Electrostatic Field Calculations for Electrophoresis Using Surfaces

Size: px
Start display at page:

Download "Electrostatic Field Calculations for Electrophoresis Using Surfaces"

Transcription

1 Mater. Res. Soc. Symp. Proc. Vol Materials Research Society 1061-MM09-25 Electrostatic Field Calculations for Electrophoresis Using Surfaces Perumal Ramasamy 1, Raafat M Elmaghrabi 2, and Gary Halada 3 1 Materials Science and Engineering, Stony Brook University, 317, Old Engineering Building, SUNY - Stony Brook University, Stony Brook, NY, Dept of Physiology & Biophysics, Stony Brook University, T6-170 Health Sciences Center, Stony Brook, NY , Stony Brook, NY, Materials Science and Engineering, Stony Brook University, 308 Engineering Building, Stony Brook, NY , Stony Brook, NY, ABSTRACT The distribution of electric field in and near the surface of the electrophoretic cell determines the motion of proteins in the buffer and along the surface. This is a complicated problem, influenced by buffer ion concentration, electrode configuration, and surface and substrate conductivities. Steady state calculations approximating the experimental geometry were made for different arrangements of electrodes using MAFIA (Computer Simulation Technologies) program and ESTAT programs. Electric field distributions in both conducting surfaces like ITO (Indium Tin Oxide) (Kevley Technologies), gold and aluminum and non conducting surfaces were studied. In order to measure the EOF of the buffer neutrally charged fluorescent Poly-Styrene beads of 1 µm diameter were included in the buffer and imaged using confocal microscope. It was observed that the electric filed was highly modified by various factors like the conducting nature of the surface, position of the electrodes, salt concentration in the buffer and distance from the separation surface. INTRODUCTION Recent experiments in DNA flat-surface electrophoresis have yielded much success in terms of its use as a separation mechanism. Separation of polymers like DNA and proteins by surface electrophoresis can be faster than conventional gel electrophoresis. Also it is easier to retrieve the polymers by surface electrophoresis experiments unlike gel electrophoresis methods. In conventional gel electrophoresis the distribution of electric fields is uniform unlike in surface electrophoresis. The distribution of electric field in and near the surface of the electrophoretic cell determines the motion of polymer in the buffer and along the surface. This is a complicated problem, influenced by buffer ion concentration, electrode configuration, and surface and substrate conductivities. For this one has to understand the distribution of electric fields in an electrphoretic cells thoroughly before interpreting the results of an electrophoresis experiment (1-9). In this article, we try to study the effects of various factors upon the distribution of electric fields in a home made electrophoretic cell having different surfaces for separation. The charge distribution is governed by the Poisson Boltzmann equation (10) Where Ψ is the electroosmotic potential, ρ e is the charge density and ε is permittivity. (1)

2 In addition to the calculation of the electrical field distributions in the electrophoretic cell, the determination of electro osmotic flow (EOF) is essential. The electrophoretic mobility observed during electrophoresis is the difference between the electrophoretic mobility of the macromolecule and the electrophoretic mobility of the solvent due to EOF. EOF arises from the fact that the negatively charged surface (substrate surface for electrophoresis) attracts positively charged cations from the buffer, creating an electrical double layer next to the surface. When an electric field is applied to the solution in the capillary, the cations in the diffuse portion of the double layer migrate toward the cathode, carrying along buffer and solvent. The result is a net flow of solvent toward the cathode. The observed (net) mobility µ obs = µ macromolecule - µ EOF (2) Here µ macromolecule is the true electrophoretic mobility of the macromolecule and µ EOF is the mobility due to EOF and µ obs is the observed mobility. Here we investigate the variation in the electric field in the electrophoretic cell and EOF as a function of conductivity of the surface, conductivity of the buffer, position of the electrodes and ionic concentration of the buffer. EXPERIMENT Electrostatics field calculations programs The electric filed distribution in the electrophoretic cell has to be determined for the proper understanding of the electric field distribution in the cell. The electric field distribution was determined using ESTAT electrostatic field calculations software to calculate the two dimensional electric field distributions in the cell and MAFIA field calculations program to calculate the three dimensional electric field distributions in the cell. In a region of ideal dielectrics and space charge, the electrostatic potential ф is determined by the Poisson equation. The boundary conditions for electrostatic problems can be of Dirichlet or Neumann type. For Dirichlet conditions, the electrostatic potential V is specified on the boundary. For Neumann conditions, the surface charge is specified on the boundary. For a Drichlet boundary the electric field lines are normal to it. For a Neumann boundary the normal derivative of the poteintial is specified. The special Neumann condition implies that the electric field is parallel to the boundary. One of the advantages of the finite- element method is that all boundaries that are not fixed automatically satisfy the special Neumann condition, even if they are slanted or curved, The electrophoretic set up was varied as a function of the size of the cell, position of the electrodes, conductivity of the buffer, dimension of the metallic surface and conductivity of the metallic surface used for the separation of the proteins. The variation in the electric field distributions due to these modifications are as under. DISCUSSION Effect of position of electrodes upon electric field distributions: When the conductivity of the buffer was kept constant, and when the dimension of the conducting metallic surface is changed, electric filed distribution in the surface depended upon the dimension of the surface. It was observed that when the electrodes were placed close to the surface or touching the surface, the electric field in the cell was very uniform. As shown in the

3 figures below, both electrostatic calculations (Figure 1 a-c) and MAFIA field calculations (Figure 1 d-f) confirmed this. From these Figures 1a-1f; it is clear that the field distributions are not uniform when the length of the conducting surface is lesser than the distance between the electrodes and that the field distribution is uniform when the electrodes touch the conducting surface. Therefore, in order to have a uniform field distribution on the surface that is equal to the ratio of the voltage between the electrodes and the distance of their separation, the conducting surface should have its dimensions such that its length should be equal or close to that of the distance between the electrodes. Figure 1 a, d: Electric field distribution when electrodes do not touch the conducting surface. The field distribution is not uniform between the electrodes. Figure 1 b, e: Electric field distribution when electrodes touch the conducting surface from inside the buffer. The field distribution is uniform between the electrodes. Figure 1 c, f: Electric field distribution when Electrodes touch the surface from outside the buffer. The field distribution is uniform between the electrodes. Effect of conductivity of the surface When the conductivity of a surface placed in the cell was increased the electric field flow in the surface decreased. For a metallic surface it was observed that the field flows through the buffer space surrounding the surface. These results are shown in Fig 2a Fig 2d for surfaces with conductivity 5, 10,100 and 1500 times that of the buffer (0.01x TBE). The dimension of the surface was chosen as 4cm x 2 cm. The space between the electrodes was chosen as 10 cm. The

4 space available for the buffer was chosen as 10cm x 10 cm and the applied voltage was chosen as 30V. Figure 2 (a-d): Electrostatic potential when conductivity of surface is (a) 5x, (b) 10x, (c) 100x and (d) 1500 x conductivity of buffer. Dependence of EOF upon distance from separating surfaces: In order to measure the EOF of the buffer neutrally charged fluorescent Poly-Styrene (PS) beads of 1 µm diameter (Fluo spheres F-13083; red fluorescent (580 / 605nm); 1x10 10 beads/ml from Molecular probe) were included in the electrolytic buffer. ITO and silicon were chosen as the surface. It was observed that when the electrodes are placed upon an ITO surface during electrophoresis (Figure 3) the migration of the PS beads was uniform close to the surface and it varied linearly with the applied electric field (Figure 4). For ITO surface the migration of the beads was uniform till ITO cracked due to high voltage (~ 5V cm -1 ). It was also observed that the velocity of the beads was uniform for about 25 µm above the conducting surface. This was performed by moving the objective lens of the confocal microscope. Similar results were obtained for silicon. Figure 3: schematic representations for the measurement of EOF using PS beads. Figure 4: Trajectory of PS beads on ITO surface when electrodes placed touching the IRO surface. (a) Electric field = 1Vcm -1 ; time = 10 sec, (b) Electric field = 1.5 Vcm -1 ; time = 10 sec, and (c) Electric field = 2.0 Vcm -1 ; time = 10 sec. For all conditions, 0.001x TBE buffer was used as electrolyte.

5 For higher TBE concentrations, it was observed that the mobility of the beads was zero for gold surfaces while the mobility of the beads was same for up to a height of 25 microns for both Silicon and Glass substrates. Hence the conductivity of the surface influences the EOF greatly. Dependence of EOF upon conductivities of the surfaces When substrates of same dimensions were used it was observed that the EOF of the PS beads was dependent upon the conductivity of the surface. When two surfaces, silicon and gold, both of dimension 2cm x 0.75 cm were placed adjacent to each other with their sides touching one another in a cell having 0.1x TBE buffer, the polystyrene beads had only half the mobility on gold surface when compared with silicon (data not shown). This suggests that using surfaces with micro patterns of materials with different conductivities can lead to non uniform polymer migration that involves moving and slowing. This effect can possibly be used to separate polymers with different sizes. Effect of salt concentration in the electrolytic buffer upon EOF For electrodes touching the substrate surface, it was observed that when glass or silicon surfaces were used as the substrates the mobility of the PS beads decreased as the salt concentration in the TBE buffer increased. The PS beads were observed to migrate towards the negative electrode for lower buffer concentrations less than 5x TBE. When the buffer concentration was 5x TBE, it was observed that the PS beads did not move. When the buffer concentration was as high as 10x TBE it was observed that the PS beads migrated towards the positive electrode. The variation in the mobility for PS beads on glass surface as a function of salt concentration is shown in (Fig. 5). 5 0 Velocity (µm/s) x TBE 0.1x TBE 1x TBE 6x TBE 10x TBE Electric filed (V/cm) Figure 5. Variation of velocity of PS beads for different salt concentrations. Particles that travel towards the negative electrode are considered to have negative velocity.

6 The decrease in the EOF with increase in the salt concentrations in the buffer can be explained as follows. Glass and silicon have negative charges on their surface. When placed in a buffer, due to its surface charge, the glass surface will attract cations from the buffer. In a buffer with lower salt concentration, upon application of an electric field, the cations that were drawn to the surface of the glass will migrate towards the negative electrode. For higher salt concentrations in the buffer, the availability of anions that will cancel the adsorbed cations of the buffer will be more. Hence there might be some charge cancellations leading to a less net positive charge on the substrate surface. Hence the EOF will be lesser. When the salt concentration in the buffer increases further more (like for 10x TBE), charge reversal can take place on the surface of the substrate due to abundance of ions. This will therefore lead to a reversal in the direction of the PS beads and the beads will go to the positive electrode. Hence the EOF depends upon the salt concentration in the buffer. CONCLUSIONS Field calculations programs and EOF measurements shows that the electric field distribution in the electrophoretic cell depend upon various factors like the position of the electrodes, conductivity of the surface, distance from the conducting surface, dimensions of the conducting surface and concentration of salt in the electrolytic buffer. Hence unlike conventional gel electrophoresis, surface electrophoresis demands a thorough understanding of the electric field distributions in an electrophoretic cell to serve as a useful tool for separations. ACKNOWLEDGMENTS We would like to thank Prof. Ilan Ben - Zvi of Brook Haven National LAB for providing MAFIA software facility. REFERENCES (1) Anna-Maria Spehar, Sander Koster, Vincent Linder, Sakari Kulmala, Nico F. de Rooij, Elisabeth Verpoorte, Hans Sigrist and Wolfgang Thormann, Electrophoresis , 24 (2003). (2) Jacobson, S. C.; Hergenroder, R.; Koutny, L. B.; Ramsey, J. M. Anal. Chem , 66 (1994). (3) D.A. Hoagland, E. Arvanitidou and C. Welch, Macromolecules , 32 (1999). (4) Griffiths, S. K.; Nilson, R. H. Anal. Chem , 71(1999). (5) Samulel K. Sia and George M. Whitesides, Electrophorsesis , 24 (2003). (6) Ermakov, S. V.; Jacobson, S. C.; Ramsey, J. M. Anal. Chem , 70 (1998). (7) C. L. Rice and R. Whitehead, J. Phys. Chem, , 69 (1965). (8) EB Cummings, SK Griffiths and RH Nilson, PH Paul, Analytical Chemistry, (2000). (9) N. A. Poison and M.A. Hayes, Analytical Chemistry, , 71(1999). (10) Probstein, R. F., Physiochemical Hydrodynamics, John Wiley & Sons Inc, NY, 1993.

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 4 Electrophoresis Lecture - 1 Basis Concept in Electrophoresis

More information

Key Concepts for section IV (Electrokinetics and Forces)

Key Concepts for section IV (Electrokinetics and Forces) Key Concepts for section IV (Electrokinetics and Forces) 1: Debye layer, Zeta potential, Electrokinetics 2: Electrophoresis, Electroosmosis 3: Dielectrophoresis 4: InterDebye layer force, VanDer Waals

More information

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3)

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3) Separation Sciences 1. Introduction: Fundamentals of Distribution Equilibrium 2. Gas Chromatography (Chapter 2 & 3) 3. Liquid Chromatography (Chapter 4 & 5) 4. Other Analytical Separations (Chapter 6-8)

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2014 Supplementary Information Cation-Selective Electropreconcentration Il Hyung Shin, a Ki-jung

More information

Lecture 18: Microfluidic MEMS, Applications

Lecture 18: Microfluidic MEMS, Applications MECH 466 Microelectromechanical Systems University of Victoria Dept. of Mechanical Engineering Lecture 18: Microfluidic MEMS, Applications 1 Overview Microfluidic Electrokinetic Flow Basic Microfluidic

More information

ELECTROPHORESIS SLAB (THIN LAYER GEL) AND CAPILLARY METHODS. A. General Introduction

ELECTROPHORESIS SLAB (THIN LAYER GEL) AND CAPILLARY METHODS. A. General Introduction ELECTROPHORESIS SLAB (THIN LAYER GEL) AND CAPILLARY METHODS A. General Introduction Electrophoresis: a saration method based on differential rate of migration of charged species in an applied dc electric

More information

Biochemistry. Biochemical Techniques. 01 Electrophoresis : Basic Concepts

Biochemistry. Biochemical Techniques. 01 Electrophoresis : Basic Concepts Description of Module Subject Name Paper Name 12 Module Name/Title 01 Electrophoresis: Basic Concept 1. Objectives 1.1 To understand basic concept of electrophoresis 1.2 To explain what determines charge

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Graphene transfer method 1 : Monolayer graphene was pre-deposited on both

More information

Protein separation and characterization

Protein separation and characterization Address:800 S Wineville Avenue, Ontario, CA 91761,USA Website:www.aladdin-e.com Email USA: tech@aladdin-e.com Email EU: eutech@aladdin-e.com Email Asia Pacific: cntech@aladdin-e.com Protein separation

More information

Supplementary Information Ionic Strength Effects on Electrophoretic Focusing and Separations Supreet S. Bahga, Moran Bercovici, and Juan G.

Supplementary Information Ionic Strength Effects on Electrophoretic Focusing and Separations Supreet S. Bahga, Moran Bercovici, and Juan G. Supplementary Information Ionic Strength Effects on Electrophoretic Focusing and Separations Supreet S. Bahga, Moran Bercovici, and Juan G. Santiago We here present further details on the injection protocol

More information

Soil Cation Analysis Using High-Performance Capillary Zone Electrophoresis Last Modified: October 20, 2006

Soil Cation Analysis Using High-Performance Capillary Zone Electrophoresis Last Modified: October 20, 2006 Soil Cation Analysis Using High-Performance Capillary Zone Electrophoresis Last Modified: October 20, 2006 Introduction: Capillary electrophoresis (CE) is a relatively new, but rapidly growing separation

More information

Methods for charge and size characterization colloidal systems

Methods for charge and size characterization colloidal systems Methods for charge and size characterization colloidal systems Content General Basics Stabino Measurement basics Applications NANO-flex Measurement basics Applications Nanoparticles Bulkphase of gold gold

More information

Key Distance Learning Module I: Getting to Know Your Capillary

Key Distance Learning Module I: Getting to Know Your Capillary Key Distance Learning Module I: Getting to Know Your Capillary Electrophoresis System C.M. White, K.M. Hanson, L.A. Holland*, C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown,

More information

Supporting Information. Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes

Supporting Information. Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes Supporting Information Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes Yun Yu,, Vignesh Sundaresan,, Sabyasachi Bandyopadhyay, Yulun Zhang, Martin A. Edwards, Kim

More information

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Long Luo, Robert P. Johnson, Henry S. White * Department of Chemistry, University of Utah, Salt Lake City, UT 84112,

More information

South pacific Journal of Technology and Science

South pacific Journal of Technology and Science Zetasizer Technique Dr. Nagham Mahmood Aljamali Abstract: Assist. Professor in Organic Chemistry, Chemistry Department.,College of Education.,Kufa University.,IRAQ. In this review study., zetasizer technique

More information

Supporting Information. DNA Manipulation and Separation in Sub-Lithographic Scale Nanowire Array

Supporting Information. DNA Manipulation and Separation in Sub-Lithographic Scale Nanowire Array Supporting Information DNA Manipulation and Separation in Sub-Lithographic Scale Nanowire Array Takao Yasui a *, Sakon Rahong b, Koki Motoyama a, Takeshi Yanagida b *, Qiong Wu a, Noritada Kaji a, Masaki

More information

Module : 9 Electrophoretic Separation Methods

Module : 9 Electrophoretic Separation Methods Module : 9 Electrophoretic Separation Methods Dr. Sirshendu De Professor, Department of Chemical Engineering Indian Institute of Technology, Kharagpur e-mail: sde@che.iitkgp.ernet.in Keywords: Separation

More information

Zeta Potential Analysis using Z-NTA

Zeta Potential Analysis using Z-NTA Zeta Potential Analysis using Z-NTA Summary Zeta Potential Nanoparticle Tracking Analysis (Z-NTA) adds measurements of electrostatic potential to simultaneous reporting of nanoparticle size, light scattering

More information

Particle Tracking on. Exosomes. ZetaView. Multiparameter NTA sizing, counting and zeta potential. C. Helmbrecht and H. Wachernig

Particle Tracking on. Exosomes. ZetaView. Multiparameter NTA sizing, counting and zeta potential. C. Helmbrecht and H. Wachernig Particle Tracking on Exosomes ZetaView Multiparameter NTA sizing, counting and zeta potential C. Helmbrecht and H. Wachernig Visual inspection of video 20130429_0009_269Exo9h_Dil10000 Agglomerates Approx.

More information

Key Concepts for section IV (Electrokinetics and Forces)

Key Concepts for section IV (Electrokinetics and Forces) Key Concepts for section IV (Electrokinetics and Forces) 1: Debye layer, Zeta potential, Electrokinetics 2: Electrophoresis, Electroosmosis 3: Dielectrophoresis 4: InterDebye layer force, VanDer Waals

More information

Lecture 3 Charged interfaces

Lecture 3 Charged interfaces Lecture 3 Charged interfaces rigin of Surface Charge Immersion of some materials in an electrolyte solution. Two mechanisms can operate. (1) Dissociation of surface sites. H H H H H M M M +H () Adsorption

More information

Fully Coupled Computational Modeling of Transport Phenomena in Microfluidics Applications. Abstract

Fully Coupled Computational Modeling of Transport Phenomena in Microfluidics Applications. Abstract 2 nd International Bhurban Conference on Applied Sciences and Technology, Bhurban, Pakistan. June 16 21, 2003 Fully Coupled Computational Modeling of Transport Phenomena in Microfluidics Applications Athonu

More information

1.17 Capillary electrophoresis

1.17 Capillary electrophoresis This text is based on the internationally-harmonized texts developed by the Pharmacopoeial Discussion Group (PDG). It has been developed and amended in line with the style and requirements of The International

More information

Chapter 3 Engineering Science for Microsystems Design and Fabrication

Chapter 3 Engineering Science for Microsystems Design and Fabrication Lectures on MEMS and MICROSYSTEMS DESIGN and MANUFACTURE Chapter 3 Engineering Science for Microsystems Design and Fabrication In this Chapter, we will present overviews of the principles of physical and

More information

How to measure the zeta potential of individual Nanoparticles (NPs)? To anticipate the answer: With the

How to measure the zeta potential of individual Nanoparticles (NPs)? To anticipate the answer: With the Technical Note - Scanning NTA ZetaView How to measure the zeta potential of individual Nanoparticles (NPs)? Introduction To anticipate the answer: With the ZetaView. ZetaView tracks the particles individually

More information

Particle Characterization Laboratories, Inc.

Particle Characterization Laboratories, Inc. Analytical services Particle size analysis Dynamic Light Scattering Static Light Scattering Sedimentation Diffraction Zeta Potential Analysis Single Point Titration Isoelectric point determination Aqueous

More information

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode

Electrophoretic Deposition. - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode Electrophoretic Deposition - process in which particles, suspended in a liquid medium, migrate in an electric field and deposit on an electrode no redox differs from electrolytic in several ways deposit

More information

V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes

V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes MIT Student 1. Poisson-Nernst-Planck Equations The Nernst-Planck Equation is a conservation of mass equation that describes the influence of

More information

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers.

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers. CHEM 322 Name Fall 2012 Due In Class Friday, Oct. 19 Complete the following on separate paper. Show your work and clearly identify your answers. General Separations 1. Describe the relative contributions

More information

Interaction of Gold Nanoparticle with Proteins

Interaction of Gold Nanoparticle with Proteins Chapter 7 Interaction of Gold Nanoparticle with Proteins 7.1. Introduction The interfacing of nanoparticle with biomolecules such as protein is useful for applications ranging from nano-biotechnology (molecular

More information

Simple and Precise Size-Separation of Microparticles by a Nano-Gap Method

Simple and Precise Size-Separation of Microparticles by a Nano-Gap Method ANALYTICAL SCIENCES MAY 2009, VOL. 25 605 2009 The Japan Society for Analytical Chemistry Simple and Precise Size-Separation of Microparticles by a Nano-Gap Method Yukiko ENOMOTO, Hideaki MONJUSHIRO, and

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 25: CHROMATOGRAPHIC METHODS AND CAPILLARY ELECTROPHORESIS CHAPTER 25: Opener Aa CHAPTER 25: Opener Ab CHAPTER 25: Opener B 25-1 Ion-Exchange

More information

Chem 250 Unit 1 Proteomics by Mass Spectrometry

Chem 250 Unit 1 Proteomics by Mass Spectrometry Chem 250 Unit 1 Proteomics by Mass Spectrometry Article #1 Quantitative MS for proteomics: teaching a new dog old tricks. MacCoss MJ, Matthews DE., Anal Chem. 2005 Aug 1;77(15):294A-302A. 1. Synopsis 1.1.

More information

Non-Faradaic Impedance Characterization of an

Non-Faradaic Impedance Characterization of an Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2014 Supplementary Information Non-Faradaic Impedance Characterization of an Evaporating Droplet

More information

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy The very basic theory of XPS XPS theroy Surface Analysis Ultra High Vacuum (UHV) XPS Theory XPS = X-ray Photo-electron Spectroscopy X-ray

More information

957 Lecture #13 of 18

957 Lecture #13 of 18 Lecture #13 of 18 957 958 Q: What was in this set of lectures? A: B&F Chapter 2 main concepts: Section 2.1 : Section 2.3: Salt; Activity; Underpotential deposition Transference numbers; Liquid junction

More information

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled

Specific ion effects on the interaction of. hydrophobic and hydrophilic self assembled Supporting Information Specific ion effects on the interaction of hydrophobic and hydrophilic self assembled monolayers T. Rios-Carvajal*, N. R. Pedersen, N. Bovet, S.L.S. Stipp, T. Hassenkam. Nano-Science

More information

Supporting Information

Supporting Information Supporting Information Electrogenerated Chemiluminescence of Single Conjugated Polymer Nanoparticles Ya-Lan Chang, Rodrigo E. Palacios, Fu-Ren F. Fan, Allen J. Bard, and Paul F. Barbara Department of Chemistry

More information

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( )

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( ) 3.05 Nanomechanics of Materials and Biomaterials Thursday 04/05/07 Prof. C. Ortiz, MITDMSE I LECTURE 14: TE ELECTRICAL DOUBLE LAYER (EDL) Outline : REVIEW LECTURE #11 : INTRODUCTION TO TE ELECTRICAL DOUBLE

More information

II. The physico-chemical properties of proteins

II. The physico-chemical properties of proteins II. The physico-chemical properties of proteins Proteins differ by there physical and chemical properties: Molecular mass Total electrical charge Termolability Solubility Molecular weight of the proteins

More information

PLUS. Zeta/Nano Particle Analyzer

PLUS. Zeta/Nano Particle Analyzer PLUS Zeta/Nano Particle Analyzer -100 m The NanoPlus Zeta-Potential & Particle Size Analyzer Features ELSZ-1000 series ZETA-POTENTIAL & PARTICLE SIZE ANALYZER of ink for inkjet printer (Yellow) Concentration

More information

Electrokinetic Phenomena

Electrokinetic Phenomena Introduction to BioMEMS & Medical Microdevices Microfluidic Principles Part 2 Companion lecture to the textbook: Fundamentals of BioMEMS and Medical Microdevices, by Prof., http://saliterman.umn.edu/ Electrokinetic

More information

METROLOGY AND SIMULATION OF CHEMICAL TRANSPORT IN MICROCHANNELS

METROLOGY AND SIMULATION OF CHEMICAL TRANSPORT IN MICROCHANNELS METROLOGY AND SIMULATION OF CHEMICAL TRANSPORT IN MICROCHANNELS P. M. St. John*, T. oudenberg, and C. Connell PE Applied Biosystems 850 Lincoln Centre Drive Foster City, CA 94404 M. Deshpande and J. R.

More information

Supporting Information. Railing Cells along 3D Microelectrode Tracks for a. Continuous-Flow Dielectrophoretic Sorting

Supporting Information. Railing Cells along 3D Microelectrode Tracks for a. Continuous-Flow Dielectrophoretic Sorting Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2018 Supporting Information Railing Cells along 3D Microelectrode Tracks for a Continuous-Flow

More information

Determination of an Electrochemical Series

Determination of an Electrochemical Series In electrochemistry, a voltaic cell is a specially prepared system in which an oxidation-reduction reaction occurs spontaneously. This spontaneous reaction produces an easily measured electrical potential

More information

3. Electrical forces in the double layer: Electroosmotic and AC Electroosmotic Pumps

3. Electrical forces in the double layer: Electroosmotic and AC Electroosmotic Pumps 3. Electrical forces in the double layer: Electroosmotic and AC Electroosmotic Pumps At the interface between solid walls and electrolytes, double layers are formed [1] due to differences in electrochemical

More information

ELECTROCHEMICAL CELLS

ELECTROCHEMICAL CELLS ELECTROCHEMICAL CELLS Electrochemistry 1. Redox reactions involve the transfer of electrons from one reactant to another 2. Electric current is a flow of electrons in a circuit Many reduction-oxidation

More information

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) Secondary Ion Mass Spectroscopy (SIMS) Analyzing Inorganic Solids * = under special conditions ** = semiconductors only + = limited number of elements or groups Analyzing Organic Solids * = under special

More information

Mechanical Engineering, UCSB Electrokinetic Response of a Floating Bipolar Electrode in a Nanofluidic Channel

Mechanical Engineering, UCSB Electrokinetic Response of a Floating Bipolar Electrode in a Nanofluidic Channel Electrokinetic Response of a Floating Bipolar Electrode in a Nanofluidic Channel by Alex Eden, Karen Scida, Jan Eijkel, Sumita Pennathur, & Carl Meinhart 10/5/2017 + - Background: Bipolar Electrodes (BPEs)

More information

Design and simulation of sample pinching utilizing microelectrodes in capillary electrophoresis microchips

Design and simulation of sample pinching utilizing microelectrodes in capillary electrophoresis microchips MINIATURISATION FOR CHEMISTRY, BIOLOGY & BIOENGINEERING Design and simulation of sample pinching utilizing microelectrodes in capillary electrophoresis microchips Yu-Cheng Lin,* Wei-Ming Wu and Chun-Sheng

More information

The CMP Slurry Monitor - Background

The CMP Slurry Monitor - Background The CMP Slurry Monitor - Background Abstract The CMP slurry monitor uses electroacoustic and ultrasonic attenuation measurements to determine the size and zeta potential of slurry particles. The article

More information

International Journal of Engineering & Technology IJET-IJENS Vol:18 No:03 1

International Journal of Engineering & Technology IJET-IJENS Vol:18 No:03 1 International Journal of Engineering & Technology IJET-IJENS Vol:18 No:03 1 Analytical Derivation of Diffusio-osmosis Electric Potential and Velocity Distribution of an Electrolyte in a Fine Capillary

More information

Name Date. Chapter 2 - Chemistry Guide Microbiology (MCB 2010C) Part 1

Name Date. Chapter 2 - Chemistry Guide Microbiology (MCB 2010C) Part 1 Name Date Chapter 2 - Chemistry Guide Microbiology (MCB 2010C) Part 1 The study of biology in the 21 st century is actually the study of biochemistry. In order to be successful in this course, it is important

More information

1044 Lecture #14 of 18

1044 Lecture #14 of 18 Lecture #14 of 18 1044 1045 Q: What s in this set of lectures? A: B&F Chapter 13 main concepts: Section 1.2.3: Diffuse double layer structure Sections 13.1 & 13.2: Gibbs adsorption isotherm; Electrocapillary

More information

THE ELECTRICAL CHARGE OF MAMMALIAN RED BLOOD CELLS

THE ELECTRICAL CHARGE OF MAMMALIAN RED BLOOD CELLS THE ELECTRICAL CHARGE OF MAMMALIAN RED BLOOD CELLS BY HAROLD A. ABRAMSON A~rD LAURENCE S. MOYER* (From The Biological Laboratory, Cold Spring Harbor, Long Island) (Accepted for publication, August 21,

More information

An electrokinetic LB based model for ion transport and macromolecular electrophoresis

An electrokinetic LB based model for ion transport and macromolecular electrophoresis An electrokinetic LB based model for ion transport and macromolecular electrophoresis Raffael Pecoroni Supervisor: Michael Kuron July 8, 2016 1 Introduction & Motivation So far an mesoscopic coarse-grained

More information

Zetasizer Nano ZSP: A Perfect Tool For Life Science Applications

Zetasizer Nano ZSP: A Perfect Tool For Life Science Applications Zetasizer Nano ZSP: A Perfect Tool For Life Science Applications Dr Mike Kaszuba Technical Support Manager E-mail: michael.kaszuba@malvern.com Contents Zetasizer Nano ZSP Software Enhancements Protein

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy Jing-jiang Yu Nanotechnology Measurements Division Agilent Technologies, Inc. Atomic Force Microscopy High-Resolution

More information

Soft Matter and Biological Physics

Soft Matter and Biological Physics Dr. Ulrich F. Keyser - ufk20 (at) cam.ac.uk Soft Matter and Biological Physics Question Sheet Michaelmas 2011 Version: November 2, 2011 Question 0: Sedimentation Initially consider identical small particles

More information

ENV/JM/MONO(2015)17/PART1/ANN2

ENV/JM/MONO(2015)17/PART1/ANN2 Unclassified ENV/JM/MONO(2015)17/PART1/ANN2 ENV/JM/MONO(2015)17/PART1/ANN2 Unclassified Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development

More information

Sanitary Engineering. Coagulation and Flocculation. Week 3

Sanitary Engineering. Coagulation and Flocculation. Week 3 Sanitary Engineering Coagulation and Flocculation Week 3 1 Coagulation and Flocculation Colloidal particles are too small to be removed by sedimentation or by sand filtration processes. Coagulation: Destabilization

More information

ECE185 LIQUID CRYSTAL DISPLAYS

ECE185 LIQUID CRYSTAL DISPLAYS ECE185 LIQUID CRYSTAL DISPLAYS Objective: To study characteristics of liquid crystal modulators and to construct a simple liquid crystal modulator in lab and measure its characteristics. References: B.

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

A Simulation Model of Fluid Flow and Streamlines Induced by Non-Uniform Electric Field

A Simulation Model of Fluid Flow and Streamlines Induced by Non-Uniform Electric Field Proceedings of the 4th International Middle East Power Systems Conference (MEPCON ), Cairo University, Egypt, December 9-,, Paper ID 8. A Simulation Model of Fluid Flow and Streamlines Induced by Non-Uniform

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2013 Monday, 17 June, 2.30 pm 5.45 pm 15

More information

IV. Transport Phenomena. Lecture 23: Ion Concentration Polarization

IV. Transport Phenomena. Lecture 23: Ion Concentration Polarization IV. Transport Phenomena Lecture 23: Ion Concentration Polarization MIT Student (and MZB) Ion concentration polarization in electrolytes refers to the additional voltage drop (or internal resistance ) across

More information

Thermodiffusion of nanoparticles in water. o of solid-liquid interfaces

Thermodiffusion of nanoparticles in water. o of solid-liquid interfaces Thermodiffusion of nanoparticles in water and the thermal boundary conditions o of solid-liquid interfaces David Cahill Shawn Putnam, Zhenbin Ge, Profs. Paul Braun, Gerard Wong Center of Advanced Materials

More information

Three-Dimensional Numerical Studies on the Effect of the Particle Charge to Mass Ratio Distribution in the Electrostatic Coating Process

Three-Dimensional Numerical Studies on the Effect of the Particle Charge to Mass Ratio Distribution in the Electrostatic Coating Process Proc. ESA Annual Meeting on Electrostatics 2010 1 Three-Dimensional Numerical Studies on the Effect of the Particle Charge to Mass Ratio Distribution in the Electrostatic Coating Process N. Toljic*, K.

More information

Supporting Information for Conical Nanopores. for Efficient Ion Pumping and Desalination

Supporting Information for Conical Nanopores. for Efficient Ion Pumping and Desalination Supporting Information for Conical Nanopores for Efficient Ion Pumping and Desalination Yu Zhang, and George C. Schatz,, Center for Bio-inspired Energy Science, Northwestern University, Chicago, Illinois

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1 Raman spectroscopy of CVD graphene on SiO 2 /Si substrate. Integrated Raman intensity maps of D, G, 2D peaks, scanned across the same graphene area. Scale

More information

Honors Chemistry Mrs. Agostine. Chapter 19: Oxidation- Reduction Reactions

Honors Chemistry Mrs. Agostine. Chapter 19: Oxidation- Reduction Reactions Honors Chemistry Mrs. Agostine Chapter 19: Oxidation- Reduction Reactions Let s Review In chapter 4, you learned how atoms rearrange to form new substances Now, you will look at how electrons rearrange

More information

Supplemental Information. An In Vivo Formed Solid. Electrolyte Surface Layer Enables. Stable Plating of Li Metal

Supplemental Information. An In Vivo Formed Solid. Electrolyte Surface Layer Enables. Stable Plating of Li Metal JOUL, Volume 1 Supplemental Information An In Vivo Formed Solid Electrolyte Surface Layer Enables Stable Plating of Li Metal Quan Pang, Xiao Liang, Abhinandan Shyamsunder, and Linda F. Nazar Supplemental

More information

Electrohydromechanical analysis based on conductivity gradient in microchannel

Electrohydromechanical analysis based on conductivity gradient in microchannel Vol 17 No 12, December 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(12)/4541-06 Chinese Physics B and IOP Publishing Ltd Electrohydromechanical analysis based on conductivity gradient in microchannel

More information

The Electrochemical Isotope Effect Redox driven stable isotope fractionation

The Electrochemical Isotope Effect Redox driven stable isotope fractionation The Electrochemical Isotope Effect Redox driven stable isotope fractionation Redox reactions (involving an electron transfer) drive many chemical transformations in the environment and are vital in biological

More information

Electrical double layer

Electrical double layer Electrical double layer Márta Berka és István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry http://dragon.unideb.hu/~kolloid/ 7. lecture Adsorption of strong electrolytes from

More information

Next layer is called diffuse layer----ions not held tightly----thickness is > 1000 angstroms-- exact distance depends on ionic strength of soln

Next layer is called diffuse layer----ions not held tightly----thickness is > 1000 angstroms-- exact distance depends on ionic strength of soln What does double layer of IPE look like?-see Fig.1.2.3 Also called Electrified Inteface At no external E appl -- inner Stern layer or Inner Helmholz plane (IHP) contains mostly solvent solvent molecules

More information

Introduction to Nanoparticle Tracking Analysis (NTA) Measurement Principle of ZetaView

Introduction to Nanoparticle Tracking Analysis (NTA) Measurement Principle of ZetaView Technical Note Nanoparticle Tracking Key words: Introduction to Nanoparticle Tracking Analysis (NTA) Measurement Principle of ZetaView Particle characterization, Nanoparticle Tracking Analysis (NTA), Brownian

More information

Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites

Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites October 5-7, 2016, Boston, Massachusetts, USA Ion Concentration and Electromechanical Actuation Simulations of Ionic Polymer-Metal Composites Tyler Stalbaum, Qi Shen, and Kwang J. Kim Active Materials

More information

Electrophoretic Light Scattering Overview

Electrophoretic Light Scattering Overview Electrophoretic Light Scattering Overview When an electric field is applied across an electrolytic solution, charged particles suspended in the electrolyte are attracted towards the electrode of opposite

More information

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell Galvanic cells convert different forms of energy (chemical fuel, sunlight, mechanical pressure, etc.) into electrical energy and heat. In this lecture, we are interested in some examples of galvanic cells.

More information

Supporting Information for Lysozyme Adsorption in ph-responsive Hydrogel Thin-Films: The non-trivial Role of Acid-Base Equilibrium

Supporting Information for Lysozyme Adsorption in ph-responsive Hydrogel Thin-Films: The non-trivial Role of Acid-Base Equilibrium Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 215 Supporting Information for Lysozyme Adsorption in ph-responsive Hydrogel Thin-Films: The non-trivial

More information

Polarizability-Dependent Induced-Charge. Electroosmotic Flow of Dielectric Particles and. Its Applications

Polarizability-Dependent Induced-Charge. Electroosmotic Flow of Dielectric Particles and. Its Applications Polarizability-Dependent Induced-Charge Electroosmotic Flow of Dielectric Particles and Its Applications by Fang Zhang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross.

Colloid Chemistry. La chimica moderna e la sua comunicazione Silvia Gross. Colloid Chemistry La chimica moderna e la sua comunicazione Silvia Gross Istituto Dipartimento di Scienze di e Scienze Tecnologie Chimiche Molecolari ISTM-CNR, Università Università degli Studi degli Studi

More information

2 Structure. 2.1 Coulomb interactions

2 Structure. 2.1 Coulomb interactions 2 Structure 2.1 Coulomb interactions While the information needed for reproduction of living systems is chiefly maintained in the sequence of macromolecules, any practical use of this information must

More information

NANONICS IMAGING FOUNTAIN PEN

NANONICS IMAGING FOUNTAIN PEN NANONICS IMAGING FOUNTAIN PEN NanoLithography Systems Methods of Nanochemical Lithography Fountain Pen NanoLithography A. Lewis et al. Appl. Phys. Lett. 75, 2689 (1999) FPN controlled etching of chrome.

More information

Physics 1520, Fall 2011 Quiz 3, Form: A

Physics 1520, Fall 2011 Quiz 3, Form: A Physics 1520, Fall 2011 Quiz 3, Form: A Name: Date: Numeric answers must include units. Sketches must be labeled. All short-answer questions must include your reasoning, for full credit. A correct answer

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1. Introduction 1-1 1.1. Overview In the past twenty years, charged droplets and strong electric fields have quietly revolutionized chemistry. In combination with an atmospheric-sampling mass spectrometer,

More information

Electrokinetic Assembly of Microsphere and Cellular Arrays

Electrokinetic Assembly of Microsphere and Cellular Arrays Mat. Res. Soc. Symp. Proc. Vol. 662 2001 Materials Research Society Electrokinetic Assembly of Microsphere and Cellular Arrays Mihrimah Ozkan 1, Sadik C. Esener 1 and Sangeeta N. Bhatia 2 1 Department

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

Electrostatic Transfer of Color Images in Electrophotography

Electrostatic Transfer of Color Images in Electrophotography Electrostatic Transfer of Color Images in Electrophotography Inan Chen Quality Engineering Associates, Inc. 99 South Bedford Street #4, Burlington, MA 01803 Tel: 781-221-0080 Fax: 781-221-7107 e-mail:

More information

Mercury(II) detection by SERS based on a single gold microshell

Mercury(II) detection by SERS based on a single gold microshell Mercury(II) detection by SERS based on a single gold microshell D. Han, S. Y. Lim, B. J. Kim, L. Piao and T. D. Chung* Department of Chemistry, Seoul National University, Seoul, Korea. 2010, 46, 5587-558

More information

Experimental determination of sample stream focusing with fluorescent dye

Experimental determination of sample stream focusing with fluorescent dye Electrophoresis 2008, 29, 2953 2959 2953 Jay Taylor G. D. Stubley Carolyn L. Ren Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada Received December

More information

Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions

Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions Journal of Colloid and Interface Science 263 (2003) 133 143 www.elsevier.com/locate/jcis Electrokinetic mixing vortices due to electrolyte depletion at microchannel junctions Paul Takhistov, Ksenia Duginova,

More information

A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces

A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces A New Dielectrophoretic Coating Process for Depositing Thin Uniform Coatings on Films and Fibrous Surfaces by Angelo Yializis Ph.D., Xin Dai Ph.D. Sigma Technologies International Tucson, AZ USA SIGMA

More information

Charged Interfaces & electrokinetic

Charged Interfaces & electrokinetic Lecture Note #7 Charged Interfaces & electrokinetic phenomena Reading: Shaw, ch. 7 Origin of the charge at colloidal surfaces 1. Ionization Proteins acquire their charge by ionization of COOH and NH 2

More information

Chem 321 Lecture 17 - Potentiometry 10/24/13

Chem 321 Lecture 17 - Potentiometry 10/24/13 Student Learning Objectives Chem 321 Lecture 17 - Potentiometry 10/24/13 Electrodes The cell described in the potentiometric chloride titration (see 10/22/13 posting) consists of a Ag/AgCl reference electrode

More information

Chapter Objectives. Chapter 13 Electrochemistry. Corrosion. Chapter Objectives. Corrosion. Corrosion

Chapter Objectives. Chapter 13 Electrochemistry. Corrosion. Chapter Objectives. Corrosion. Corrosion Chapter Objectives Larry Brown Tom Holme Describe at least three types of corrosion and identify chemical reactions responsible for corrosion. www.cengage.com/chemistry/brown Chapter 13 Electrochemistry

More information