CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry

Size: px
Start display at page:

Download "CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry"

Transcription

1 CHM 152 updated May 2011 Lab 6: Experimentally Determining an Equilibrium Constant using Spectrophotometry Introduction In this lab you will experimentally determine the equilibrium constant with respect to concentration, K c, of the reaction between iron (III) and thiocyanate, SCN -. Fe 3+ (aq) + SCN - (aq) Fe(SCN) 2+ (aq) We ll do this using a spectrophotometer, which is an instrument that can measure the amount of light absorbed by a sample. The Fe(SCN) 2+ ion is a dark red color in aqueous solution. When light is passed through the sample, some will be absorbed by this colored solution. The more concentrated the solution, the darker the color and the more light will be absorbed. In a spectrophotometer, light of a certain wavelength is passed through one end of a sample and a detector on the other side measures the percent transmitted (%T) through the sample. The percent transmittance can be converted to the amount absorbed by the solution (A) using the following equation. A = log (%T) The instrument you ll be using for this lab can automatically convert percent transmittance to absorption. In the mid-nineteenth century, German physicist August Beer (no, really, that was his name) discovered that the absorption of light by a solution is directly proportional to its concentration, a relationship often referred to as Beer s Law (or the Beer-Lambert Law, to give additional credit to Swiss physicist Johann Lambert). The mathematical equation for Beer s Law is fairly simple and given below. A = εbc or A = abc In this equation, ε (or a) is the molar absorptivity coefficient, which relates to how well a solution absorbs light at particular wavelength, b is the distance (in cm) traveled by the light through the solution, and c is the molar concentration of the solution. Using this equation, a plot of absorption vs. concentration should be linear, with a slope of m = εb and a y-intercept of b=0. In Part I of this lab, you will prepare six solutions with a known concentration of Fe(SCN) 2+ and use these known solutions to prepare a Beer s Law plot. There is one major point that needs to be considered, however. This reaction is reversible, so when the equilibrium is established both reactant and product are typically present in significant amounts. In lecture, we usually use a known equilibrium constant to determine equilibrium concentrations (using the ICE method), but that s what we re trying to determine in this lab. So how can we know the concentration without first having a K c? To accomplish this, we ll rig our system by reacting thiocyanate with a large excess of iron (III). This excess amount of reactant will be so great that, according to Le Châtelier s principle, the system will shift right to such a large degree that nearly all of our thiocyanate will be converted to product. There will be some thiocyanate present, since the equilibrium is still present, but that amount will be too insignificant to adversely affect our determination of K c. In Part II, you will make a new set of solutions, only this time using more equal concentrations of each reactant. Without a large excess present, both reactants and the product will be present in significant amounts at equilibrium. After measuring the absorbance of these solutions, we can use our Beer s Law plot from Part I to determine the concentration of Fe(SCN) 2+ in each solution then use an ICE table to determine the equilibrium concentrations of the two reactants. Once the equilibrium concentrations of all three species are known, the equilibrium constant can be determined.

2 Concepts to Review Equilibrium constants LeChâtelier s principle ICE tables Diluting solutions Plotting with Excel Procedure To save time, you and your lab partner should split the work by having one prepare the solutions in Part I while the other prepares the solutions in Part II. This will allow you to measure the absorptions of both sets of solutions at the same time. Part I: Preparation of a Beer s Law Plot 1. Measure out 70mL of 0.200M iron (III) nitrate and 20mL of 2.00 x 10-3 M sodium thiocyanate and take them back to your work area. These will be used to prepare your solutions in the next step. 2. Prepare the following set of solutions using a 50.00mL volumetric flask. Use volumetric pipettes to measure each reactant and use 0.10M nitric acid (not water) to dilute the solution to 50.00mL. Mix the solution by capping the flask and inverting 2-3 times. Once a solution is prepared, transfer it to a beaker or Erlenmeyer flask so you can use the volumetric flask to make the next solution on the list (don t forget to rinse the flask between preps). Solution 0.200M Fe(NO 3 ) 3, ml 2.00 x 10-3 M NaSCN, ml S S S S S S Obtain six cuvettes and fill each (approximately ¾ full) with one of the solutions from step Measure the absorption of each solution using one of the lab spectrophotometer. Operating the Genesys 20 spectrophotometer: 1. Use the nm buttons to set the wavelength to 447 nm (if it isn t already). 2. Make sure the instrument is set to measure absorption. The screen should display the wavelength, a number and the letter A (e.g., 447nm x.xxx A) If not, use the A/T/C button to switch to absorption mode. 3. Take sample S1 and wipe the cuvette clean with a Kim-wipe to remove prints or smudges. Since this sample only contains Fe 3+ (aq), it will serve as our blank (i.e., zero absorption). 4. Place the sample in the instrument and close the cover. 5. Press the 0 ABS/100% T button to tare the instrument (similar to what you do with a balance). After a couple of seconds the instrument will read 0.00 A 6. Remove the sample from the instrument and replace it with sample S2. Record the absorbance shown. 7. Repeat step 6 for samples S3-S6. 5. Using Excel, prepare a plot of Absorption (y) over [Fe(SCN) 2+ ] (x). Force the y-intercept to zero (this setting is found in the same place as the linear equation and R 2 checkboxes).

3 Part II: Determination of the Equilibrium Constant 1. Measure out 40mL of 2.00 x 10-3 M iron (III) nitrate and 20mL of 2.00 x 10-3 M sodium thiocyanate and take them back to your work area. These will be used to prepare your solutions in the next step. 2. Prepare the following set of solutions in medium-sized test tubes. For each solution add enough 0.10M nitric acid (not water) to bring the total volume to 10.0mL. Mix with a glass stir rod. Solution 2.00 x 10-3 M Fe(NO 3 ) 3, ml 2.00 x 10-3 M NaSCN, ml E E E E E E Measure the absorption of each solution as outlined in steps 3 and 4 of Part I. 4. Using the linear equation from your Beer s Law plot, determine the concentration of Fe(SCN) 2+ for samples E2-E6. 5. Use an ICE table to determine the equilibrium concentrations of the reactants samples E2-E6. 6. Determine the equilibrium constant for samples E2-E6 Waste Disposal During lab collect all of the solutions to be discarded in a 600mL beaker. When the lab is finished, pour half of the beaker s contents down the drain with running water. Dilute the remaining solution by refilling the beaker with water and pour half of this down the drain. Repeat this until the solution in the beaker is colorless.

4 Name: Part 1: Preparation of a Beer s Law Plot Data Section: 1) Volume of 0.002M NaSCN added, ml S1 (blank) S2 S3 S4 S5 S6 0 2) Initial [SCN - ] of solution, M 0 3) Equilibrium [Fe(SCN) 2+ ], M 0 4) Absorbance 0 Include a copy of your Beer s Law plot with your report. Part II: Determination of the Equilibrium Constant 1) Volume of 0.002M Fe(NO 3 ) 3 added, ml 2) Volume of 0.002M NaSCN added, ml E2 E3 E4 E5 E6 3) Initial [SCN - ] of solution, M 4) Initial [Fe 3+ ] of solution, M 5) Absorbance 6) Equilibrium [Fe(SCN) 2+ ], M 7) Equilibrium [Fe 3+ ], M 8) Equilibrium [SCN - ], M 9) Equilibrium constant, K c 10) Average K c

5 Sample calculations Show your work for the following calculations using data from sample E3 a) Initial solution concentrations of Fe 3+ and SCN - b) Equilibrium concentration of Fe(SCN) 2+ c) Equilibrium concentrations of Fe 3+ and SCN - (include an ICE table) d) Equilibrium constant

6 Name: Section: Post-Lab Questions 1. a) Does your mean value of K c suggest a reactant or product-favored equilibrium? b) Does this agree with what you observed while prepping the solutions? Explain. 2. A student used a beaker instead of a volumetric flask in Part I, making his final volumes larger than the 50mL he assumed them to be. How would this affect each of the following (too high, too low, or no effect)? For each case, explain your answer. a) The calculated concentration of SCN - b) The slope of the Beer s Law plot c) The calculated product concentration in Part II d) The calculated reactant concentrations in Part II e) The calculated value of K c

7 Name: Section: Pre-Lab Questions 1. Write the expression of K c for the reaction being studied in this lab. 2. What assumption is being made in Part I of this lab? Why can t the same assumption be made in Part II? 3. When plotting the data in Part I, why does it make sense to set the y-intercept at y=0? 4. A Beer s Law plot was prepared for the reaction A(aq) + B(aq) AB(aq), plotting absorption over AB(aq) concentration. The linear equation for this plot was y = 78.3x. A solution was prepared by mixing 10.0mL of 0.100M A with 5.00mL of 0.100M B and adding enough water to bring the total volume to 50.0mL. The absorption of this solution was measured as Given this information, calculate the following: a) The initial concentrations of each reactant. b) The equilibrium concentration of AB c) The equilibrium concentrations of each reactant d) The equilibrium constant with respect to concentration

Spectrophotometric Determination of an Equilibrium Constant

Spectrophotometric Determination of an Equilibrium Constant Spectrophotometric Determination of an Equilibrium Constant v021214 Objective To determine the equilibrium constant (K c ) for the reaction of iron (III) ion with thiocyanate (SCN - ) to form the thiocyanatoiron(iii)

More information

Experimental Procedure Overview

Experimental Procedure Overview Lab 4: Determination of an Equilibrium Constant using Spectroscopy Determination of the equilibrium constant of the following equilibrium system at room temperature. Fe 3+ (aq) + SCN (aq) Fe(SCN) 2+ (aq)

More information

CHEM Lab 7: Determination of an Equilibrium Constant using Spectroscopy

CHEM Lab 7: Determination of an Equilibrium Constant using Spectroscopy CHEM 0012 Lab 7: Determination of an Equilibrium Constant using Spectroscopy 1 Determination of the equilibrium constant of the following equilibrium system at room temperature. Fe 3+ (aq) + SCN- (aq)

More information

Experiment 12H, Parts A and B

Experiment 12H, Parts A and B Experiment 12H, Parts A and B AHRM 8/17 PRINCIPLES OF EQUILIBRIUM AND THERMODYNAMICS MATERIALS: PURPOSE: 0.0200 M Fe(NO 3 ) 3 in 1 M HNO 3, 0.000200 M KSCN, 2.0 M HNO 3, solid Fe(NO 3 ) 3. 9H 2 O with

More information

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM 1 Purpose: To determine the equilibrium constant K c for an equilibrium system using spectrophotometry to measure the concentration of a colored complex ion.

More information

CHM112 Lab Determination of an Equilibrium Constant Grading Rubric

CHM112 Lab Determination of an Equilibrium Constant Grading Rubric Name Team Name CHM112 Lab Determination of an Equilibrium Constant Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial concentrations

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Saddleback College Dr. White 1 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To

More information

Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex

Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex Experiment 6: Determination of the Equilibrium Constant for Iron Thiocyanate Complex The data for this lab will be taken as a class to get one data set for the entire class. I. Introduction A. The Spectrophotometer

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Dr. White 11 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To prepare a Beer s

More information

Lab #12: Determination of a Chemical Equilibrium Constant

Lab #12: Determination of a Chemical Equilibrium Constant Lab #12: Determination of a Chemical Equilibrium Constant Objectives: 1. Determine the equilibrium constant of the formation of the thiocyanatoiron (III) ions. 2. Understand the application of using a

More information

DETERMINATION OF AN EQUILIBRIUM CONSTANT

DETERMINATION OF AN EQUILIBRIUM CONSTANT DETERMINATION OF AN EQUILIBRIUM CONSTANT In this experiment the equilibrium properties of the reaction between the iron(iii) ion and the thiocyanate ion will be studied. The relevant chemical equation

More information

Experiment #7. Determination of an Equilibrium Constant

Experiment #7. Determination of an Equilibrium Constant Experiment #7. Determination of an Equilibrium Constant Introduction It is frequently assumed that reactions go to completion, that all of the reactants are converted into products. Most chemical reactions

More information

Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT

Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT Experiment 8: DETERMINATION OF AN EQUILIBRIUM CONSTANT Purpose: The equilibrium constant for the formation of iron(iii) thiocyanate complex ion is to be determined. Introduction: In the previous week,

More information

THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT

THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT Experiment 7B THE TEMPERATURE DEPENDENCE OF THE EQUILIBRIUM CONSTANT Prepared by Ross S. Nord, Chemistry Department, Eastern Michigan University PURPOSE To investigate the relationship between the equilibrium

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Calculator 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

Determination of an Equilibrium Constant

Determination of an Equilibrium Constant 7 Determination of an Equilibrium Constant Introduction When chemical substances react, the reaction typically does not go to completion. Rather, the system goes to some intermediate state in which the

More information

of the ferric thiocyanate. This was done by creating the solutions and putting them into a

of the ferric thiocyanate. This was done by creating the solutions and putting them into a Introduction: The equation of the reaction is Fe 3+ (aq) + SCN - (aq) Fe(NCS) 2+ (aq). The objective of this lab was to determine the equilibrium constant (K) for the formation of the ferric thiocyanate.

More information

Lab 04 Equilibrium Constant of Ferric Thiocyanate

Lab 04 Equilibrium Constant of Ferric Thiocyanate Lab 04 Equilibrium Constant of Ferric Thiocyanate Introduction This experiment will give you an opportunity to determine the equilibrium constant for the formation of Fe(SCN) 2+. The experiment will require

More information

D E T E R M I N A T I O N O F K e q L A B

D E T E R M I N A T I O N O F K e q L A B South Pasadena Honors Chemistry Name 8 Equilibrium Period Date D E T E R M I N A T I O N O F K e q L A B Lab Overview In a reversible reaction, equilibrium is the state at which the rates of forward and

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Experiment 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq)

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Lab12 Chemical Equilibrium: Finding a Constant, Kc The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq) FeSCN

More information

K = [C]c [D] d [A] a [B] b (5)

K = [C]c [D] d [A] a [B] b (5) Chem 1B Dr. White 19 Experiment 3: Determination of an Equilibrium Constant Objectives To determine the equilibrium constant for a reaction. Introduction Equilibrium is a dynamic state in which, at a given

More information

aa + bb cc + dd Equation 1

aa + bb cc + dd Equation 1 Experiment: The Determination of K eq for FeSCN 2+ Introduction For any reversible chemical reaction at equilibrium, the concentrations of all reactants and products are constant or stable. There is no

More information

Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour:

Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise. 10 points USE BLUE/BLACK INK!!!! Date: Hour: Lab #16: Determination of the Equilibrium Name: Constant of FeSCN 2+ Lab Exercise Chemistry II Partner: 10 points USE BLUE/BLACK INK!!!! Date: Hour: Goal: The goal of this lab is to determine the equilibrium

More information

9 Equilibrium. Aubrey High School PreAP -Chemistry. Name Period Date / /

9 Equilibrium. Aubrey High School PreAP -Chemistry. Name Period Date / / Aubrey High School PreAP -Chemistry 9 Equilibrium Name Period Date / / 9.2 Determination of Keq Lab - Equilibrium Problems Lab Overview In a reversible reaction, equilibrium is the state at which the rates

More information

Experiment 7A ANALYSIS OF BRASS

Experiment 7A ANALYSIS OF BRASS Experiment 7A ANALYSIS OF BRASS FV 10/21/10 MATERIALS: Spectronic 20 spectrophotometers, 2 cuvettes, brass sample, 7 M HNO 3, 0.100 M CuSO 4, 2 M NH 3, two 50 ml beakers, 100 ml beaker, two 25 ml volumetric

More information

THE IRON(III) THIOCYANATE REACTION SYSTEM

THE IRON(III) THIOCYANATE REACTION SYSTEM Experiment 7 THE IRON(III) THIOCYANATE REACTION SYSTEM Prepared by Ross S. Nord, Chemistry Department, Eastern Michigan University PURPOSE To investigate a novel reaction system by utilizing a spectrophotometer.

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Computer 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq)

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Experiment 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN -

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant CHEMISTRY 135 General Chemistry II Determination of an Equilibrium Constant Show above is a laboratory sample from chemistry, not phlebotomy. [1] Is the bloody-looking product the main component of this

More information

Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction

Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction Lab 4. Determination of the Equilibrium Constant for the Iron (III) thiocynate Reaction Prelab Assignment Before coming to lab: After reading "Lab Notebook Policy and Format for Lab Reports" handout, complete

More information

Equilibrium and Ionic Strength Effects

Equilibrium and Ionic Strength Effects Equilibrium and Ionic Strength Effects Objectives You will determine the thermodynamic equilibrium constant for the reaction between iron(iii) ion and thiocyanate ion to form iron(iii)-thiocyanate. Fe

More information

AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2+

AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2+ AP Chemistry Laboratory #16: Determination of the Equilibrium Constant of FeSCN 2 Lab days: Thursday and Friday, February 22-23, 2018 Lab due: Tuesday, February 27, 2018 Goal (list in your lab book): The

More information

Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16

Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16 Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.1.16 I. Introduction Equilibrium Consider the following situation: It is rush hour

More information

Lab 13.3 Determining K c via Colorimetry

Lab 13.3 Determining K c via Colorimetry BACKGROUND Most chemical reactions are reversible. They will proceed forward to a point where the products they have formed begin to collide with one another and reform the original reactants. When the

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant LabQuest 10 The equilibrium state of a chemical reaction can be characterized by quantitatively defining its equilibrium constant, Keq. In this experiment, you will determine the value of Keq for the reaction

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Chemistry 102 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

Experiment 11 Beer s Law

Experiment 11 Beer s Law Experiment 11 Beer s Law OUTCOMES After completing this experiment, the student should be able to: determine the wavelength (color) of maximum absorbance for a solution. examine the relationship between

More information

Experiment 11 Beer s Law

Experiment 11 Beer s Law Experiment 11 Beer s Law OUTCOMES After completing this experiment, the student should be able to: determine the wavelength (color) of maximum absorbance for a solution. examine the relationship between

More information

#11. Chemical Equilibrium

#11. Chemical Equilibrium #11. Chemical Equilibrium Goal To observe and explain equilibrium shifts based on Le Chatelier s Principle. Introduction In any chemical reaction, reactants are converted to products. In some cases, some

More information

Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer

Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer Skill Building Activity 2 Determining the Concentration of a Species using a Vernier Spectrometer Purpose To use spectroscopy to prepare a Beer s Law plot of known dilutions of copper(ii) sulfate so that

More information

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method Rate law Determination of the Crystal Violet Reaction Using the Isolation Method Introduction A common challenge in chemical kinetics is to determine the rate law for a reaction with multiple reactants.

More information

1iI1E. The Determination of 0 an Equilibrium Constant [LU. Computer

1iI1E. The Determination of 0 an Equilibrium Constant [LU. Computer Computer The Determination of 0 an Equilibrium Constant Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium constant,

More information

Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT

Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT Chemistry 112 SPECTROPHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT INTRODUCTION The principle underlying a spectrophotometric method of analysis involves the interaction of electromagnetic radiation

More information

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Experiment 13H THE REACTION OF RED FOOD COLOR WITH BLEACH 1 Experiment 13H 08/03/2017 AHRM THE REACTION OF RED FOOD COLOR WITH BLEACH 1 PROBLEM: Determine the rate law for the chemical reaction between FD&C Red Dye #3 and sodium hypochlorite. LEARNING OBJECTIVES:

More information

Chemistry 112 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium

Chemistry 112 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium Chemistry 112 Laboratory Experiment 7: Determination of Reaction Stoichiometry and Chemical Equilibrium Introduction The word equilibrium suggests balance or stability. The fact that a chemical reaction

More information

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Many substances absorb light. When light is absorbed, electrons in the ground state are excited to higher energy levels. Colored

More information

Experiment 7: SIMULTANEOUS EQUILIBRIA

Experiment 7: SIMULTANEOUS EQUILIBRIA Experiment 7: SIMULTANEOUS EQUILIBRIA Purpose: A qualitative view of chemical equilibrium is explored based on the reaction of iron(iii) ion and thiocyanate ion to form the iron(iii) thiocyanate complex

More information

Experiment 1. Chemical Equilibria and Le Châtelier s Principle

Experiment 1. Chemical Equilibria and Le Châtelier s Principle Experiment 1 Chemical Equilibria and Le Châtelier s Principle A local theatre company is interested in preparing solutions that look like blood for their upcoming production of Lizzie Borden. They have

More information

Experiment 13I THE REACTION OF RED FOOD COLOR WITH BLEACH 1

Experiment 13I THE REACTION OF RED FOOD COLOR WITH BLEACH 1 Experiment 13I FV 1/11/16 THE REACTION OF RED FOOD COLOR WITH BLEACH 1 PROBLEM: Determine the rate law for the chemical reaction between FD&C Red Dye #3 and sodium hypochlorite. LEARNING OBJECTIVES: By

More information

MORE LIGHTS, COLOR, ABSORPTION!

MORE LIGHTS, COLOR, ABSORPTION! Name Partner(s) Section Date MORE LIGHTS, COLOR, ABSORPTION! PRE-LAB QUERIES 1. The terms absorption and transmittance are often used when describing the interaction of light with matter. Explain what

More information

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II)

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II) : Absorption Spectroscopy of Cobalt(II) OBJECTIVES In successfully completing this lab you will: prepare a stock solution using a volumetric flask; use a UV/Visible spectrometer to measure an absorption

More information

Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate

Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate In this experiment you, as a class, will determine the solubility of sodium tetraborate decahydrate (Na 2 B 4 O 7 10 H 2 O or Na 2 [B

More information

Determination of the Rate of a Reaction, Its Order, and Its Activation Energy

Determination of the Rate of a Reaction, Its Order, and Its Activation Energy Determination of the Rate of a Reaction, Its Order, and Its Activation Energy Reaction kinetics is defined as the study of the rates of chemical reactions and their mechanisms. Reaction rate is simply

More information

Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Crystal Violet with Hydroxide Ion

Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Crystal Violet with Hydroxide Ion Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Introduction In this experiment, you will observe the reaction between crystal violet and sodium hydroxide. Crystal violet

More information

Experiment 13. Dilutions and Data Handling in a Spreadsheet rev 1/2013

Experiment 13. Dilutions and Data Handling in a Spreadsheet rev 1/2013 Absorbance Experiment 13 Dilutions and Data Handling in a Spreadsheet rev 1/2013 GOAL: This lab experiment will provide practice in making dilutions using pipets and introduce basic spreadsheet skills

More information

Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert. Abstract:

Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert. Abstract: Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert Abstract: This lab was performed to find the chemical equilibrium constant K c for the reaction Fe 3+ + SCN FeSCN 2+ using

More information

2 (aq) [FeSCN [Fe 3JSCN] Figure 1

2 (aq) [FeSCN [Fe 3JSCN] Figure 1 The Determination of an Equilibrium Constant Computer Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium constant,

More information

MEASUREMENT: PART II

MEASUREMENT: PART II 1 MEASUREMENT: PART II Copyright: Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, 2013. INTRODUCTION Read and/or review Section 1.7 and Figure 7.5 in your textbook. The first part

More information

C H E M I S T R Y DETERMINATION OF AN EQUILIBRIUM CONSTANT

C H E M I S T R Y DETERMINATION OF AN EQUILIBRIUM CONSTANT C H E M I S T R Y 1 5 0 Chemistry for Engineers DETERMINATION OF AN EQUILIBRIUM CONSTANT DEPARTMENT OF CHEMISTRY UNIVERSITY OF KANSAS Determination of an Equilibrium Constant Introduction A system is at

More information

EXPERIMENT 14. ACID DISSOCIATION CONSTANT OF METHYL RED 1

EXPERIMENT 14. ACID DISSOCIATION CONSTANT OF METHYL RED 1 EXPERIMET 14. ACID DISSOCIATIO COSTAT OF METHYL RED 1 The acid dissociation constant, Ka, of a dye is determined using spectrophotometry. Introduction In aqueous solution, methyl red is a zwitterion and

More information

A = km (6) A = k [FeSCN 2+ ] KNOWN [FeSCN 2+ ] MEASURED A (Spec 20) CALCULATED k 3.0 x x x x 10-5 AVERAGE k =

A = km (6) A = k [FeSCN 2+ ] KNOWN [FeSCN 2+ ] MEASURED A (Spec 20) CALCULATED k 3.0 x x x x 10-5 AVERAGE k = Method I. Analysis by Spectrophotometric Measurement We ll be using the spectrophotometer ( Spec 20 ) to compare absorbances (A) indicated by the equipment and known concentrations of iron(iii) thiocyanate

More information

EXPERIMENT 6: Photometric Determination of an Equilibrium Constant

EXPERIMENT 6: Photometric Determination of an Equilibrium Constant EXPERIMENT 6: Photometric Determination of an Equilibrium Constant The following preparatory questions should be answered before coming to class. They are intended to introduce you to several ideas important

More information

Exp 03 - Reaction Rate

Exp 03 - Reaction Rate GENERAL CHEMISTRY II CAÑADA COLLEGE SUMMER 2018 Exp 03 - Reaction Rate How the speed at which quantities change during a chemical reaction can be measured, predicted and used to understand the mechanism

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Using a Buret and Volumetric Flask: 2.06 ml of solution delivered 2.47 ml of solution delivered 50.00 ml Volumetric Flask Reading a buret: Burets are

More information

REVIEW OF LAB TECHNIQUES

REVIEW OF LAB TECHNIQUES Experiment 1 REVIEW OF LAB TECHNIQUES Prepared by Masanobu M. Yamauchi and Ross S. Nord, Eastern Michigan University PURPOSE To review density calculations, Beer s Law and the use of electronic balances,

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Absorbance Introduction to Spectroscopy: Analysis of Copper Ore Introduction The goal of this lab is to determine the unknown concentration of two different copper solution samples, taken from fictitious

More information

Shifts in Equilibrium: Le Châtelier s Principle

Shifts in Equilibrium: Le Châtelier s Principle 6 Shifts in Equilibrium: Le Châtelier s Principle Introduction Whenever a chemical reaction occurs, the reverse reaction can also occur. As the original reactants, on the left side of the equation, react

More information

Chemistry 1215 Experiment #11 Spectrophotometric Analysis of an Unknown Brass Sample

Chemistry 1215 Experiment #11 Spectrophotometric Analysis of an Unknown Brass Sample Chemistry 1215 Experiment #11 Spectrophotometric Analysis of an Unknown Brass Sample Objective In this experiment you will use spectrophotometric measurements to determine the copper concentration of a

More information

Le Châtelier s Principle ANSWERS

Le Châtelier s Principle ANSWERS Le Châtelier s Principle ANSWERS 1. When extra NH 3 is added to the following system at equilibrium: 2. When N 2 is removed from the following system at equilibrium: A. In order to restore equilibrium,

More information

Colorimetric analysis of aspirin content in a commercial tablet

Colorimetric analysis of aspirin content in a commercial tablet Colorimetric analysis of aspirin content in a commercial tablet v010214 Objective In this lab, you will prepare standard solutions, and use Beer s Law to construct a calibration curve. You will determine

More information

Chemical Kinetics. The dependence of reaction rate on concentration is given by the rate law: rate = k[a] x [B] y [C] z (1)

Chemical Kinetics. The dependence of reaction rate on concentration is given by the rate law: rate = k[a] x [B] y [C] z (1) Chemical Kinetics Special mention goes to Ms. Rebecca Mack who single-handedly developed this experiment so that you could have a better understanding of kinetics. Introduction Chemical kinetics is the

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Using a Buret and Volumetric Flask: 2.06 ml of solution 2.47 ml of solution 50.00 ml delivered delivered Volumetric Flask Reading a buret: Burets are

More information

Chemical Kinetics Prelab. 4. Why do the solutions have to be mixed quickly before measuring the absorbance data?

Chemical Kinetics Prelab. 4. Why do the solutions have to be mixed quickly before measuring the absorbance data? 1. What is the purpose of this experiment? Chemical Kinetics Prelab 2. What is the function of SCN in the experiment? 3. Why do you discard the last data points of the kinetic runs? 4. Why do the solutions

More information

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1 Determining the Concentration of a Solution: Beer s Law Computer 17 The primary objective of this experiment is to determine the concentration of an unknown copper (II) sulfate solution. You will use a

More information

Determining the Concentration of a Solution: Beer s Law

Determining the Concentration of a Solution: Beer s Law Determining the Concentration of a Solution: Beer s Law Vernier Spectrometer 1 The primary objective of this experiment is to determine the concentration of an unknown copper (II) sulfate solution. You

More information

Reaction mixtures that have reached equilibrium are represted by chemical equaitions with a doubleheaded

Reaction mixtures that have reached equilibrium are represted by chemical equaitions with a doubleheaded EXPERIMENT 24 LeChatelier s Principle INTRODUCTION Chemical reactions in which a product is essentially unionized, is given off as a gas, or is precipitated, may be thought of as running to completion.

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Introduction The goal of this lab is to determine the unknown concentration of two different copper solution samples, taken from fictitious mining sites

More information

Solubility Product Constants

Solubility Product Constants Solubility Product Constants PURPOSE To measure the solubility product constant (K sp ) of copper (II) iodate, Cu(IO 3 ) 2. GOALS To measure the molar solubility of a sparingly soluble salt in water. To

More information

Experimental Procedure Lab 402

Experimental Procedure Lab 402 Experimental Procedure Lab 402 Overview One set of solutions having known molar concentrations of FeNCS 2+ is prepared for a calibration curve, a plot of absorbance versus concentration. A second set of

More information

Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.9.13

Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.9.13 Determination of an Equilibrium Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.9.13 I. Introduction Equilibrium Consider the following situation: It is rush hour

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

CHEM 334 Quantitative Analysis Laboratory

CHEM 334 Quantitative Analysis Laboratory The Methods of Calibration Curve and Standard Addition Introduction One of the principle activities in the Quantitative Analysis Laboratory is the measurement of the concentration or total quantity of

More information

Kinetics of Crystal Violet Bleaching

Kinetics of Crystal Violet Bleaching Kinetics of Crystal Violet Bleaching Authors: V. C. Dew and J. M. McCormick* From Update March 12, 2013 with revisions Nov. 29, 2016 Introduction Chemists are always interested in whether a chemical reaction

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Rate Law Determination of Crystal Violet Hydroxylation Revised 5/22/12 RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997

More information

Experiment 6 Shifts in Equilibrium: Le Châtelier s Principle

Experiment 6 Shifts in Equilibrium: Le Châtelier s Principle Experiment 6 Shifts in Equilibrium: Le Châtelier s Principle Introduction Whenever a chemical reaction occurs, the reverse reaction can also occur. As the original reactants, on the left side of the equation,

More information

EXPERIMENT 5: PHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT

EXPERIMENT 5: PHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT EXPERIMENT 5: PHOTOMETRIC DETERMINATION OF AN EQUILIBRIUM CONSTANT The following preparatory questions should be answered before coming to class. They are intended to introduce you to several ideas important

More information

Le Chatelier s Principle

Le Chatelier s Principle Le Chatelier s Principle Introduction: In this experiment you will observe shifts in equilibrium systems when conditions such as concentration and temperature are changed. You will explain the observed

More information

UNIT 3: CHEMICAL EQUILIBRIUM (TEXT: Chap 14-pg 627 & Chap 18 pg )

UNIT 3: CHEMICAL EQUILIBRIUM (TEXT: Chap 14-pg 627 & Chap 18 pg ) UNIT 3: CHEMICAL EQUILIBRIUM (TEXT: Chap 14-pg 627 & Chap 18 pg 818-829) *Remedial questions on Concentration of Solutions (3.10 pg 130-135) 3:1. ATTEMPT QUESTIONS a) 3.109 b) 3.113 c) 3.115 d) 3.118 on

More information

PREPARATION FOR CHEMISTRY LAB: FLUORIDE IN WATER

PREPARATION FOR CHEMISTRY LAB: FLUORIDE IN WATER 1 Name: Lab Instructor: PREPARATION FOR CHEMISTRY LAB: FLUORIDE IN WATER On these problems, the solvent is water and the solution is sufficiently dilute so that the density of the solution is the same

More information

CHEM 1471 Kinetics of Phenolphthalein Decolorization Fall 2010 (Buckley) Lab Under Development

CHEM 1471 Kinetics of Phenolphthalein Decolorization Fall 2010 (Buckley) Lab Under Development CHEM 1471 Kinetics of Phenolphthalein Decolorization Fall 2010 (Buckley) Lab Under Development Objective: Use spectrophotometry to determine the order of the kinetics of decolorization of phenolphthalein

More information

Laboratory Measurements and Procedures

Laboratory Measurements and Procedures 18 Introduction Measurements of masses, volumes, and preparation of chemical solutions of known composition are essential laboratory skills. The goal of this exercise is to gain familiarity with these

More information

Determining the Concentration of a Solution: Beer s Law

Determining the Concentration of a Solution: Beer s Law Determining the Concentration of a Solution: Beer s Law The primary objective of this experiment is to determine the concentration of an unknown cobalt (II) chloride solution. You will use a Vernier SpectroVis

More information

Experiment #7. Titration of Vinegar

Experiment #7. Titration of Vinegar Experiment #7. Titration of Vinegar Goals 1. To determine the mass percent of acetic acid in a solution via titration. 2. To master the technique of titration. Introduction Vinegar is a common household

More information

K sp = [Pb 2+ ][I ] 2 (1)

K sp = [Pb 2+ ][I ] 2 (1) Chem 1B Saddleback College Dr. White 1 Experiment 11: Determination of K sp Objectives To determine the concentration of an unknown using a Beer- Lambert Plot. To determine the K sp for a relatively insoluble

More information

Chemical Kinetics: Integrated Rate Laws. ** updated Procedure for Spec 200 use **

Chemical Kinetics: Integrated Rate Laws. ** updated Procedure for Spec 200 use ** Chemical Kinetics: Integrated Rate Laws ** updated Procedure for Spec 200 use ** *DISCLAIMER: It is highly recommended that students bring in their own computers to lab this week to use excel. There may

More information

Spectrophotometry Materials

Spectrophotometry Materials Spectrophotometry Materials Item per Class per Bench Genesys 10UV Spectrophotometer 6 1 13 ml test tubes box 7 Test tube racks 6 1 1% Albumin solution 25 ml/one flask 2 ml 0.7% Albumin solution (unknown

More information

(Lab 6) Extraction of Caffeine: ranking various teas and coffees by drug content

(Lab 6) Extraction of Caffeine: ranking various teas and coffees by drug content (Lab 6) Extraction of Caffeine: ranking various teas and coffees by drug content Introduction Caffeine is one of three legal, mind-altering drugs available in the U.S without a prescription. Two common

More information