Mr Chiasson Advanced Chemistry 12 1 Unit C: Chemical Kinetics and Chemical Equilibrium

Size: px
Start display at page:

Download "Mr Chiasson Advanced Chemistry 12 1 Unit C: Chemical Kinetics and Chemical Equilibrium"

Transcription

1 Mr Chiasson Advanced Chemistry 12 1 Unit C: Chemical Kinetics and Chemical Equilibrium Le Châtelier's Principle Think back to our escalator example, with you walking up a downward moving escalator. With the rate of the moving stairs and your walking evenly matched, you appear to be at a standstill. But what happens if the escalator begins moving just a little faster? If you want to maintain the same position you had, at some specific point between the bottom and the top of the stairs, you'll also need to make some adjustments. Chemical systems at equilibrium tend to make these adjustments as well. A French chemist, Henri Louis Le Châtelier, was the first to describe what we now call: Le Châtelier's Principle If an external stress is applied to a system at equilibrium, the system will adjust itself in such a way as to partially offset the stress as the system reaches a new equilibrium position. (Chang, 2007) Equilibrium is all about rates - the rate of the forward reaction is equal to the rate of the reverse reaction. External stresses are factors that will cause the rate of either the forward or reverse reaction to change, throwing the system out of balance. Le Châtelier's Principle allows us to predict how this will affect our system. In our unit on Kinetics we examined factors that influenced reaction rates. Recall these factors: 1. concentration 2. pressure and volume 3. temperature, and 4. catalysts We'll see how changing these factors affects a system at equilibrium. 3.2 Changes in Concentration Consider the following equilibrium system: (aq) + (aq) (aq) (colourless) (red)

2 Mr Chiasson Advanced Chemistry 12 2 If more is added to the reaction, what will happen? According to Le Châtelier's Principle, the system will react to minimize the stress. Since is on the reactant side of this reaction, the rate of the forward reaction will increase in order to "use up" the additional reactant. This will cause the equilibrium to shift to the right, producing more. For this particular reaction we will be able to see that this as happened, as the solution will become a darker red colour. There are a few different ways we can say what happens here when we add more ; these all mean the same thing: equilibrium shifts to the right equilibrium shifts to the product side the forward reaction is favoured How does this cause the concentrations of the reaction participants to change? Since this is what was added to cause the stress, the concentration of will increase. (a shorthand way to indicate this: [ ] ) (Reminder: the square brackets represent "concentration") Equilibrium will shift to the right, which will use up the reactants. The concentration of will decrease (or [ ] ) as the rate of the forward reaction increases. With the forward reaction rate increases, more products are produced, and the concentration of will increase. ([ ] ) How about the value of Keq? Notice that the concentration of some reaction participants have increased, while others have decreased. Once equilibrium has re-established itself, the value of Keq will be unchanged. The value of Keq does not change when changes in concentration cause a shift in equilibrium. What if we add more? Again, equilibrium will shift to use up the added substance. In this case, equilibrium will shift to favour the reverse reaction, since the reverse reaction will use up the additional. equilibrium shifts to the left equilibrium shifts to the reactant side the reverse reaction is favoured

3 Mr Chiasson Advanced Chemistry 12 3 How do the concentrations of reaction participants change? [ ] as the reverse reaction is favoured [ ] as the reverse reaction is favoured [ ] because this is the substance that was added Concentration can also be changed by removing a substance from the reaction. This is often accomplished by adding another substance that reacts (in a side reaction) with something already in the reaction. Let's remove from the system (perhaps by adding some Pb 2+ ions - the lead(ii) ions will form a precipitate with, removing them from the solution). What will happen now? Equilibrium will shift to replace - the reverse reaction will be favoured because that is the direction that produces more. equilibrium shifts to the left equilibrium shifts to the reactant side the reverse reaction is favoured How do the concentrations of reaction participants change? [ ] as the reverse reaction is favoured [ ] as the reverse reaction is favoured (but it also because it was removed) [ ] because this is the substance that was added 3.3 Changes in Volume & Pressure Changing the pressure or volume of a container enclosing an equilibrium system will only affect the reaction if gases are present. You may remember from earlier chemistry classes that equal volumes of gases contain an equal number of particles and, under standard conditions of temperature and pressure (STP), one mole of gas occupies a volume of 22.4 L. This is known as the molar volume of gases. So, two moles of any gas will occupy a volume of 44.8 L and one-half mole would occupy 11.2 L. How does changing pressure and volume affect equilibrium systems? If you increase the pressure of a system at equilibrium (typically by reducing the volume of the container), the stress will best be reduced by reaction favouring the side with the fewest moles of gas, since fewer moles will occupy the smallest volume.

4 Mr Chiasson Advanced Chemistry 12 4 Conversely, if you decrease the pressure (by increasing the volume of the container), equilibrium will shift to favour the side with the most moles of gas, since more moles will occupy a greater volume. If both sides of the equation have the same number of moles of gas, then there will be no change in the position of equilibrium. When considering the effect of changing volume or pressure on equilibrium systems, be sure to only count the number of moles of GASES on each side of the equation. Solids, liquids, and aqueous solutions will not be affected by changing pressure and volume. Here's an example. Predict the effect on equilibrium when the pressure is increased for the following reaction: N 2 O 4 (g ) 2NO 2 (g) The reactant side of the equation has 1 mole of a gas; the product side has 2 moles. Increasing the pressure favours the side with the fewest moles of gas, so the equilibrium will shift to the left (the reverse reaction will be favoured). 3.4 Changes in Temperature When temperature is the stress that affects a system at equilibrium, there are two important consequences: an increase in temperature will favour that reaction direction that absorbs heat (i.e. the endothermic reaction) the value of Keq will change Consider the following equilibrium system N 2 O 4 (g ) 2NO 2 (g) ΔH = kj We see by the sign of ΔH that the forward reaction is endothermic. Heat is absorbed (required as a reactant) when the reaction proceeds as N 2 O 4 (g ) 2NO 2 (g) By adding more heat, equilibrium will shift to use up the additional heat, thus favouring this forward direction. Why will Keq change, when it did not change when concentration, pressure, and volume were the applied stresses? When temperature changes cause an equilibrium to shift, one entire side of the reaction equation is favoured over the other side. Mathematically, this will alter the value of Keq as follows:

5 Mr Chiasson Advanced Chemistry 12 5 Keq = [products] [reactants] if the forward reaction is favoured if the reverse reaction is favoured more products are produced; fewer reactants fewer products; more reactants Keq will increase Keq will decrease So in our example given above, increasing the temperature will favour the forward direction. The value of Keq will increase. Removing heat (making the system colder) will favour the exothermic reaction - the exothermic reaction releases heat to the surroundings, thus "replacing" the heat that has been removed. 3.5 Addition of a Catalyst The addition of a catalyst to an equilibrium system is our final stress factor. How will adding a catalyst affect the following: N 2 (g) + O 2 (g) 2NO (g) Adding a catalyst to this, or any other equilibrium system, will not affect the position of an equilibrium. A catalyst speeds up both the forward and the reverse reactions, so there is no uneven change in reaction rates. Generally, a catalyst will help a reaction to reach the point of equilibrium sooner, but it will not affect the equilibrium otherwise.

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s)

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s) CHEMICAL EQUILIBRIUM AP Chemistry (Notes) Most chemical processes are reversible. Reactants react to form products, but those products can also react to form reactants. Examples of reversible reactions:

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Forward Rxn: A + B C + D Reverse Rxn: A + B C + D Written as: A + B C + D OR A + B C + D A reversible reaction has both an endothermic rxn and an exothermic rxn Reactants Exothermic

More information

1. Describe the changes in reactant and product concentration as equilibrium is approached.

1. Describe the changes in reactant and product concentration as equilibrium is approached. Web Review 1. Describe the changes in reactant and product concentration as equilibrium is approached. 2. Describe the changes in the forward and the reverse rates as equilibrium is approached. 3. State

More information

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease?

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease? CHEMISTRY 12 UNIT II - REVIEW EQUILIBRIA Part I - Multiple Choice 1. In which of the following does the entropy decrease? A. NaCl (s) Na + (aq) + Cl (aq) B. 4 NO (g) + 6 H 2 O (g) 4 NH 3 (g) + 5 O 2 (g)

More information

Worksheet 21 - Le Chatelier's Principle

Worksheet 21 - Le Chatelier's Principle Worksheet 21 - Le Chatelier's Principle Le Chatelier's Principle states that if a stress is applied to a system at equilibrium, the system will adjust, to partially offset the stress and will reach a new

More information

Henry Le Chatelier ( ) was a chemist and a mining engineer who spent his time studying flames to prevent mine explosions.

Henry Le Chatelier ( ) was a chemist and a mining engineer who spent his time studying flames to prevent mine explosions. Henry Le Chatelier (1850-1936) was a chemist and a mining engineer who spent his time studying flames to prevent mine explosions. He proposed a Law of Mobile equilibrium or Le Chatelier s principle The

More information

Q.1 Write out equations for the reactions between...

Q.1 Write out equations for the reactions between... 1 CHEMICAL EQUILIBRIUM Dynamic Equilibrium not all reactions proceed to completion some end up with a mixture of reactants and products this is because some reactions are reversible; products revert to

More information

Chemical Equilibrium. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chemical Equilibrium. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Equilibrium Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Equilibrium is a state in which there are no observable changes as time goes by. Chemical

More information

Energy Diagram Endothermic Reaction Draw the energy diagram for exothermic and endothermic reactions. Label each part.

Energy Diagram Endothermic Reaction Draw the energy diagram for exothermic and endothermic reactions. Label each part. CP Chapter 18 Notes A Model for Reaction Rates Expressing Reaction Rates Average Rate = Δquantity Δtime The amount of increase or decrease depends on their mole ratios Units = or mol/ls Expressing Reaction

More information

Chemical Changes. Lavoisier and the Conservation of Mass

Chemical Changes. Lavoisier and the Conservation of Mass 1 Chemical Changes Lavoisier and the Conservation of Mass Chemical reactions are taking place all around you and even within you. A chemical reaction is a change in which one or more substances are converted

More information

CHEMICAL EQUILIBRIUM. I. Multiple Choice 15 marks. 1. Reactions that can proceed in both the forward and reverse directions are said to be:

CHEMICAL EQUILIBRIUM. I. Multiple Choice 15 marks. 1. Reactions that can proceed in both the forward and reverse directions are said to be: Name: Unit Test CHEMICAL EQUILIBRIUM Date: _ 50 marks total I. Multiple Choice 15 marks 1. Reactions that can proceed in both the forward and reverse directions are said to be: A. complete B. reversible

More information

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion

Energy Changes, Reaction Rates and Equilibrium. Thermodynamics: study of energy, work and heat. Kinetic energy: energy of motion Energy Changes, Reaction Rates and Equilibrium Thermodynamics: study of energy, work and heat Kinetic energy: energy of motion Potential energy: energy of position, stored energy Chemical reactions involve

More information

Dynamic Equilibrium. going back and forth at the same rate

Dynamic Equilibrium. going back and forth at the same rate Dynamic Equilibrium going back and forth at the same time at the same rate LeChatelier s Principle If a system at equilibrium is disturbed it will respond in the direction that counteracts the disturbance

More information

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure Section 2 Main Ideas Equilibrium shifts to relieve stress on the system. Some ionic reactions seem to go to completion. Common ions often produce precipitates. > Virginia standards CH.3.f The student will

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Chemical Equilibrium The Concept of Equilibrium (15.1) Ways of Expressing Equilibrium Constants (15.2) What Does the Equilibrium Constant Tell Us? (15.3) Factors that Affect Chemical

More information

Chapter 17. Equilibrium

Chapter 17. Equilibrium Chapter 17 Equilibrium How Chemical Reactions Occur Chemists believe molecules react by colliding with each other. If a collision is violent enough to break bonds, new bonds can form. Consider the following

More information

Equilibrium. Reversible Reactions. Chemical Equilibrium

Equilibrium. Reversible Reactions. Chemical Equilibrium Equilibrium Reversible Reactions Chemical Equilibrium Equilibrium Constant Reaction Quotient Le Chatelier s Principle Reversible Reactions In most chemical reactions, the chemical reaction can be reversed,

More information

REACTION EQUILIBRIUM

REACTION EQUILIBRIUM REACTION EQUILIBRIUM A. REVERSIBLE REACTIONS 1. In most spontaneous reactions the formation of products is greatly favoured over the reactants and the reaction proceeds to completion (one direction). In

More information

Chemistry 12. Tutorial 5 The Equilibrium Constant (K ) eq

Chemistry 12. Tutorial 5 The Equilibrium Constant (K ) eq Chemistry 12 Tutorial 5 The Equilibrium Constant (K ) eq In this Tutorial you will be shown: 1. What is meant by the equilibrium constant K eq. 2. How to write the expression for K eq given a balanced

More information

Chemical Equilibrium. Chapter 8

Chemical Equilibrium. Chapter 8 Chemical Equilibrium Chapter 8 Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are

More information

b t u t sta t y con o s n ta t nt

b t u t sta t y con o s n ta t nt Reversible Reactions & Equilibrium Reversible Reactions Reactions are spontaneous if G G is negative. 2H 2 (g) + O 2 (g) 2H 2 O(g) + energy If G G is positive the reaction happens in the opposite direction.

More information

UNIT 9: KINETICS & EQUILIBRIUM. Essential Question: What mechanisms affect the rates of reactions and equilibrium?

UNIT 9: KINETICS & EQUILIBRIUM. Essential Question: What mechanisms affect the rates of reactions and equilibrium? UNIT 9: KINETICS & EQUILIBRIUM Essential Question: What mechanisms affect the rates of reactions and equilibrium? What is Kinetics? Kinetics is the branch of chemistry that explains the rates of chemical

More information

CHAPTER 3: CHEMICAL EQUILIBRIUM

CHAPTER 3: CHEMICAL EQUILIBRIUM CHAPTER 3: CHEMICAL EQUILIBRIUM 1 LESSON OUTCOME Write & explain the concepts of chemical equilibrium Derive the equilibrium constant Kc or Kp Solving the problem using the ICE table 2 Equilibrium is a

More information

CHEMICAL EQUILIBRIUM. Chapter 15

CHEMICAL EQUILIBRIUM. Chapter 15 Chapter 15 P a g e 1 CHEMICAL EQUILIBRIUM Examples of Dynamic Equilibrium Vapor above a liquid is in equilibrium with the liquid phase. rate of evaporation = rate of condensation Saturated solutions rate

More information

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions UNIT 16: Chemical Equilibrium collision theory activation energy activated complex reaction rate reversible reaction chemical equilibrium law of chemical equilibrium equilibrium constant homogeneous equilibrium

More information

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion

Reaction Rate. Products form rapidly. Products form over a long period of time. Precipitation reaction or explosion Reaction Rate Products form rapidly Precipitation reaction or explosion Products form over a long period of time Corrosion or decay of organic material Chemical Kinetics Study of the rate at which a reaction

More information

Le Chatelier's principle

Le Chatelier's principle Le Chatelier's principle Any factor that can affect the rate of either the forward or reverse reaction relative to the other can potentially affect the equilibrium position. The following factors can change

More information

Chemistry 12 Review Sheet on Unit 2 Chemical Equilibrium

Chemistry 12 Review Sheet on Unit 2 Chemical Equilibrium 1. What two things are equal at equilibrium? Chemistry 12 Review Sheet on Unit 2 Chemical Equilibrium and 2. Consider the following potential energy diagram: a) Which reaction, forward or reverse, will

More information

Review Sheet 6 Math and Chemistry

Review Sheet 6 Math and Chemistry Review Sheet 6 Math and Chemistry The following are some points of interest in Math and Chemistry. Use this sheet when answering these questions. Molecular Mass- to find the molecular mass, you must add

More information

Unit 13: Rates and Equilibrium- Guided Notes

Unit 13: Rates and Equilibrium- Guided Notes Name: Period: What is a Chemical Reaction and how do they occur? Unit 13: Rates and Equilibrium- Guided Notes A chemical reaction is a process that involves of atoms Law of Conservation of : Mass is neither

More information

N H 2 2 NH 3 and 2 NH 3 N H 2

N H 2 2 NH 3 and 2 NH 3 N H 2 Chemical Equilibrium Notes (Chapter 18) So far, we ve talked about all chemical reactions as if they go only in one direction. However, as with many things in life, chemical reactions can go both in the

More information

When a person is stressed, their body will work in some way to alleviate the imposed stress.

When a person is stressed, their body will work in some way to alleviate the imposed stress. Chemistry 12 Equilibrium II Name: Date: Block: 1. Le Châtelier s Principle 2. Equilibrium Graphs Le Châtelier s Principle http://en.wikipedia.org/wiki/henry_louis_le_chatelier When a person is, their body

More information

7.4 Potential Energy Diagrams

7.4 Potential Energy Diagrams Name: Date: Chemistry ~ Ms. Hart Class: Anions or Cations Remember: 7.4 Potential Energy Diagrams Chemical reactions can react in both the and directions All chemical reactions need Reactions can either

More information

Sect 7.1 Chemical Systems in Balance HMWK: Read pages

Sect 7.1 Chemical Systems in Balance HMWK: Read pages SCH 4UI Unit 4 Chemical Systems and Equilibrium Chapter 7 Chemical Equilibrium Sect 7.1 Chemical Systems in Balance HMWK: Read pages 420-424 *Some reactions are reversible, ie not all reactions are as

More information

Dynamic Equilibrium, Keq, and the Mass Action Expression

Dynamic Equilibrium, Keq, and the Mass Action Expression Dynamic Equilibrium, Keq, and the Mass Action Expression The Equilibrium Process Dr. Fred Omega Garces Chemistry, Miramar College 1 Equilibrium January 10 (Dynamic) Equilibrium Chemical Equilibrium is

More information

1301 Dynamic Equilibrium, Keq,

1301 Dynamic Equilibrium, Keq, 1301 Dynamic Equilibrium, Keq, and the Mass Action Expression The Equilibrium Process Dr. Fred Omega Garces Chemistry 111 Miramar College 1 Equilibrium Concept of Equilibrium & Mass Action Expression Extent

More information

1B Equilibrium. 3) Equilibrium is a dynamic state At equilibrium the rate in both directions must be the same.

1B Equilibrium. 3) Equilibrium is a dynamic state At equilibrium the rate in both directions must be the same. 1B Equilibrium The equilibrium constant, K c Characteristics of the equilibrium state 1) Equilibrium can only be established in a closed system. Matter cannot be exchanged with the surroundings (this will

More information

15.1 The Concept of Equilibrium

15.1 The Concept of Equilibrium Lecture Presentation Chapter 15 Chemical Yonsei University 15.1 The Concept of N 2 O 4 (g) 2NO 2 (g) 2 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Concept of Equilibrium Equilibrium Constant Equilibrium expressions Applications of equilibrium constants Le Chatelier s Principle The Concept of Equilibrium The decomposition of N

More information

A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa.

A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa. Chemistry 12 Unit II Dynamic Equilibrium Notes II.1 The Concept of Dynamic Equilibrium A reversible reaction is a chemical reaction where products can react to form the reactants and vice versa. A reversible

More information

Experiment #14 Virtual Chemistry Laboratory (Chemical Equilibrium) Le-Chatelier s principle

Experiment #14 Virtual Chemistry Laboratory (Chemical Equilibrium) Le-Chatelier s principle Experiment #14 Virtual Chemistry Laboratory (Chemical Equilibrium) Le-Chatelier s principle I. PURPOSE OF THE EXPERIMENT (i) To understand the basic concepts of chemical equilibrium (ii) To determine the

More information

Assessment Schedule 2017 Chemistry: Demonstrate understanding of chemical reactivity (91166)

Assessment Schedule 2017 Chemistry: Demonstrate understanding of chemical reactivity (91166) NCEA Level 2 Chemistry (91166) 2017 page 1 of 6 Assessment Schedule 2017 Chemistry: Demonstrate understanding of chemical reactivity (91166) Evidence Statement Q Evidence Achievement Merit Excellence ONE

More information

Kinetics & Equilibrium

Kinetics & Equilibrium Kinetics & Equilibrium Name: Essential Questions How can one explain the structure, properties, and interactions of matter? Learning Objectives Explain Collision Theory Molecules must collide in order

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Chapter 15 Chemical Chemical 15.1 The Concept of 15.2 The Constant (K) 15.3 Understanding and Working with Constants 15.4 Heterogeneous Equilibria 15.5 Calculating Constants 15.6 Applications of Constants

More information

Taking another look at Enthalpy vs. Entropy

Taking another look at Enthalpy vs. Entropy Taking another look at Enthalpy vs. Entropy 1) Tell whether each of the following chemical reactions is endothermic or exothermic and state whether the reactants or the products are favoured by minimum

More information

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium Chemical Equilibrium by Professor Bice Martincigh Equilibrium involves reversible reactions Some reactions appear to go only in one direction are said to go to completion. indicated by All reactions are

More information

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction.

Chapter 18. Reversible Reactions. A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical Equilibrium Reversible Reactions A chemical reaction in which the products can react to re-form the reactants is called a reversible reaction. Section 1 The Nature of Chemical

More information

Unit 6 Kinetics and Equilibrium.docx

Unit 6 Kinetics and Equilibrium.docx 6-1 Unit 6 Kinetics and Equilibrium At the end of this unit, you ll be familiar with the following: Kinetics: Reaction Rate Collision Theory Reaction Mechanism Factors Affecting Rate of Reaction: o Nature

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

UNIT #10: Reaction Rates Heat/Energy in Chemical Reactions Le Chatlier s Principle Potential Energy Diagrams

UNIT #10: Reaction Rates Heat/Energy in Chemical Reactions Le Chatlier s Principle Potential Energy Diagrams UNIT #10: Reaction Rates Heat/Energy in Chemical Reactions Le Chatlier s Principle Potential Energy Diagrams NAME: 1. REACTION RATES a) The speed of a chemical reaction determined by the change in concentration

More information

Chemical Equilibrium Practice Problems #2

Chemical Equilibrium Practice Problems #2 Chemical Equilibrium Practice Problems #2 2-20-2015 1. A CPHS student does an equilibrium experiment with the general chemical equation and derives the 2 graphs below: A = B: a. When at equilibrium is

More information

NC Standards. NC Standards Chm Infer the shift in equilibrium when a stress is applied to a chemical system (LeChatelier s).

NC Standards. NC Standards Chm Infer the shift in equilibrium when a stress is applied to a chemical system (LeChatelier s). Equilibrium and Le Chatelier s Principle NC Standards Chm.3.1. Explain the conditions of a system at equilibrium. A. Define chemical equilibrium for reversible reactions. B. Distinguish between equal rates

More information

CH1810-Lecture #8 Chemical Equilibrium: LeChatlier s Principle and Calculations with K eq

CH1810-Lecture #8 Chemical Equilibrium: LeChatlier s Principle and Calculations with K eq CH1810-Lecture #8 Chemical Equilibrium: LeChatlier s Principle and Calculations with K eq LeChatlier s Principle A system at equilibrium responds to a stress in such a way that it relieves that stress.

More information

CHEMISTRY 12 EQUILIBRIUM PROPERTIES & ENTROPY AND ENTHALPY WORKSHEET CHEMISTRY 12 EQUILIBRIUM PROPERTIES WORKSHEET

CHEMISTRY 12 EQUILIBRIUM PROPERTIES & ENTROPY AND ENTHALPY WORKSHEET CHEMISTRY 12 EQUILIBRIUM PROPERTIES WORKSHEET CHEMISTRY 12 EQUILIBRIUM PROPERTIES & ENTROPY AND ENTHALPY WORKSHEET CHEMISTRY 12 EQUILIBRIUM PROPERTIES WORKSHEET 1) Write six statements that apply to all chemical equilibrium systems. (2 marks) System

More information

Practice Test F.1 (pg 1 of 7) Unit F - General Equilibrium Kp and Kc Name Per

Practice Test F.1 (pg 1 of 7) Unit F - General Equilibrium Kp and Kc Name Per Practice Test F. (pg of 7) Unit F - General Equilibrium Kp and Kc Name Per This is practice - Do NOT cheat yourself of finding out what you are capable of doing. Be sure you follow the testing conditions

More information

Equilibrium Written Response

Equilibrium Written Response Equilibrium Written Response January 1998 2. Consider the following equilibrium: CS2 (g) + 3Cl2 (g) CCl4 (g) + S2Cl2 (g) ΔH = -238 kj a) Sketch a potential energy diagram for the reaction above and label

More information

CHEMICAL EQUILIBRIUM. 6.3 Le Chatelier s Principle

CHEMICAL EQUILIBRIUM. 6.3 Le Chatelier s Principle CHEMICAL EQUILIBRIUM 6.3 Le Chatelier s Principle At the end of the lesson, students should be able to: a) State Le Chatelier s principle b) Explain the effect of the following factors on a system at equilibrium

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

The Concept of Equilibrium

The Concept of Equilibrium Chemical Equilibrium The Concept of Equilibrium Sometimes you can visually observe a certain chemical reaction. A reaction may produce a gas or a color change and you can follow the progress of the reaction

More information

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16

Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 Name AP CHEM / / Collected AP Exam Essay Answers for Chapter 16 1980 - #7 (a) State the physical significance of entropy. Entropy (S) is a measure of randomness or disorder in a system. (b) From each of

More information

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g)

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) Copyright 001 by Harcourt, Inc. All rights reserved.! Ch 16. Chemical Equilibria N O 4 (g) NO (g) The concept of equilibrium and K Writing equilibrium constant expressions Relationship between kinetics

More information

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium

Equilibrium. What is equilibrium? Hebden Unit 2 (page 37 69) Dynamic Equilibrium Equilibrium What is equilibrium? Hebden Unit (page 37 69) Dynamic Equilibrium Hebden Unit (page 37 69) Experiments show that most reactions, when carried out in a closed system, do NOT undergo complete

More information

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) equilibrium

Ch 16. Chemical Equilibria. Law of Mass Action. Writing Equil Constant Expressions Homogeneous Equilibria. 2NO 2 (g) N 2 O 4 (g) equilibrium Copyright 001 by Harcourt, Inc. All rights reserved.! Ch 16. Chemical Equilibria N O 4 (g) NO (g) The concept of equilibrium and K Writing equilibrium constant expressions Relationship between kinetics

More information

7.1 Dynamic Equilibrium

7.1 Dynamic Equilibrium 7.1 Dynamic 7.1.1 - Outline the characteristics of chemical and physical systems in a state of equilibrium Open system When a reaction occurs in an unsealed container Closed system When a reaction occurs

More information

Chemical Equilibrium. Chapter

Chemical Equilibrium. Chapter Chemical Equilibrium Chapter 14 14.1-14.5 Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: 1.) the rates of the forward

More information

1. The Haber- Bosch Process 2. K eq

1. The Haber- Bosch Process 2. K eq Chemistry 12 Equilibrium III Name: Date: Block: 1. The Haber- Bosch Process 2. K eq The Haber- Bosch Process Almost all of the world s ammonia is produced via the Haber- Bosch process and almost all of

More information

CHEMISTRY. Chapter 15 Chemical Equilibrium

CHEMISTRY. Chapter 15 Chemical Equilibrium CHEMISTRY The Central Science 8 th Edition Chapter 15 Chemical Kozet YAPSAKLI The Concept of Chemical equilibrium is the point at which the concentrations of all species are constant. Chemical equilibrium

More information

Chemistry 6A F2007. Dr. J.A. Mack. Freezing Point Depression: 11/16/07. t f = nk f M

Chemistry 6A F2007. Dr. J.A. Mack. Freezing Point Depression: 11/16/07. t f = nk f M Chemistry 6A F2007 Dr. J.A. Mack 11/16/07 11/14/07 Dr. Mack. CSUS 1 Freezing Point Depression: Similarly: The Freezing point of a solution is always lower than the freezing point of the pure solvent of

More information

Chapter Outline. The Dynamics of Chemical Equilibrium

Chapter Outline. The Dynamics of Chemical Equilibrium Chapter Outline 14.1 The Dynamics of Chemical Equilibrium 14.2 Writing Equilibrium Constant Expressions 14.3 Relationships between K c and K p Values 14.4 Manipulating Equilibrium Constant Expressions

More information

How fast or slow will a reaction be? How can the reaction rate may be changed?

How fast or slow will a reaction be? How can the reaction rate may be changed? Part I. 1.1 Introduction to Chemical Kinetics How fast or slow will a reaction be? How can the reaction rate may be changed? *In order to understand how these factors affect reaction rates, you will also

More information

Notes: Unit 10 Kinetics and Equilibrium

Notes: Unit 10 Kinetics and Equilibrium Name: Regents Chemistry: Mr. Palermo Notes: Unit 10 Kinetics and Equilibrium Name: KEY IDEAS Collision theory states that a reaction is most likely to occur if reactant particles collide with the proper

More information

1.0 L container NO 2 = 0.12 mole. time

1.0 L container NO 2 = 0.12 mole. time CHEM 1105 GAS EQUILIBRIA 1. Equilibrium Reactions - a Dynamic Equilibrium Initial amounts: = mole = 0 mole 1.0 L container = 0.12 mole moles = 0.04 mole 0 time (a) 2 In a 1.0 L container was placed 4.00

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium 1 Equilibrium We ve already used the phrase equilibrium when talking about reactions. In principle, every chemical reaction is reversible... capable of moving in the forward or backward

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

1. Draw the PE diagram showing the PE changes that occur during a successful collision of the exothermic reaction:

1. Draw the PE diagram showing the PE changes that occur during a successful collision of the exothermic reaction: Ws # 4 Potential Energy Diagrams Worksheet 1. Draw the PE diagram showing the PE changes that occur during a successful collision of the exothermic reaction: H2 + I2 2 HI + 250 KJ The PE of the reactants

More information

BIOB111_CHBIO - Tutorial activities for Session 4

BIOB111_CHBIO - Tutorial activities for Session 4 BIOB111_CHBIO - Tutorial activities for Session 4 General topics for the week Discussion of the effect of several factors on chemical equilibrium of selected reactions. Examples of effect of stress on

More information

The reactions we have dealt with so far in chemistry are considered irreversible.

The reactions we have dealt with so far in chemistry are considered irreversible. 1. Equilibrium Students: model static and dynamic equilibrium and analyse the differences between open and closed systems investigate the relationship between collision theory and reaction rate in order

More information

7.1 Describing Reactions

7.1 Describing Reactions Chapter 7 Chemical Reactions 7.1 Describing Reactions Chemical Equations Equation states what a reaction starts with, and what it ends with. Reactants the starting materials that undergo change. (On the

More information

Equilibrium. Chapter How Reactions Occur How Reactions Occur

Equilibrium. Chapter How Reactions Occur How Reactions Occur Copyright 2004 by Houghton Mifflin Company. Equilibrium Chapter 16 ll rights reserved. 1 16.1 How Reactions Occur Kinetics: the study of the factors that effect speed of a rxn mechanism by which a rxn

More information

Notes: Unit 11 Kinetics and Equilibrium

Notes: Unit 11 Kinetics and Equilibrium Name: Regents Chemistry: Notes: Unit 11 Kinetics and Equilibrium Name: KEY IDEAS Collision theory states that a reaction is most likely to occur if reactant particles collide with the proper energy and

More information

first later later still successful collision ( reaction ) low conc. both high conc. blue high conc. both low conc. red

first later later still successful collision ( reaction ) low conc. both high conc. blue high conc. both low conc. red Collision theory Basic idea (basic premise) http://www.chem.iastate.edu/group/greenbowe/sections/projectfolder/animations/no+o3singlerxn.html - before molecules can react, they must collide. H 2 + I 2

More information

I.1 REACTION KINETICS

I.1 REACTION KINETICS I.1 REACTION KINETICS KEY QUESTION: Why do reactions occur and how do you control them? REACTION KINETICS is the study of the REACTION RATES Express REACTION RATE as Example 1: The rate of a reaction is

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium 12-1 12.1 Reaction Rates a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow 12-2 12.2 Collision Theory In order for a

More information

Reaction Rates and Chemical Equilibrium

Reaction Rates and Chemical Equilibrium Reaction Rates and Chemical Equilibrium : 12-1 12.1 Reaction Rates : a measure of how fast a reaction occurs. Some reactions are inherently fast and some are slow: 12-2 1 12.2 Collision Theory In order

More information

Chapter 8: Reaction Rates and Equilibrium

Chapter 8: Reaction Rates and Equilibrium Chapter 8: Reaction Rates and Equilibrium ACTIVATION ENERGY In some reaction mixtures, the average total energy of the molecules is too low at the prevailing temperature for a reaction to take place at

More information

End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = 70.0 g 4.19 J/g C T = 29.8 C 22.4 C 7.4 C

End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = 70.0 g 4.19 J/g C T = 29.8 C 22.4 C 7.4 C End of Year Review ANSWERS 1. Example of an appropriate and complete solution H = mc T mol HCl m = 70.0 g c = 4.19 J/g C T = 9.8 C.4 C = 7.4 C mol HCl = 3.00 mol/ 0.000 = 0.0600 mol H = 70.0 g 4.19 J/g

More information

Kc is calculated for homogeneous reactions using the concentrations of the reactants and products at equilibrium:

Kc is calculated for homogeneous reactions using the concentrations of the reactants and products at equilibrium: Chemical Equilibrium Dynamic Equilibrium A dynamic equilibrium exists in a closed system when the rate of the forward reaction is equal to the rate of the reverse reaction. When a dynamic equilibrium is

More information

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test:

Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Unit 13 Kinetics & Equilibrium Page 1 of 14 Chemistry Kinetics, Entropy, Equilibrium, LeChatelier s Principle, K, Unit 13 Quiz: Unit 13 Test: Final Project: VOCABULARY: 1 Chemical equilibrium 2 equilibrium

More information

Chapters 10 and 11 Practice MC

Chapters 10 and 11 Practice MC Chapters 10 and 11 Practice MC Multiple Choice Identify the choice that best completes the statement or answers the question. d 1. Which of the following best describes the rates of chemical reaction?

More information

BIOB111_CHBIO - Tutorial activities for Session 4

BIOB111_CHBIO - Tutorial activities for Session 4 BIOB111_CHBIO - Tutorial activities for Session 4 General topics for the week Discussion of the effect of several factors on chemical equilibrium of selected reactions. Examples of effect of stress on

More information

Entropy and Enthalpy Guided Notes. a) Entropy. b) Enthalpy. c ) Spontaneous. d) Non-spontaneous

Entropy and Enthalpy Guided Notes. a) Entropy. b) Enthalpy. c ) Spontaneous. d) Non-spontaneous Entropy and Enthalpy Guided Notes 1) Define a) Entropy b) Enthalpy c ) Spontaneous d) Non-spontaneous 2) There is a natural tendency for reaction to move to the side with enthalpy Minimum enthalpy is the

More information

Today s Objectives. describe how these changes affect the equilibrium constant, K c. Section 15.2 (pp )

Today s Objectives. describe how these changes affect the equilibrium constant, K c. Section 15.2 (pp ) 1 Today s Objectives Qualitatively predict the following using Le Chatelier s principle: shifts in equilibrium caused by changes in temperature, pressure, volume, concentration, or the addition of a catalyst

More information

C6 Quick Revision Questions

C6 Quick Revision Questions C6 Quick Revision Questions H = Higher tier only All questions apply for combined and separate science Question 1... of 50 List 3 ways the time of a reaction can be measured. Answer 1... of 50 Loss of

More information

Energy in Chemical Reaction Reaction Rates Chemical Equilibrium. Chapter Outline. Energy 6/29/2013

Energy in Chemical Reaction Reaction Rates Chemical Equilibrium. Chapter Outline. Energy 6/29/2013 Energy in Chemical Reaction Reaction Rates Chemical Equilibrium Chapter Outline Energy change in chemical reactions Bond dissociation energy Reaction rate Chemical equilibrium, Le Châtelier s principle

More information

Chapter 17: Chemical Reactions

Chapter 17: Chemical Reactions Chapter 17: Chemical Reactions Section 1: Chemical Formulas and Equations Chemical Equations Balancing Chemical Equations Law of Conservation of Mass Evidences of Chemical Reactions Symbols to represent

More information

Name Chemistry Exam #8 Period: Unit 8: Kinetics, Thermodynamics, & Equilibrium

Name Chemistry Exam #8 Period: Unit 8: Kinetics, Thermodynamics, & Equilibrium 1. Which quantities must be equal for a chemical reaction at equilibrium? (A) the potential energies of the reactants and products (B) the concentrations of the reactants and products (C) the activation

More information

Unit 7 Kinetics and Thermodynamics

Unit 7 Kinetics and Thermodynamics 17.1 The Flow of Energy Heat and Work Unit 7 Kinetics and Thermodynamics I. Energy Transformations A. Temperature 1. A measure of the average kinetic energy of the particles in a sample of matter B. Heat

More information

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION

AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION AP CHEMISTRY NOTES 8-1 CHEMICAL EQUILIBRIUM: AN INTRODUCTION Chemical Equilibrium a dynamic state in which the rate of the forward reaction and the rate of the reverse reaction in a system are equal (the

More information

which has an equilibrium constant of Which of the following diagrams represents a mixture of the reaction at equilibrium?

which has an equilibrium constant of Which of the following diagrams represents a mixture of the reaction at equilibrium? Chapter 9 Quiz: Chemical Equilibria 1. Which of the following statements is true regarding chemical equilibrium? I. The concentrations of reactants and products at equilibrium are constant, which means

More information