Basic Concepts in Reactor Design

Size: px
Start display at page:

Download "Basic Concepts in Reactor Design"

Transcription

1 Basic Concepts in Reactor Design Lecture # 01 KBK (ChE) Ch. 8 1 / 32

2 Introduction Objectives Learning Objectives 1 Different types of reactors 2 Fundamental concepts used in reactor design 3 Design equations of different types of reactors 4 Design of network of reactors KBK (ChE) Ch. 8 2 / 32

3 Introduction Reactor types Types of Reactors - Tank Reactors Tank reactors batch semibatch continuous Tubular reactors plug-flow packed-bed KBK (ChE) Ch. 8 3 / 32

4 Introduction Reactor types Batch reactors KBK (ChE) Ch. 8 4 / 32

5 Introduction Reactor types Continuous stirred tank reactor (CSTR) KBK (ChE) Ch. 8 5 / 32

6 Introduction Reactor types Cascade of CSTR KBK (ChE) Ch. 8 6 / 32

7 Introduction Reactor types Tubular reactors KBK (ChE) Ch. 8 7 / 32

8 Introduction Reactor types Semibatch reactors KBK (ChE) Ch. 8 8 / 32

9 Introduction Fundamental concepts used in reactor design A quote from the book... The bread-and-butter tools of the practicing chemical engineer are the material balance and the energy balance. In many respects, chemical reactor design can be regarded as a straightforward application of these fundamental principles... KBK (ChE) Ch. 8 9 / 32

10 Introduction Fundamental concepts used in reactor design Material Balance A material balance on a reactant species of interest for an element of volume V can be written as: A shorter form: input = output + disappearance by reaction + accumulation KBK (ChE) Ch / 32

11 Introduction Fundamental concepts used in reactor design Special forms of the equation Batch reactor: flow terms are omitted Continuous reactor -steady state operation: accumulation is omitted Continuous reactor -unsteady state operation and semibatch reactor: all four terms are retained tubular flow reactor: the equation takes a differential form (Why?) KBK (ChE) Ch / 32

12 Introduction Fundamental concepts used in reactor design Energy balance The rate of reaction is temperature dependent. If the temperature is not constant energy balance is necessary. Energy balance for an element of volume V over a time increment t is: KBK (ChE) Ch / 32

13 Introduction Some terms associated with reactor design Space time τ = V R V V R : reactor volume; V: volumetric flow A reference condition, usually the inlet condition, is selected to measure the volumetric flow rate. Reference condition is emphasized by the use of the subscript zero: τ = V R V 0 KBK (ChE) Ch / 32

14 Introduction Some terms associated with reactor design Space time vs average residence time The two quantities are equal only if all of the following conditions are met: 1 Pressure and temperature are constant throughout the reactor 2 The density of the reaction mixture is independent of the extent of reaction 3 The reference volumetric flow rate is evaluated at reactor inlet conditions KBK (ChE) Ch / 32

15 Introduction Some terms associated with reactor design Space Velocity Space time: S = 1 τ = V 0 V R When heterogeneous catalyst is involved WHSV or VHSV is used: WHSV = ρv 0 W VHSV = V 0 W KBK (ChE) Ch / 32

16 Batch reactor Mole balance KBK (ChE) Ch / 32

17 Tubular reactor Assumptions- PFR 1 no longitudinal mixing of fluid elements as they move through the reactor 2 all fluid elements take the same length of time to move from the reactor inlet to the outlet 3 plugs of material move as units through the reactor, and this assumption is conveniently expressed in terms of a requirement that the velocity profile be flat as one traverses the tube diameter 4 Each plug of fluid is assumed to be uniform in temperature, composition, and pressure - radial mixing is infinitely rapid 5 there may well be variations in composition, temperature, pressure, and fluid velocity as one moves in the longitudinal direction KBK (ChE) Ch / 32

18 Tubular reactor Mole balance KBK (ChE) Ch / 32

19 Tubular reactor Algebraic form and graphical determination V faout R = F A0 f Ain df A ( r A ) This is known as a Levelspiel plot KBK (ChE) Ch / 32

20 Tubular reactor Residence time in plug flow reactor t = VR 0 dv R V KBK (ChE) Ch / 32

21 Tubular reactor Combinations of tubular reactors Series of PFRs in a Levelspiel plot - How would they look?? KBK (ChE) Ch / 32

22 Tubular reactor DIY Equation for a packed bed reactor?? KBK (ChE) Ch / 32

23 CSTR Basic assumptions... the reactor contents are perfectly mixed so that the properties of the reacting fluid are uniform throughout. The composition and temperature of the effluent are thus identical with those of the reactor contents... KBK (ChE) Ch / 32

24 CSTR Scheme KBK (ChE) Ch / 32

25 CSTR Algebraic form and graphical determination V R = f A,out f A,in F A0 ( r AF ) Levelspiel plot KBK (ChE) Ch / 32

26 CSTR Mean residence time in a CSTR τ = V R V F KBK (ChE) Ch / 32

27 Relative Size relative size requirements KBK (ChE) Ch / 32

28 Cascades of Stirred-Tank Reactors Cascades of Stirred-Tank Reactors KBK (ChE) Ch / 32

29 Cascades of Stirred-Tank Reactors Graphical solution for intermediate concentrations KBK (ChE) Ch / 32

30 Cascades of Stirred-Tank Reactors Graphical solution for best combination KBK (ChE) Ch / 32

31 Cascades of Stirred-Tank Reactors Graphical solution for best combination KBK (ChE) Ch / 32

32 Combination of Reactors Series Combination KBK (ChE) Ch / 32

Chemical Reaction Engineering Lecture 5

Chemical Reaction Engineering Lecture 5 Chemical Reaction Engineering g Lecture 5 The Scope The im of the Course: To learn how to describe a system where a (bio)chemical reaction takes place (further called reactor) Reactors Pharmacokinetics

More information

1. Introductory Material

1. Introductory Material CHEE 321: Chemical Reaction Engineering 1. Introductory Material 1b. The General Mole Balance Equation (GMBE) and Ideal Reactors (Fogler Chapter 1) Recap: Module 1a System with Rxn: use mole balances Input

More information

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS At the end of this week s lecture, students should be able to: Differentiate between the three ideal reactors Develop and apply the

More information

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1 (Refer Slide Time: 00:19) Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay Lecture - 03 Design Equations-1 We are looking at advanced reaction engineering;

More information

Mathematical Modeling Of Chemical Reactors

Mathematical Modeling Of Chemical Reactors 37 Mathematical Modeling Of Chemical Reactors Keywords: Reactors, lug flow, CSTR, Conversion, Selectivity Chemical reactor calculations are based on the elementary conservation laws of matter and energy.

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Type of reactors Dr. Zifei Liu Ideal reactors A reactor is an apparatus in which chemical, biological, and physical processes (reactions) proceed intentionally,

More information

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts Handouts Handout 1: Practical reactor performance deviates from that of ideal reactor s : Packed bed reactor Channeling CSTR & Batch Dead Zones, Bypass PFR deviation from plug flow dispersion Deviation

More information

Chemical Reaction Engineering. Dr. Yahia Alhamed

Chemical Reaction Engineering. Dr. Yahia Alhamed Chemical Reaction Engineering Dr. Yahia Alhamed 1 Kinetics and Reaction Rate What is reaction rate? It is the rate at which a species looses its chemical identity per unit volume. The rate of a reaction

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 32! Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.!! 1! Lecture 32 Thursday

More information

ERT 208 REACTION ENGINEERING

ERT 208 REACTION ENGINEERING ERT 208 REACTION ENGINEERING MOLE BALANCE MISMISURAYA MEOR AHMAD School of bioprocess engineering Unimap Course Outcome No.1: Ability to solve the rate of reaction and their kinetics. objectives DESCRIBE

More information

Non-Ideal Reactors. Definitions * Segregated flow - fluid elements do not mix, have different residence times - Need Residence Time Distribution

Non-Ideal Reactors. Definitions * Segregated flow - fluid elements do not mix, have different residence times - Need Residence Time Distribution Non-Ideal Reactors Deviations from ideal reactor behavior - Tank Reactors: inadequate mixing, stagnant regions, bypassing or short-circuiting Tubular Reactors: mixing in longitudinal direction, incomplete

More information

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model Unit 33. Axial Dispersion Model Overview In the plug flow reactor model, concentration only varies in the axial direction, and the sole causes of that variation are convection and reaction. Unit 33 describes

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Chemical Reaction Engineering Dr. Yahia Alhamed Chemical and Materials Engineering Department College of Engineering King Abdulaziz University General Mole Balance Batch Reactor Mole Balance Constantly

More information

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like) Chemical reactors - chemical transformation of reactants into products Classification: a) according to the type of equipment o batch stirred tanks small-scale production, mostly liquids o continuous stirred

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I)

Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I) Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I) Prof. Gabriele Pannocchia Department of Civil and Industrial Engineering (DICI) University

More information

Chapter 1. Lecture 1

Chapter 1. Lecture 1 Chapter 1 Lecture 1 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. 1 Lecture 1 Introduction

More information

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler)

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) CHE 309: Chemical Reaction Engineering Lecture-2 Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) Module 1: Mole Balances, Conversion & Reactor Sizing Topics to be covered

More information

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, 2013 Closed Book, Web, and Notes Name Honor Code (Sign at the end of exam period) 1) / 5 pts 2) / 5 pts 3) / 5 pts 4) / 5 pts 5) / 5 pts 6) / 5

More information

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data Lecture 4 Mole balance: calculation of membrane reactors and unsteady state in tank reactors. nalysis of rate data Mole alance in terms of Concentration and Molar Flow Rates Working in terms of number

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. #40 Problem solving: Reactor Design Friends, this is our last session

More information

CHAPTER FIVE REACTION ENGINEERING

CHAPTER FIVE REACTION ENGINEERING 1 CHAPTER FIVE REACTION ENGINEERING 5.1. Determination of Kinetic Parameters of the Saponification Reaction in a PFR 5.3. Experimental and Numerical Determination of Kinetic Parameters of the Saponification

More information

A First Course on Kinetics and Reaction Engineering Unit 14. Differential Data Analysis

A First Course on Kinetics and Reaction Engineering Unit 14. Differential Data Analysis Unit 14. Differential Data Analysis Overview The design equations (reactor models) for the perfectly mixed batch reactor and for the PFR are differential equations. This presents a small problem when data

More information

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Module No. #05 Lecture No. #29 Non Isothermal Reactor Operation Let us continue

More information

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz,

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz, Chemical Reaction Engineering - Part 4 - intro to CSTRs Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Continuous Stirred Tank Reactors - CSTRs Here are a couple screenshots from the ReactorLab, Division

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of Concentration and Molar Flow Rates Working in terms of number of moles

More information

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz,

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net More reactors So far we have learned about the three basic types of reactors: Batch, PFR, CSTR.

More information

CHAPTER 4 EXPERIMENTAL METHODS

CHAPTER 4 EXPERIMENTAL METHODS 47 CHAPTER 4 EXPERIMENTAL METHODS 4.1 INTRODUCTION The experimental procedures employed in the present work are oriented towards the evaluation of residence time distribution in a static mixer and the

More information

FLOW REACTORS FOR HOMOGENOUS REACTION: PERFORMANCE EQUATIONS AND APPLICATIONS

FLOW REACTORS FOR HOMOGENOUS REACTION: PERFORMANCE EQUATIONS AND APPLICATIONS FLOW REACTORS FOR HOMOGENOUS REACTION: PERFORMANCE EQUATIONS AND APPLICATIONS At the end of this week s lecture, students should be able to: Develop and apply the performance equation for plug flow reactors.

More information

PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON

PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON Chapter 1 * 1.1 Rate of reactions r A A+B->C Species A, B, and C We are interested in the rate of disappearance of A The rate of reaction, ra, is the number of

More information

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process Development of Dynamic Models Illustrative Example: A Blending Process An unsteady-state mass balance for the blending system: rate of accumulation rate of rate of = of mass in the tank mass in mass out

More information

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process Development of Dynamic Models Illustrative Example: A Blending Process An unsteady-state mass balance for the blending system: rate of accumulation rate of rate of = of mass in the tank mass in mass out

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. 1 Lecture 2 Review of Lecture

More information

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS INTRODUCTION TO CHEMICAL PROCESS SIMULATORS DWSIM Chemical Process Simulator A. Carrero, N. Quirante, J. Javaloyes October 2016 Introduction to Chemical Process Simulators Contents Monday, October 3 rd

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of oncentration and Molar low Rates Working in terms of number of moles

More information

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre Chemical Reaction Engineering Multiple Reactions Dr.-Eng. Zayed Al-Hamamre 1 Content Types of Reactions Selectivity Reaction Yield Parallel Reactions Series Reactions Net Rates of Reaction Complex Reactions

More information

1/r plots: a brief reminder

1/r plots: a brief reminder L10-1 1/r plots: a brief reminder 1/r X target X L10-2 1/r plots: a brief reminder 1/r X target X L10-3 1/r plots: a brief reminder 1/r X target X Special Case: utocatalytic Reactions Let s assume a reaction

More information

A First Course on Kinetics and Reaction Engineering Example 11.5

A First Course on Kinetics and Reaction Engineering Example 11.5 Example 11.5 Problem Purpose This problem illustrates the use of the age function measured using a step change stimulus to test whether a reactor conforms to the assumptions of the ideal PFR model. Then

More information

(Refer Slide Time: 00:10)

(Refer Slide Time: 00:10) Chemical Reaction Engineering 1 (Homogeneous Reactors) Professor R. Krishnaiah Department of Chemical Engineering Indian Institute of Technology Madras Lecture No 10 Design of Batch Reactors Part 1 (Refer

More information

Name. Honor Code: I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code.

Name. Honor Code: I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code. ChE 344 Fall 014 Mid Term Exam II Wednesday, November 19, 014 Open Book Closed Notes (but one 3x5 note card), Closed Computer, Web, Home Problems and In-class Problems Name Honor Code: I have neither given

More information

Chemical Reactions and Chemical Reactors

Chemical Reactions and Chemical Reactors Chemical Reactions and Chemical Reactors George W. Roberts North Carolina State University Department of Chemical and Biomolecular Engineering WILEY John Wiley & Sons, Inc. x Contents 1. Reactions and

More information

A First Course on Kinetics and Reaction Engineering Unit D and 3-D Tubular Reactor Models

A First Course on Kinetics and Reaction Engineering Unit D and 3-D Tubular Reactor Models Unit 34. 2-D and 3-D Tubular Reactor Models Overview Unit 34 describes two- and three-dimensional models for tubular reactors. One limitation of the ideal PFR model is that the temperature and composition

More information

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna.

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna. Chemical Reaction Engineering and Reactor Technology Tapio Salmi Abo Akademi Abo-Turku, Finland Jyri-Pekka Mikkola Umea University, Umea, Sweden Johan Warna Abo Akademi Abo-Turku, Finland CRC Press is

More information

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes ChE 344 Winter 011 Mid Term Exam I + Thursday, February 17, 011 Closed Book, Web, and Notes Name Honor Code (sign at the end of exam) 1) / 5 pts ) / 5 pts 3) / 5 pts 4) / 15 pts 5) / 5 pts 6) / 5 pts 7)

More information

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design Textbook: Elements of Chemical Reaction Engineering, 4 th Edition 1 CHE 404 Chemical Reaction Engineering Chapter 8 Steady-State Nonisothermal Reactor Design Contents 2 PART 1. Steady-State Energy Balance

More information

CEE 370 Environmental Engineering Principles

CEE 370 Environmental Engineering Principles Updated: 29 September 2015 Print version EE 370 Environmental Engineering Principles Lecture #9 Material Balances I Reading: Mihelcic & Zimmerman, hapter 4 Davis & Masten, hapter 4 David Reckhow EE 370

More information

MODELING OF CONTINUOUS OSCILLATORY BAFFLED REACTOR FOR BIODIESEL PRODUCTION FROM JATROPHA OIL ABSTRACT

MODELING OF CONTINUOUS OSCILLATORY BAFFLED REACTOR FOR BIODIESEL PRODUCTION FROM JATROPHA OIL ABSTRACT MODELING OF CONTINUOUS OSCILLATORY BAFFLED REACTOR FOR BIODIESEL PRODUCTION FROM JATROPHA OIL B. K. Highina, I. M. Bugaje & B. Gutti Department of Chemical Engineering University of Maiduguri, Borno State,

More information

Chemical Kinetics and Reaction Engineering

Chemical Kinetics and Reaction Engineering Chemical Kinetics and Reaction Engineering MIDTERM EXAMINATION II Friday, April 9, 2010 The exam is 100 points total and 20% of the course grade. Please read through the questions carefully before giving

More information

CHEMICAL REACTORS - PROBLEMS OF NON IDEAL REACTORS 61-78

CHEMICAL REACTORS - PROBLEMS OF NON IDEAL REACTORS 61-78 011-01 ourse HEMIL RETORS - PROBLEMS OF NON IDEL RETORS 61-78 61.- ccording to several experiments carried out in a continuous stirred tank reactor we suspect that the behavior of the reactor is not ideal.

More information

Thermodynamics revisited

Thermodynamics revisited Thermodynamics revisited How can I do an energy balance for a reactor system? 1 st law of thermodynamics (differential form): de de = = dq dq--dw dw Energy: de = du + de kin + de pot + de other du = Work:

More information

A First Course on Kinetics and Reaction Engineering Unit 30.Thermal Back-Mixing in a PFR

A First Course on Kinetics and Reaction Engineering Unit 30.Thermal Back-Mixing in a PFR Unit 30.Thermal Back-Mixing in a PFR Overview One advantage offered by a CSTR when running an exothermic reaction is that the cool feed gets heated by mixing with the contents of the reactor. As a consequence

More information

ChE 6303 Advanced Process Control

ChE 6303 Advanced Process Control ChE 6303 Advanced Process Control Teacher: Dr. M. A. A. Shoukat Choudhury, Email: shoukat@buet.ac.bd Syllabus: 1. SISO control systems: Review of the concepts of process dynamics and control, process models,

More information

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19 A First Course on Kinetics and Reaction Engineering Class 20 on Unit 19 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going Part III - Chemical Reaction Engineering A. Ideal

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Today s lecture Complex

More information

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press I i Green Chemical Engineering An Introduction to Catalysis, Kinetics, and Chemical Processes S. Suresh and S. Sundaramoorthy CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an

More information

Chemical Reactor flnolysis

Chemical Reactor flnolysis Introduction to Chemical Reactor flnolysis SECOND EDITION R.E. Hayes J.P. Mmbaga ^ ^ T..,«,,.«M.iirti,im.' TECHNISCHE INFORMATIONSBIBLIOTHEK UNWERSITATSBIBLIOTHEK HANNOVER i ii ii 1 J /0\ CRC Press ycf*

More information

MASS TRANSPORT Macroscopic Balances for Multicomponent Systems

MASS TRANSPORT Macroscopic Balances for Multicomponent Systems TRANSPORT PHENOMENA MASS TRANSPORT Macroscopic Balances for Multicomponent Systems Macroscopic Balances for Multicomponent Systems 1. The Macroscopic Mass Balance 2. The Macroscopic Momentum and Angular

More information

Review: Nonideal Flow in a CSTR

Review: Nonideal Flow in a CSTR L3- Review: Nonideal Flow in a CSTR Ideal CSTR: uniform reactant concentration throughout the vessel Real stirred tank Relatively high reactant concentration at the feed entrance Relatively low concentration

More information

Types of Chemical Reactors. Nasir Hussain Production and Operations Engineer PARCO Oil Refinery

Types of Chemical Reactors. Nasir Hussain Production and Operations Engineer PARCO Oil Refinery Types of Chemical Reactors Nasir Hussain Production and Operations Engineer PARCO Oil Refinery Introduction Reactor is the heart of Chemical Process. A vessel designed to contain chemical reactions is

More information

The Material Balance for Chemical Reactors. General Mole Balance. R j. Q 1 c j1. c j0. Conservation of mass. { rate of inflow

The Material Balance for Chemical Reactors. General Mole Balance. R j. Q 1 c j1. c j0. Conservation of mass. { rate of inflow 2 / 153 The Material Balance for Chemical Reactors Copyright c 2018 by Nob Hill Publishing, LLC 1 / 153 General Mole Balance R j V Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component

More information

CHEMICAL ENGINEEERING AND CHEMICAL PROCESS TECHNOLOGY Vol. III - Ideal Models Of Reactors - A. Burghardt

CHEMICAL ENGINEEERING AND CHEMICAL PROCESS TECHNOLOGY Vol. III - Ideal Models Of Reactors - A. Burghardt IDEAL MODELS OF REACTORS A. Institute of Chemical Engineering, Polish Academy of Sciences, Poland Keywords: Thermodynamic state, conversion degree, extent of reaction, classification of chemical reactors,

More information

5. Collection and Analysis of. Rate Data

5. Collection and Analysis of. Rate Data 5. Collection and nalysis of o Objectives Rate Data - Determine the reaction order and specific reaction rate from experimental data obtained from either batch or flow reactors - Describe how to analyze

More information

CHEMICAL REACTION ENGINEERING LAB

CHEMICAL REACTION ENGINEERING LAB CHEMICAL REACTION ENGINEERING LAB EQUIPMENTS 1.CHEMICAL REACTORS SERVICE UNIT The chemical reactors service unit consists of a moulded ABS plinth which is used as a mounting for the chemical reactor to

More information

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60 2011-2012 Course CHEMICL RECTORS - PROBLEMS OF RECTOR SSOCITION 47-60 47.- (exam jan 09) The elementary chemical reaction in liquid phase + B C is carried out in two equal sized CSTR connected in series.

More information

Dr. Trent L. Silbaugh, Instructor Chemical Reaction Engineering Final Exam Study Guide

Dr. Trent L. Silbaugh, Instructor Chemical Reaction Engineering Final Exam Study Guide Chapter 1 Mole balances: Know the definitions of the rate of reaction, rate of disappearance and rate of appearance Know what a rate law is Be able to write a general mole balance and know what each term

More information

IV B.Tech. I Semester Supplementary Examinations, February/March PROCESS MODELING AND SIMULATION (Chemical Engineering)

IV B.Tech. I Semester Supplementary Examinations, February/March PROCESS MODELING AND SIMULATION (Chemical Engineering) www..com www..com Code No: M0824/R07 Set No. 1 IV B.Tech. I Semester Supplementary Examinations, February/March - 2011 PROCESS MODELING AND SIMULATION (Chemical Engineering) Time: 3 Hours Max Marks: 80

More information

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design Textbook: Elements of Chemical Reaction Engineering, 4 th Edition 1 CHE 404 Chemical Reaction Engineering Chapter 8 Steady-State Nonisothermal Reactor Design Contents 2 PART 1. Steady-State Energy Balance

More information

The Material Balance for Chemical Reactors

The Material Balance for Chemical Reactors The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz,

Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz, Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Multiple reactions are usually present So far we have considered reactors in which only

More information

Analysis and Validation of Chemical Reactors performance models developed in a commercial software platform

Analysis and Validation of Chemical Reactors performance models developed in a commercial software platform Analysis and Validation of Chemical Reactors performance models developed in a commercial software platform Faheem Mushtaq Master of Science Thesis KTH School of Industrial Engineering and Management Energy

More information

ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013

ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013 ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013 Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems Name Honor Code (Please sign in the space

More information

CEE 160L Introduction to Environmental Engineering and Science. Lecture 5 and 6 Mass Balances

CEE 160L Introduction to Environmental Engineering and Science. Lecture 5 and 6 Mass Balances CEE 160L Introduction to Environmental Engineering and Science Lecture 5 and 6 Mass Balances Mass Balance (MB) Very important tool Track pollutants in the environment Reactor/treatment design Basis: Law

More information

II Choice of Reactor

II Choice of Reactor II Choice of Reactor Outline 1. 2. 3. 4. 5. 6. 7. 8. Introduction Reaction Path Types of Reaction System Reactor Performance Rate of Reaction Idealized Reactor Models Reactor Configuration Design Guideline

More information

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web ChE 344 Winter 011 Final Exam + Solution Monday, April 5, 011 Open Book, Notes, and Web Name Honor Code (Please sign in the space provided below) I have neither given nor received unauthorized aid on this

More information

Plug flow Steady-state flow. Mixed flow

Plug flow Steady-state flow. Mixed flow 1 IDEAL REACTOR TYPES Batch Plug flow Steady-state flow Mixed flow Ideal Batch Reactor It has neither inflow nor outflow of reactants or products when the reaction is being carried out. Uniform composition

More information

Exercise 1. Material balance HDA plant

Exercise 1. Material balance HDA plant Process Systems Engineering Prof. Davide Manca Politecnico di Milano Exercise 1 Material balance HDA plant Lab assistants: Adriana Savoca LAB1-1 Conceptual design It is a systematic procedure to evaluate

More information

Multiple Reactions. ChE Reactive Process Engineering

Multiple Reactions. ChE Reactive Process Engineering Multiple Reactions We have largely considered single reactions so far in this class How many industrially important processes involve a single reaction? The job of a chemical engineer is therefore to design

More information

A First Course on Kinetics and Reaction Engineering Unit 12. Performing Kinetics Experiments

A First Course on Kinetics and Reaction Engineering Unit 12. Performing Kinetics Experiments Unit 12. Performing Kinetics Experiments Overview Generating a valid rate expression for a reaction requires both a reactor and and an accurate mathematical model for that reactor. Unit 11 introduced the

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Review for Final Exam. 1ChE Reactive Process Engineering

Review for Final Exam. 1ChE Reactive Process Engineering Review for Final Exam 1ChE 400 - Reactive Process Engineering 2ChE 400 - Reactive Process Engineering Stoichiometry Coefficients Numbers Multiple reactions Reaction rate definitions Rate laws, reaction

More information

Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR CH 3 H 2. m-xylene can also undergo hydrodealkylation to form toluene:

Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR CH 3 H 2. m-xylene can also undergo hydrodealkylation to form toluene: Chapter 8 Multiple Reactions W8-1 Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR The production of m-xylene by the hydrodealkylation of mesitylene over a Houdry Detrol

More information

CHEMICAL REACTION ENGINEERING

CHEMICAL REACTION ENGINEERING CHEMICL RECTION ENGINEERING Unit 5 nalysis of reactor DT Collection and analysis of rate data Batch reactor for homogenous and heterogeneous reactions measurement during the unsteady-state operation Differential

More information

Engineering Theory of Leaching

Engineering Theory of Leaching Engineering Theory of Leaching An approach to non-ideal reactors and scale- up of pressure leaching systems Presented by Lynton Gormely, P.Eng., Ph.D. The Problem given lab scale batch results, predict

More information

FDE 211 Material & Energy Balances. Instructor: Dr. Ilgin Paker Yikici Fall 2015

FDE 211 Material & Energy Balances. Instructor: Dr. Ilgin Paker Yikici Fall 2015 FDE 211 Material & Energy Balances Instructor: Dr. Ilgin Paker Yikici Fall 2015 Agenda Process classification General mass balance equation Basic functions of Processes Process Flow Diagram Degree of Freedom

More information

CHE 611 Advanced Chemical Reaction Engineering

CHE 611 Advanced Chemical Reaction Engineering CHE 611 Advanced Chemical Reaction Engineering Dr. Muhammad Rashid Usman Institute of Chemical Engineering and Technology University of the Punjab, Lahore 54590 mrusman.icet@pu.edu.pk 1 Course contents

More information

ChE 344 Winter 2011 Final Exam. Open Book, Notes, and Web

ChE 344 Winter 2011 Final Exam. Open Book, Notes, and Web ChE 344 Winter 2011 Final Exam Monday, April 25, 2011 Open Book, Notes, and Web Name Honor Code (Please sign in the space provided below) I have neither given nor received unauthorized aid on this examination,

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. oday s lecture Gas Phase

More information

CE 329, Fall 2015 Second Mid-Term Exam

CE 329, Fall 2015 Second Mid-Term Exam CE 39, Fall 15 Second Mid-erm Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must first turn

More information

Theoretical Models of Chemical Processes

Theoretical Models of Chemical Processes Theoretical Models of Chemical Processes Dr. M. A. A. Shoukat Choudhury 1 Rationale for Dynamic Models 1. Improve understanding of the process 2. Train Plant operating personnel 3. Develop control strategy

More information

PRINCIPLES OF CHEMICAL REACTOR ANALYSIS AND DESIGN

PRINCIPLES OF CHEMICAL REACTOR ANALYSIS AND DESIGN PRINCIPLES OF CHEMICAL REACTOR ANALYSIS AND DESIGN PRINCIPLES OF CHEMICAL REACTOR ANALYSIS AND DESIGN New Tools for Industrial Chemical Reactor Operations Second Edition UZI MANN Texas Tech University

More information

13 th Aug Chemical Reaction Engineering CH3010. Home work problems

13 th Aug Chemical Reaction Engineering CH3010. Home work problems 13 th ug 18. Chemical Reaction Engineering CH31. Home work problems 1. Batch reactor, variable volume. Consider a gas phase reaction B, conducted isothermally and at constant pressure in a batch reactor.

More information

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10]

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10] Code No: RR320802 Set No. 1 III B.Tech II Semester Supplementary Examinations, November/December 2005 CHEMICAL REACTION ENGINEERING-I (Chemical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE

More information

Prediction of CO Burnout using a CHEMKIN based Network Tool

Prediction of CO Burnout using a CHEMKIN based Network Tool Prediction of CO Burnout using a CHEMKIN based Network Tool Engler-Bunte-Institut / Bereich Verbrennungstechnik Universität Karlsruhe Contents Complex reaction schemes vs. complex transport models. Complex

More information

Differential equations of mass transfer

Differential equations of mass transfer Differential equations of mass transfer Definition: The differential equations of mass transfer are general equations describing mass transfer in all directions and at all conditions. How is the differential

More information

Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor

Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor U. P. L. Wijayarathne, K. C. Wasalathilake Abstract This work presents the modelling

More information

Mole Balances. The first step to knowledge is to know that we are ignorant. Socrates ( B.C.)

Mole Balances. The first step to knowledge is to know that we are ignorant. Socrates ( B.C.) fogler.book Page 1 Thursday, July 21, 2005 11:48 AM Mole Balances 1 The first step to knowledge is to know that we are ignorant. Socrates (470 399 B.C.) How is a chemical engineer different from other

More information

CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION

CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION 11 CHAPTER 2 CONTINUOUS STIRRED TANK REACTOR PROCESS DESCRIPTION 2.1 INTRODUCTION This chapter deals with the process description and analysis of CSTR. The process inputs, states and outputs are identified

More information

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs Unit 22. Analysis of Steady State CSRs Overview Reaction engineering involves constructing an accurate mathematical model of a real world reactor and then using that model to perform an engineering task

More information

Chemical Reaction Engineering. Lecture 7

Chemical Reaction Engineering. Lecture 7 hemical Reaction Engineering Lecture 7 Home problem: nitroaniline synthesis the disappearance rate of orthonitrochlorobenzene [ ] d ONB ra k ONB NH dt Stoichiometric table: [ ][ ] 3 hange Remaining* oncentration**

More information