buret Reading Final Buret Reading 1 ml 2 ml 4 ml 6 ml 8 ml Partners: Concentration of stock solution: Data Table 2: Finding Maximum Absorbance Using 8 ml Solution Data Table Wavelength Absorbance Wavelength Absorbance 400 nm Record the max value here: Instructor Signature: Data Table 3: Absorbance Values for Standard and Unknown Solutions Data Table Solution Absorbance 1 ml 2 ml 4 ml 6 ml 8 ml Site A Site B GCC CHM 151LL: Intro to Spectroscopy GCC, 2018 page 7 of 11

8 Observations: Graph: Plot Part II - Finding the Maximum Absorbance for Copper Solutions (5 points) Calculations for Results Table 1: (volume delivered, dilution concentration) GCC CHM 151LL: Intro to Spectroscopy GCC, 2018 page 8 of 11

9 Graph: Plot Part III - Attach your Graph of the data from part III as either an Excel plot or a Google Charts plot (this is different than the part II data and the part II plot). (7 points) See pg 4, #8 for instructions. Calculations for Results Table 2: (Unknown solutions Site A and Site B concentrations from linear fit equation. The graph from part III data will give you the linear fit equation in the form y=mx + b. Recall y is absorbance and x is concentration) Results: Results Table 1: Standard Solution Concentrations Solution 1 ml 2 ml 4 ml 6 ml 8 ml Volume Delivered Concentration Results Table 2: Site A and Site B Concentrations Solution Site A Concentration Site B GCC CHM 151LL: Intro to Spectroscopy GCC, 2018 page 9 of 11

10 Discussion Questions: 1. Just like the Cu 2+ ion used in today s lab, some other metal ions have a distinctive color when in an aqueous solution. Some examples of ions that give colors in aqueous solution are Cr 3+ and Ni 2+. However, other metallic ions such as Mg 2+ and Ti 4+ are relatively colorless. a. (4 pts) Write the short-hand electron configurations for the following ions: Ni 2+ Cr 3+ Mg 2+ Ti 4+ b. (2 pts) Based on the electron configurations, what is the main difference between the metal ions that are colored and the metal ions that are colorless? 2. (5 pts) You measure a sample of the filtered waste in the Spec-20 at a wavelength of 810 nm and get an absorbance reading of Based on your regression line equation of the standard solutions, calculate the copper concentration of the waste jar. 3. (5 pts) How many milliliters of a stock solution of 60.0 mg/ml NaCl would you have to use to prepare L of a 12.0 mg/ml solution? 4. (2 pts) Discuss two sources of error and how they can be corrected in the future GCC CHM 151LL: Intro to Spectroscopy GCC, 2018 page 10 of 11

11 5. (2 pts) Now that you have completed the experiment please write a revised Purpose statement that more accurately reflects the function of this lab. Conclusion: (5 pts) Summarize the results for determining the concentration of two unknown solutions, Site A and Site B, from a standard curve. Use data to support. Remember to attach your Part III graph from Microsoft Excel or Google Charts. GCC CHM 151LL: Intro to Spectroscopy GCC, 2018 page 11 of 11

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Introduction The goal of this lab is to determine the unknown concentration of two different copper solution samples, taken from fictitious mining sites

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Using a Buret and Volumetric Flask: 2.06 ml of solution 2.47 ml of solution 50.00 ml delivered delivered Volumetric Flask Reading a buret: Burets are

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Using a Buret and Volumetric Flask: 2.06 ml of solution delivered 2.47 ml of solution delivered 50.00 ml Volumetric Flask Reading a buret: Burets are

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Thousands of years ago, copper was abundant enough in quantity that it could be found on the Earth s surface. Prospecting for copper then was relatively

More information

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Many substances absorb light. When light is absorbed, electrons in the ground state are excited to higher energy levels. Colored

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Introduction This experiment illustrates how titration, the process of slowly adding one solution to another until the reaction between the two is complete,

More information

Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer

Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer Purpose To use spectroscopy to prepare a Beer s Law plot of known dilutions of copper(ii) sulfate so that

More information

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs.

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs. Limiting Reagent Introduction The quantities of substances involved in a chemical reaction represented by a balanced equation are often referred to as stoichiometric amounts. Solution stoichiometry is

More information

Experiment 7A ANALYSIS OF BRASS

Experiment 7A ANALYSIS OF BRASS Experiment 7A ANALYSIS OF BRASS FV 10/21/10 MATERIALS: Spectronic 20 spectrophotometers, 2 cuvettes, brass sample, 7 M HNO 3, 0.100 M CuSO 4, 2 M NH 3, two 50 ml beakers, 100 ml beaker, two 25 ml volumetric

More information

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs.

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs. Limiting Reagent Introduction The quantities of substances involved in a chemical reaction represented by a balanced equation are often referred to as stoichiometric amounts. Solution stoichiometry is

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Introduction This experiment illustrates how titration, the process of slowly adding one solution to another until the reaction between the two is complete,

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Introduction This experiment illustrates how titration, the process of slowly adding one solution to another until the reaction between the two is complete,

More information

Atomic Theory: Spectroscopy and Flame Tests

Atomic Theory: Spectroscopy and Flame Tests Atomic Theory: Spectroscopy and Flame Tests Introduction Light energy is also known as electromagnetic (EM) radiation. The light that we observe with our eyes, visible light, is just a small portion of

More information

Part II. Cu(OH)2(s) CuO(s)

Part II. Cu(OH)2(s) CuO(s) The Copper Cycle Introduction In this experiment, you will carry out a series of reactions starting with copper metal. This will give you practice handling chemical reagents and making observations. It

More information

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method Rate law Determination of the Crystal Violet Reaction Using the Isolation Method Introduction A common challenge in chemical kinetics is to determine the rate law for a reaction with multiple reactants.

More information

Experiment 11 Beer s Law

Experiment 11 Beer s Law Experiment 11 Beer s Law OUTCOMES After completing this experiment, the student should be able to: determine the wavelength (color) of maximum absorbance for a solution. examine the relationship between

More information

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II)

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II) : Absorption Spectroscopy of Cobalt(II) OBJECTIVES In successfully completing this lab you will: prepare a stock solution using a volumetric flask; use a UV/Visible spectrometer to measure an absorption

More information

MORE LIGHTS, COLOR, ABSORPTION!

MORE LIGHTS, COLOR, ABSORPTION! Name Partner(s) Section Date MORE LIGHTS, COLOR, ABSORPTION! PRE-LAB QUERIES 1. The terms absorption and transmittance are often used when describing the interaction of light with matter. Explain what

More information

Experiment 11 Beer s Law

Experiment 11 Beer s Law Experiment 11 Beer s Law OUTCOMES After completing this experiment, the student should be able to: determine the wavelength (color) of maximum absorbance for a solution. examine the relationship between

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Chemistry 102 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex

Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex The data for this lab will be taken as a class to get one data set for the entire class. I. Introduction A. The Spectrophotometer

More information

Chemistry 1215 Experiment #11 Spectrophotometric Analysis of an Unknown Brass Sample

Chemistry 1215 Experiment #11 Spectrophotometric Analysis of an Unknown Brass Sample Chemistry 1215 Experiment #11 Spectrophotometric Analysis of an Unknown Brass Sample Objective In this experiment you will use spectrophotometric measurements to determine the copper concentration of a

More information

EXPERIMENT #3 A Beer's Law Study

EXPERIMENT #3 A Beer's Law Study OBJECTVES: EXPERMENT #3 A Beer's Law Study To operate a Spectronic 20 To convert from percent transmission to absorbance units To plot absorbance versus wavelength and find max To plot absorbance versus

More information

Aqueous Chemical Reactions

Aqueous Chemical Reactions Aqueous Chemical Reactions Introduction Many chemical reactions occur in water and therefore they are considered aqueous chemical reactions. The reagents are typically dissolved or diluted in water and

More information

Atomic Theory: Spectroscopy and Flame Tests

Atomic Theory: Spectroscopy and Flame Tests Atomic Theory: Spectroscopy and Flame Tests Introduction Light energy is also known as electromagnetic (EM) radiation. The light that we observe with our eyes, visible light, is just a small portion of

More information

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1 Experiment 13H 08/03/2017 AHRM THE REACTION OF RED FOOD COLOR WITH BLEACH 1 PROBLEM: Determine the rate law for the chemical reaction between FD&C Red Dye #3 and sodium hypochlorite. LEARNING OBJECTIVES:

More information

Chemistry 213. A KINETIC STUDY: REACTION OF CRYSTAL VIOLET WITH NaOH LEARNING OBJECTIVES

Chemistry 213. A KINETIC STUDY: REACTION OF CRYSTAL VIOLET WITH NaOH LEARNING OBJECTIVES Chemistry 213 A KINETIC STUDY: REACTION OF CRYSTAL VIOLET WITH NaOH The objectives of this experiment are to... LEARNING OBJECTIVES study the reaction rate of crystal violet with NaOH using a Spectronic

More information

Experimental Procedure Lab 402

Experimental Procedure Lab 402 Experimental Procedure Lab 402 Overview One set of solutions having known molar concentrations of FeNCS 2+ is prepared for a calibration curve, a plot of absorbance versus concentration. A second set of

More information

Atomic Theory: Spectroscopy and Flame Tests

Atomic Theory: Spectroscopy and Flame Tests Atomic Theory: Spectroscopy and Flame Tests Introduction Light energy is also known as electromagnetic (EM) radiation. The light that we observe with our eyes, visible light, is just a small portion of

More information

Determining the Concentration of a Solution: Beer s Law

Determining the Concentration of a Solution: Beer s Law Determining the Concentration of a Solution: Beer s Law Vernier Spectrometer 1 The primary objective of this experiment is to determine the concentration of an unknown copper (II) sulfate solution. You

More information

REVIEW OF LAB TECHNIQUES

REVIEW OF LAB TECHNIQUES Experiment 1 REVIEW OF LAB TECHNIQUES Prepared by Masanobu M. Yamauchi and Ross S. Nord, Eastern Michigan University PURPOSE To review density calculations, Beer s Law and the use of electronic balances,

More information

Spectrophotometry Materials

Spectrophotometry Materials Spectrophotometry Materials Item per Class per Bench Genesys 10UV Spectrophotometer 6 1 13 ml test tubes box 7 Test tube racks 6 1 1% Albumin solution 25 ml/one flask 2 ml 0.7% Albumin solution (unknown

More information

CH 112 Special Assignment #4 Chemistry to Dye for: Part C

CH 112 Special Assignment #4 Chemistry to Dye for: Part C CH 112 Special Assignment #4 Chemistry to Dye for: Part C PRE-LAB ASSIGNMENT: Make sure that you read this handout and bring the essentials to lab with you. Review Light, energy and color (pp 17-18), Measuring

More information

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM 1 Purpose: To determine the equilibrium constant K c for an equilibrium system using spectrophotometry to measure the concentration of a colored complex ion.

More information

Experiment 13I THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Experiment 13I THE REACTION OF RED FOOD COLOR WITH BLEACH 1 Experiment 13I FV 1/11/16 THE REACTION OF RED FOOD COLOR WITH BLEACH 1 PROBLEM: Determine the rate law for the chemical reaction between FD&C Red Dye #3 and sodium hypochlorite. LEARNING OBJECTIVES: By

More information

Experiment 13. Dilutions and Data Handling in a Spreadsheet rev 1/2013

Experiment 13. Dilutions and Data Handling in a Spreadsheet rev 1/2013 Absorbance Experiment 13 Dilutions and Data Handling in a Spreadsheet rev 1/2013 GOAL: This lab experiment will provide practice in making dilutions using pipets and introduce basic spreadsheet skills

More information

Acid-Base Titration Curves Using a ph Meter

Acid-Base Titration Curves Using a ph Meter Acid-Base Titration Curves Using a ph Meter Introduction: In this experiment you will use a ph sensor to collect volume and ph data as you titrate two acids with sodium hydroxide. You will obtain titration

More information

Introduction to Strong and Weak Acids

Introduction to Strong and Weak Acids Introduction to Strong and Weak Acids Please review the techniques for pipetting a solution, using a buret and performing a titration. There is a link on the 152LL page next to the activity. Introduction:

More information

Experimental Procedure. Lab 406

Experimental Procedure. Lab 406 Experimental Procedure Lab 406 Overview This experiment is to be complete in cooperation with other chemists/chemist groups in the laboratory. In PART A, a standardized solution of hydrochloric acid is

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant LabQuest 10 The equilibrium state of a chemical reaction can be characterized by quantitatively defining its equilibrium constant, Keq. In this experiment, you will determine the value of Keq for the reaction

More information

DETERMINATION OF AN EQUILIBRIUM CONSTANT

DETERMINATION OF AN EQUILIBRIUM CONSTANT DETERMINATION OF AN EQUILIBRIUM CONSTANT In this experiment the equilibrium properties of the reaction between the iron(iii) ion and the thiocyanate ion will be studied. The relevant chemical equation

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Saddleback College Dr. White 1 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Dr. White 11 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To prepare a Beer s

More information

Aqueous Chemical Reactions

Aqueous Chemical Reactions Aqueous Chemical Reactions Introduction Many chemical reactions occur in water and therefore they are considered aqueous chemical reactions. The reagents are typically dissolved or diluted in water and

More information

Chemical Kinetics: Determining Rate Laws for Chemical Reactions

Chemical Kinetics: Determining Rate Laws for Chemical Reactions Chemical Kinetics: Determining Rate Laws for Chemical Reactions v010816 INTRODUCTION It is thought that the birth of chemical kinetics occurred in 1850 when a German chemist, Ludwig Ferdinand Wilhelny,

More information

EXPERIMENT 23. Determination of the Formula of a Complex Ion INTRODUCTION

EXPERIMENT 23. Determination of the Formula of a Complex Ion INTRODUCTION EXPERIMENT 23 Determination of the Formula of a Complex Ion INTRODUCTION Metal ions, especially transition metal ions, possess the ability to form complexes (as shown below) with ions, organic and inorganic

More information

Exp 03 - Reaction Rate

Exp 03 - Reaction Rate GENERAL CHEMISTRY II CAÑADA COLLEGE SUMMER 2018 Exp 03 - Reaction Rate How the speed at which quantities change during a chemical reaction can be measured, predicted and used to understand the mechanism

More information

Experiment #7. Determination of an Equilibrium Constant

Experiment #7. Determination of an Equilibrium Constant Experiment #7. Determination of an Equilibrium Constant Introduction It is frequently assumed that reactions go to completion, that all of the reactants are converted into products. Most chemical reactions

More information

2014 NJIT RET Program. MODULE TOPIC: Two Methods of Determining the Concentration of Soluble Compounds or Analytes..

2014 NJIT RET Program. MODULE TOPIC: Two Methods of Determining the Concentration of Soluble Compounds or Analytes.. NJIT RET Summer program 2014 Lesson Module 2014 NJIT RET Program MODULE TOPIC: Two Methods of Determining the Concentration of Soluble Compounds or Analytes.. LESSON ONE TOPIC: Colorimetric Analysis of

More information

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1 Determining the Concentration of a Solution: Beer s Law Computer 17 The primary objective of this experiment is to determine the concentration of an unknown copper (II) sulfate solution. You will use a

More information

Solubility Product Constants

Solubility Product Constants Solubility Product Constants PURPOSE To measure the solubility product constant (K sp ) of copper (II) iodate, Cu(IO 3 ) 2. GOALS To measure the molar solubility of a sparingly soluble salt in water. To

More information

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Rate Law Determination of Crystal Violet Hydroxylation Revised 5/22/12 RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997

More information

EXPERIMENT 6 INTRODUCTION TO SPECTROSCOPY

EXPERIMENT 6 INTRODUCTION TO SPECTROSCOPY EXPERIMENT 6 INTRODUCTION TO SPECTROSCOPY INTRODUCTION Much of what we know about the structures of atoms and molecules has been learned through experiments in which photons (electromagnetic radiation

More information

Determining the Concentration of a Solution: Beer s Law

Determining the Concentration of a Solution: Beer s Law Determining the Concentration of a Solution: Beer s Law The primary objective of this experiment is to determine the concentration of an unknown cobalt (II) chloride solution. You will use a Vernier SpectroVis

More information

CHEM Lab 7: Determination of an Equilibrium Constant using Spectroscopy

CHEM Lab 7: Determination of an Equilibrium Constant using Spectroscopy CHEM 0012 Lab 7: Determination of an Equilibrium Constant using Spectroscopy 1 Determination of the equilibrium constant of the following equilibrium system at room temperature. Fe 3+ (aq) + SCN- (aq)

More information

Aqueous Chemical Reactions

Aqueous Chemical Reactions Aqueous Chemical Reactions Introduction Many chemical reactions occur in water and therefore they are considered aqueous chemical reactions. The reagents are typically dissolved or diluted in water and

More information

Experimental Procedure Overview

Experimental Procedure Overview Lab 4: Determination of an Equilibrium Constant using Spectroscopy Determination of the equilibrium constant of the following equilibrium system at room temperature. Fe 3+ (aq) + SCN (aq) Fe(SCN) 2+ (aq)

More information

Chemical Kinetics: Integrated Rate Laws. ** updated Procedure for Spec 200 use **

Chemical Kinetics: Integrated Rate Laws. ** updated Procedure for Spec 200 use ** Chemical Kinetics: Integrated Rate Laws ** updated Procedure for Spec 200 use ** *DISCLAIMER: It is highly recommended that students bring in their own computers to lab this week to use excel. There may

More information

MEASUREMENT: PART II

MEASUREMENT: PART II 1 MEASUREMENT: PART II Copyright: Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, 2013. INTRODUCTION Read and/or review Section 1.7 and Figure 7.5 in your textbook. The first part

More information

Spectrophotometric Determination of an Equilibrium Constant

Spectrophotometric Determination of an Equilibrium Constant Spectrophotometric Determination of an Equilibrium Constant v021214 Objective To determine the equilibrium constant (K c ) for the reaction of iron (III) ion with thiocyanate (SCN - ) to form the thiocyanatoiron(iii)

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Lab12 Chemical Equilibrium: Finding a Constant, Kc The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq) FeSCN

More information

PREPARATION FOR CHEMISTRY LAB: FLUORIDE IN WATER

PREPARATION FOR CHEMISTRY LAB: FLUORIDE IN WATER 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: FLUORIDE IN WATER On these problems, the solvent is water and the solution is sufficiently dilute so that the density of the solution is the same

More information

For simplicity, we ll represent BTB s ionization in a solution by the equilibrium: HBTB = H + + BTB -

For simplicity, we ll represent BTB s ionization in a solution by the equilibrium: HBTB = H + + BTB - Chemistry 160 Please have the following pages ready before class on Wednesday, April 11. An abstract (see the end of this handout) is needed for this write-up. The abstract and photocopied pages of the

More information

REVIEW OF LAB TECHNIQUES

REVIEW OF LAB TECHNIQUES Experiment 1 REVIEW OF LAB TECHNIQUES Prepared by Masanobu M. Yamauchi and Ross S. Nord, Eastern Michigan University PURPOSE To review density calculations, Beer s Law and the use of electronic balances,

More information

Determination of Orthophosphate Ion

Determination of Orthophosphate Ion Determination of Orthophosphate Ion Introduction Phosphorous, in the form of phosphate, is one of several important elements in the growth of plants. Excessive algae growth in water is stimulated by the

More information

Introduction to Strong and Weak Acids

Introduction to Strong and Weak Acids Introduction to Strong and Weak Acids Please review the techniques for pipetting a solution, using a buret and performing a titration. There is a link on the 152LL page next to the activity. Introduction:

More information

Colorimetric analysis of aspirin content in a commercial tablet

Colorimetric analysis of aspirin content in a commercial tablet Colorimetric analysis of aspirin content in a commercial tablet v010214 Objective In this lab, you will prepare standard solutions, and use Beer s Law to construct a calibration curve. You will determine

More information

Introduction to Chemistry Techniques Prelab (Week 1) 2. Determine the number of significant figures in each of the following numbers.

Introduction to Chemistry Techniques Prelab (Week 1) 2. Determine the number of significant figures in each of the following numbers. Introduction to Chemistry Techniques Prelab (Week 1) Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Determine the number of significant figures in each of

More information

Experiment 8 Introduction to Volumetric Techniques I. Objectives

Experiment 8 Introduction to Volumetric Techniques I. Objectives Experiment 8 Introduction to Volumetric Techniques I Objectives 1. To learn the proper technique to use a volumetric pipette. 2. To learn the proper technique to use a volumetric flask. 3. To prepare a

More information

PRELIMINARY ACTIVITY FOR

PRELIMINARY ACTIVITY FOR PRELIMINARY ACTIVITY FOR Beer s Law Investigations Guided Inquiry Version Experiment 11 The primary objective of this Preliminary Activity is to determine the concentration of an unknown copper (II) sulfate

More information

Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT

Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT INTRODUCTION The principle underlying a spectrophotometric method of analysis involves the interaction of electromagnetic radiation

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Part A. Preparation of Vitamin C Tablet Solutions 1. Obtain two vitamin C tablets. Place a plastic weighing boat on the balance, and press zero to tare the

More information

Determining the Concentration of a Solution: Beer s Law

Determining the Concentration of a Solution: Beer s Law Determining the Concentration of a Solution: Beer s Law LabQuest 11 The primary objective of this experiment is to determine the concentration of an unknown nickel (II) sulfate solution. You will be using

More information

Kinetics of Crystal Violet Bleaching

Kinetics of Crystal Violet Bleaching Kinetics of Crystal Violet Bleaching Authors: V. C. Dew and J. M. McCormick* From Update March 12, 2013 with revisions Nov. 29, 2016 Introduction Chemists are always interested in whether a chemical reaction

More information

CHEM 334 Quantitative Analysis Laboratory

CHEM 334 Quantitative Analysis Laboratory The Methods of Calibration Curve and Standard Addition Introduction One of the principle activities in the Quantitative Analysis Laboratory is the measurement of the concentration or total quantity of

More information

Determination of an Equilibrium Constant

Determination of an Equilibrium Constant 7 Determination of an Equilibrium Constant Introduction When chemical substances react, the reaction typically does not go to completion. Rather, the system goes to some intermediate state in which the

More information

CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry

CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry Introduction In this lab you will experimentally determine the equilibrium constant with respect

More information

CHEMICAL KINETICS E + 2B 2C + D (1)

CHEMICAL KINETICS E + 2B 2C + D (1) CHEMICAL KINETICS Chemical kinetics is the branch of chemistry that is concerned with the study of the rates and mechanisms of chemical reactions. The rate of a reaction is a measure of its speed. Consider

More information

aa + bb cc + dd Equation 1

aa + bb cc + dd Equation 1 Experiment: The Determination of K eq for FeSCN 2+ Introduction For any reversible chemical reaction at equilibrium, the concentrations of all reactants and products are constant or stable. There is no

More information

Acid-Base Titration Curves Using a ph Meter

Acid-Base Titration Curves Using a ph Meter Acid-Base Titration Curves Using a ph Meter Introduction: In this experiment you will use a ph sensor to collect volume and ph data as you titrate two acids with sodium hydroxide. You will obtain titration

More information

VISIBLE SPECTROSCOPY

VISIBLE SPECTROSCOPY INTRODUCTION SPECTROPHOTOMETRY OF Co 2+ (Revised: 1-24-93) In this experiment, the Beer-Lambert Law, A = åcl, will be applied to a series of aqueous solutions of CoCl 2. The pink color of the solutions

More information

THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT

THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT Experiment 7B THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT Prepared by Ross S. Nord, Chemistry Department, Eastern Michigan University PURPOSE To investigate the relationship between the equilibrium

More information

Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16

Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16 Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16 I. Introduction Equilibrium Consider the following situation: It is rush hour

More information

Spectrum 22ED Spectrophotometer #FOT Absorbency 0A to 1.99A Photometric accuracy 2.0% T Power requirement 115/230 VAC; Hz automatic Size

Spectrum 22ED Spectrophotometer #FOT Absorbency 0A to 1.99A Photometric accuracy 2.0% T Power requirement 115/230 VAC; Hz automatic Size 2015 - v 8/16 Spectrum 22ED Spectrophotometer #FOT 10705 Introduction: Thank you for your purchase of the Spectrum 22ED spectrophotometer. The Spectrum 22ED is a single beam spectrophotometer and is designed

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Calculator 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

AP Chemistry Laboratory #15: Reaction Rate of Crystal Violet and Sodium Hydroxide. Lab days: Thursday and Friday, February 1-2, 2018

AP Chemistry Laboratory #15: Reaction Rate of Crystal Violet and Sodium Hydroxide. Lab days: Thursday and Friday, February 1-2, 2018 AP Chemistry Laboratory #15: Reaction Rate of Crystal Violet and Sodium Hydroxide Lab days: Thursday and Friday, February 1-2, 2018 Lab due: TBD Goal (list in your lab book): The goal of this lab is to

More information

Lab Investigation 4 - How could you make more of this dye?

Lab Investigation 4 - How could you make more of this dye? Lab Investigation 4 - How could you make more of this dye? USING SPECTROSCOPY TO DETERMINE SOLUTION CON- CENTRATION Guiding Question How could you make more of this dye? INTRODUCTION A solution is a homogeneous

More information

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Abstract: This lab was performed to synthesize acetyl salicylic acid or aspirin from a carboxylic acid and an alcohol. We had learned in class

More information

Experiment 10 Dye Concentration Using a UV-Vis Spectrophotometer

Experiment 10 Dye Concentration Using a UV-Vis Spectrophotometer Experiment 10 Dye Concentration Using a UV-Vis Spectrophotometer version 2 Lynta Thomas, Ph.D. and Laura B. Sessions, Ph.D. In this experiment, you will determine the concentration of Allura Red Dye (FD&C

More information

Beer s Law 29 January 2019

Beer s Law 29 January 2019 Beer s Law 29 January 2019 I like blue. Today we are going to learn a lot! about beer??? Objectives: To learn more about the visible spectrum of a colored solution and how concentration and color intensity

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Experiment 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq)

More information

Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT

Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT Purpose: The equilibrium constant for the formation of iron(iii) thiocyanate complex ion is to be determined. Introduction: In the previous week,

More information

Rate Law Determination of the Crystal Violet Reaction. Evaluation copy

Rate Law Determination of the Crystal Violet Reaction. Evaluation copy Rate Law Determination of the Crystal Violet Reaction Computer 30 In this experiment, you will observe the reaction between crystal violet and sodium hydroxide. One objective is to study the relationship

More information

# 12 ph-titration of Strong Acids with Strong Bases

# 12 ph-titration of Strong Acids with Strong Bases # 12 ph-titration of Strong Acids with Strong Bases Purpose: A strong acid solution is titrated with a strong base solution. A titration curve is then used to determine the endpoint and find the concentration

More information

Investigating Food Dyes in Sports Beverages. Sample

Investigating Food Dyes in Sports Beverages. Sample Investigating Food Dyes in Sports Beverages Investigation 1 There are many different brands of beverages that fall under the general category of sports drinks. Most of these beverages contain an FD&C food

More information

CHM112 Lab Determination of an Equilibrium Constant Grading Rubric

CHM112 Lab Determination of an Equilibrium Constant Grading Rubric Name Team Name CHM112 Lab Determination of an Equilibrium Constant Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial concentrations

More information

Determination of an Equilibrium Constant

Determination of an Equilibrium Constant Last updated 1/29/2014 - GES Learning Objectives Students will be able to: Determine the numerical value of an equilibrium constant from measured concentrations of all reaction species. Use an absorption

More information

The Synthesis and Analysis of Aspirin

The Synthesis and Analysis of Aspirin The Synthesis and Analysis of Aspirin Computer 22 Aspirin, the ubiquitous pain reliever, goes by the chemical name acetylsalicylic acid. One of the compounds used in the synthesis of aspirin is salicylic

More information

Determination of the Rate of a Reaction, Its Order, and Its Activation Energy

Determination of the Rate of a Reaction, Its Order, and Its Activation Energy Determination of the Rate of a Reaction, Its Order, and Its Activation Energy Reaction kinetics is defined as the study of the rates of chemical reactions and their mechanisms. Reaction rate is simply

More information

Determination of Orthophosphate Ion

Determination of Orthophosphate Ion Determination of Orthophosphate Ion Introduction Phosphorous, in the form of phosphate, is one of several important elements in the growth of plants. Excessive algae growth in water is stimulated by the

More information