Review of the primary coolant chemistry at NPP Temelín and its impact on the fuel cladding

Size: px
Start display at page:

Download "Review of the primary coolant chemistry at NPP Temelín and its impact on the fuel cladding"

Transcription

1 Review of the primary coolant chemistry at NPP Temelín and its impact on the fuel cladding M. Mikloš, K. Vonková, J. Kysela Research Centre Řez Ltd, Řež, Czech Republic D. Ernst NPP Temelín, Reactor Physics Department, Temelín, Czech Republic Abstract One of the main goals in Research Centre Řež Ltd, in the department of Research Reactors is the study of the VVER, PWR and BWR primary coolant chemistry impact on the construct materials in the whole primary system. Reliability of nuclear fuel and radiation fields surrounding primary systems as well, are important aspects of overall nuclear reactor safety. With the use of research reactor LVR-15 and several experimental loops and devices Research Centre Řež is participating on the recommendations for all NPPs in Czech Republic (VVER-440 in Dukovany, VVER-1000 in Temelín) in the mentioned problematic. NPP Temelín is a first VVER-1000 reactor, where the Russian reactor design meets the American fuel design. Since 2009, Research Centre Řež is also participating on the post irradiation inspection program at NPP Temelín. Together with the previous fuel vendor Westinghouse Electric Company LLC, Research Centre Řež is performing independent support for the fuel inspection and repair. During these inspections large amount of data were measured and used as a feedback to the fuel vendor and to the fuel operator as well. Oxide measures at Zircaloy-4 cladding, which was used in Temelín water chemistry, showed excellent results and good applicability of Westinghouse fuel cladding. Paper describes excellent operational experiences with water chemistry regime at Temelín NPP proposed by Research Centre Řež as water chemistry guidelines, based on previous experiences from several corrosion experiments. 1 INTRODUCTION 1.1 VVER water chemistry VVER primary water chemistry is boric acid-potassium hydroxide based. Total alkalinity is given by the concentration of potassium, lithium and sodium. Different water chemistries are recommended for the VVER-440s and VVER-1000s to reflect their different operating temperatures. ph control is carried out in different ways at individual stations using a combination of potassium hydroxide addition and potassium removal using cation ion exchange resins. Also the boron-potassium coordination control during the cycle differs with respect to the use of standard or modified chemistry. Standard water chemistry was developed in late seventies and was designed to produce a nominally constant high temperature ph of ph 260 C 7.3 at 270 C [1]. ph was calculated according to the Meek method which is now known to give an error in high-temperature ph T determination nevertheless this type of boron/potassium control is still used at some VVER plants. Modified Water Chemistry was introduced in the beginning of nineties. This water chemistry ensures the constant ph T and

2 stable physical-chemical conditions during the whole reactor cycle which should reduce radiation fields. The choice of the optimal ph T was a result of plant data analysis as well as mathematical modeling. For VVER-440 units, the ph 300 is in the range of while was chosen as the optimum value for VVER Boron/potassium co-ordination for the standard and modified chemistries of VVER-440 and VVER-1000 units is given in Fig. 1. Typical high-temperature ph course during the reactor cycle for the standard and modified chemistries is shown in upper section of the picture. Fig. 1 Boron-potassium control in standard and modified water chemistry regimes Primary circuit materials undergo general corrosion by temperature and chemical stress environment. Products of corrosion release from the corroded surface and then they are transported through the entire primary circuit included core. Corrosion products become active by its deposition in the core and its re-deposition on the rest of primary circuit, especially piping and stem generators tubes, as well as on the fuel cladding. The activity build-up on primary piping is determined by the entire level of activated corrosion products in the coolant. 1.2 NPP Temelín NPP Temelín was built during the years In 1999 preparatory work for the commissioning of the first Unit has begun. During the years 2000 to 2002, hot tests and power activation took place at the Unit 1. In the middle of 2002, the first cycle at Unit 1 was started; Unit 2 was activated a year later. The installed output of NPP Temelín is 2x1000 MW; both reactors are of type VVER-1000, type V320. There are 4 identical loops with the high

3 temperature-high flow rate mechanical filter. The passivation and high temperature filtration during startup of both Units contributed to Temelín s very good radiation conditions. The reactor core contains 163 fuel assemblies, each with 312 fuel rods, and 61 regulating rods. Fuel rods are fuelled by UO 2, uranium dioxide enriched up to 4,95±0,05% of the fission isotope 235 U. Since the startup in 2002, the fuel for Temelín NPP was supplied by the Westinghouse Electric Company LLC, which also supplied the new instrumentation and control system. During eight years of operation, four fuel designs of VVantage-6 fuel assembly with Zircaloy-4 (ZIRLO TM since 2007) cladding were used. However, nuclear fuel contract with Westinghouse company was ended in 2010 (the last delivery at Unit 2) [2]. Following the tender for fuel supplier from 2004, new fuel vendor for the period was elected the Russian company TVEL, which already delivered new reload to the Unit 1 in April 2010 (163 FA) and in May 2011 at Unit 2 (163 FA). The new fuel assembly design TVSA-T with E110 cladding promises good operational practices. 2. EXPERIMENTAL BACKGROUND 2.1 Experimental loop Pressurized water reactor loop RVS-4 (Fig. 2) at light water research reactor LVR-15 (Fig. 3) in Research Centre Řež (CVR), Czech Republic was designed to perform a simulated high temperature, high pressure environment of VVER/PWR primary circuit with variable water chemistries for material behavior research in such stressed conditions [3][4]. LVR-15 design permits the usage of various diameters of irradiation channels. RVS-4 has active channel set straight inside the active zone of the research reactor so the effect of radiation and neutron flux on test samples can be monitored. Fig. 2 Experimental water loop RVS-4

4 Fig. 3 Research reactor LVR-15 The loop provides miniaturized, properly simulated NPP primary circuit. Basic thermohydraulic, chemical and radiation parameters of VVER/PWR primary circuit are well modeled. There is: core: active channel situated in reactor core with electrically heated fuel rod imitators, loop with steam-generator: pressure channel with field tube for flow division inside the channel, main circulation pump and primary piping, pressurizer and volume compensating system, make-up water preparation and dosing system (make-up water tank, required chemical ingredients, high pressure dosing pumps, hydrogen gas bubbling), primary coolant sampling system (isokinetic sampling, microfilter holder, micro-filter). The routine sampling includes corrosion products monitoring, activated corrosion products activity monitoring, water chemistry parameters levels (boric acid, ammonia, hydrogen, alkali etc.) and impurities measurement. Post irradiation inspection of the tested samples is carried out after each experiment, also the corrosion layers quality and thickness is evaluated. Due to relatively small volume of the loop it is most convenient for investigation of the effect of variable water regimes. 2.2 Water chemistry experiments and conclusions The radiation fields around the primary circuit of NPPs are formed by radionuclides created in the primary circuit during the Unit s operation. Among these radionuclides, besides fission

5 products are predominantly corrosion products from construction materials. One important factor having an influence on the amount of corrosion products of a facility already in operation is coolant chemistry. High temperature ph (ph 300 ) stability and optimum value is one of the most important factors that can influence the corrosion situation in the primary circuit. While the ph 300, is kept in the optimal range, the second thing for corrosion products affecting is the composition of the primary circuit coolant, such as hydrogen and ammonia level, ammonia presence overall, alkali type, zinc dosing etc. All contexts and activity mechanisms in the ammonia chemistry used under VVER conditions specifically related to issues of the behavior of radionuclide corrosion products with subsequent influence on the formation of radiation fields, the stability of protective (passivation) construction materials surface layers and deposition formation as a function of ammonia content in primary circuit coolant are not satisfactorily described. Neither operational nor experimental experiences with zinc addition technology in VVER reactor environments are also unavailable. Direct gaseous hydrogen dosing without the use of ammonia profitability in the VVER conditions is also not proved to satisfaction. Due to these facts an experimental project program proposal, Heightened Corrosion Product Formation Risk Reduction via Primary Circuit Chemistry Optimization was carried out in the CVR in the years 2003 to Goal of the experimental program was to gain the fundamental missing knowledge and data on the basis of comparative experiments in a specially constructed reactor water loop. Four experimental programs were set-up for water chemistry optimization comparison: standard VVER water chemistry direct hydrogen dosing without ammonia, standard VVER water chemistry with elevated ammonia level, zinc dosing to standard VVER water chemistry. All tested regimes showed their benefits towards to standard using water chemistry. Zinc addition had lowest volume activities peaks during shutdown. Hydrogen regime and higher ammonia showed both lower corrosion products release rate and higher ammonia also much lower surface activities on primary piping. Since the direct hydrogen dosing is rather complicated for VVER NPP operating usage, the best choice for corrosion products situation improvement seems to be the elevation of the ammonia level. During the years 2006 to 2009 another experiment was operated for proposing conditions and recommendations for NPP operation from the standpoint of decontamination procedure and subsequent operational strategy. The experimental program was aimed at investigating the influence of the presence of organic substances (TOC), concretely the influence of trace amounts of organic acids after decontamination, on the development and stability of passivation layers and deposits both on the surface of heating rods (fuel elements) and on interfaces with spacer grids (stainless steel Zr with 2.5% Nb) and on the inside surfaces of steam generator pipes. These experiments were part of the international technical cooperation project RER/0/076, held by IAEA. It was concluded that the practical methods to control crud formation are accurate control of primary water chemistry, careful decontamination and a surface layer passivation. However,

6 decontamination is only needed in the event of the refurbishment of any important component that requires a drastic decrease of dose rates to allow such maintenance activities. As mentioned above, RVS-4 loop is used to study the effect of environment on materials in the active zone of power reactors. Phenomena under study include corrosion, the influence of physical and radiation stresses on the rate of crack propagation, the interaction of fuel and coolant coverage, including cladding corrosion and the deposition of corrosion products on the surface of the fuel elements, further for the research of water chemistry of PWR and VVER reactors. Study of water chemistry regimes in CVR led to the preparation of the water chemistry guidelines for Czech NPPs, which are used at Dukovany NPP (VVER-440), as well as at Temelín NPP (VVER-1000). 3. OPERATIONAL EXPERIENCE 3.1 Corrosion situation in the primary circuit From the very beginning, Temelín NPP has been emphasizing thorough monitoring of the corrosion situation in its units. During the cycles a standard monitoring primary water chemistry parameters was performed, as well as monitoring of corrosion products concentrations and radioactivity in the primary coolant. Also, in-situ γ-spectrometry measurement was performed on the primary piping during the unit s shutdown. Thanks to an extensive set of measured values, the situation in the power station is very well depicted (Fig. 4). Corrosion products level is really low, so it is hard to determinate filter efficiency from concentration levels on inputs and outputs of the filtration system. 3.2 Fuel inspections Fig. 4 Temelín Unit 1 primary piping surface activities [5] Moreover periodical inspection and repair of fuel assemblies at Temelín NPP is performing as a Post Irradiation Inspection Program (PIIP). The main work is oriented for the inspection and repair of the fuel assemblies with use of Fuel Repair and Inspection Equipment (FRIE)

7 designed by Westinghouse Electric Company LLC. In addition to fuel repair, the PIIP is also oriented to study of leaking fuel rods and root causes of these leakers, too. Together with bowing and elongation of fuel rod measurements, oxide layers thickness measurements by eddy current method were performed. The oxide measurements were performed by the past fuel vendor Westinghouse during first four cycles at Unit 1 ( ). All measurements where executed on the first design of VVantage-6 fuel assemblies, where the Zircaloy-4 was used as a cladding material. The visual inspection was carried out too. The measurements were done on the peripheral rod as well as on the central rods, which were removed by special manipulator. Visual examinations as well as the measurements revealed very small amount of corrosion on the cladding surfaces, which was taken as a confirmation of compatibility of Zircaloy-4 alloy with the VVER-1000 water chemistry proposed by CVR. The maximum oxide thickness after 4 cycles was less than 40 µm. Fig. 5 Oxide measurement at Temelín NPP (Zircaloy-4) [6] In addition, since 2011 the fuel inspections and repairs are provided with present fuel vendor, Russian company TVEL with the participation of experts from RIAR and CVR. CONCLUSIONS Reliability of nuclear fuel and radiation fields surrounding primary systems are important aspects of overall nuclear reactor safety. Axial offset anomaly has occurred in a number of PWRs operating with extended fuel cycles and high boiling duty cores. The primary coolant chemistries used in VVER NPPs have similar basis to those used in PWRs and are designed primarily to minimize out-of-core radiation fields. That means to maintain the alkaline reducing condition in the primary circuit during the normal operation. In VVER NPPs the coolant chemistry differs from that in Western PWRs in that the alkali used is mainly potassium, and that ammonia or hydrazine is added to generate the hydrogen used to suppress radiolysis.

8 One of the main goals in CVR is the study of the impact of PWR and VVER primary coolant chemistry on construct materials in whole primary system. With the use of research reactor LVR-15 and experimental water loop RVS-4, presented in the paper is participating on the recommendations, as well as on the water chemistry guidelines for all NPPs in Czech Republic (Dukovany NPP (4xVVER-440), Temelín NPP (2xVVER-1000). The corrosion situation at Temelín NPP is very well depicted since startup, which was also proved by the oxide measurement at fuel assemblies VV6, where the Zircaloy-4 cladding was used. The maximum oxide layer after four cycles was less then 40 µm, which is an order of magnitude lower then is normally achieved on the western PWRs. Since the compatibility of Zircaloy-4 cladding with the VVER-1000 water chemistry was confirmed, there is no need to measure the oxide thickness at the fuel clad at Temelín NPP. In addition, since 2007 Westinghouse introduced new fuel assembly design, where the ZIRLO TM alloy was used, as well as since 2010 the new fuel assemblies TVSA-T from TVEL with E110 alloy are used. Both these alloys are well know as zirconium alloys with higher corrosion resistant as Zircaloy-4. REFERENCES [1] K. Vonkova, V. Svarc, J. Kysela (2010) Operation experience with elevated ammonia, 1-8. In NPC 2010 October 3-7, [2] V. Hlavinka, International Cooperation in Development and Supply of Nuclear Fuel for Czech NPPs / presentation, «ATOMEXPO 2009», 2009, p. 16. [3] Kysela, J., et al.: Overview of loop s facilities for in-core materials and water chemistry testing. In (ed.). JAIF International Conference on Water Chemistry in Nuclear Power Plants. Kashiwazaki, Japan, October [4] V. Svarc et al. Primary Water Chemistry of VVER Reactors: Comparison of Loop Experiments with Hydrogen, Ammonia and Zinc. International Conference on Nuclear water Chemistry in Reactor Systems, Jeju, Korea, October [5] K. Vonkova, J. Kysela, M. Martykan et al. (2008) Primary Water Chemistry and High Temperature Filtration System Experience at Temelín WWER-1000 NPP, In PowerPlant Chemistry 10 (12). [6] D. Ernst and L. Milisdorfer, 10 years of experience with Westinghouse fuel at NPP Temelín, VVER 2010, Prague: 2010, p. 30.

SOME ASPECTS OF COOLANT CHEMISTRY SAFETY REGULATIONS AT RUSSIA S NPP WITH FAST REACTORS

SOME ASPECTS OF COOLANT CHEMISTRY SAFETY REGULATIONS AT RUSSIA S NPP WITH FAST REACTORS Federal Environmental, Industrial and Nuclear Supervision Service Scientific and Engineering Centre for Nuclear and Radiation Safety Scientific and Engineering Centre for Nuclear and Radiation Safety Member

More information

LCC8 SPECIAL TOPIC REPORT

LCC8 SPECIAL TOPIC REPORT LCC8 SPECIAL TOPIC REPORT PWR/VVER Primary Side Coolant Chemistry Volume II Water Chemistry Tool to Mitigate the Concerns PWR/VVER Primary Side Coolant Chemistry Volume II Water Chemistry Tool to Mitigate

More information

Radiation Damage Effects in Solids. Los Alamos National Laboratory. Materials Science & Technology Division

Radiation Damage Effects in Solids. Los Alamos National Laboratory. Materials Science & Technology Division Radiation Damage Effects in Solids Kurt Sickafus Los Alamos National Laboratory Materials Science & Technology Division Los Alamos, NM Acknowledgements: Yuri Osetsky, Stuart Maloy, Roger Smith, Scott Lillard,

More information

LVR-15 Reactor Application for Material Testing. Nuclear Research Institute Řež,, plc Reactor Services Division

LVR-15 Reactor Application for Material Testing. Nuclear Research Institute Řež,, plc Reactor Services Division LVR-15 Reactor Application for Material Testing M. Marek,, J.Kysela Kysela,, J.Burian Nuclear Research Institute Řež,, plc Reactor Services Division Research Reactor LVR-15 Light-water moderated and cooled

More information

Development of Crud Chemistry Model using MOOSE. Amit Agarwal, Jim Henshaw & John McGurk

Development of Crud Chemistry Model using MOOSE. Amit Agarwal, Jim Henshaw & John McGurk Development of Crud Chemistry Model using MOOSE Amit Agarwal, Jim Henshaw & John McGurk Introduction: MOOSE MOOSE software tool developed by Idaho National Labs MOOSE used for solving partial differential

More information

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland

Fundamentals of Nuclear Power. Original slides provided by Dr. Daniel Holland Fundamentals of Nuclear Power Original slides provided by Dr. Daniel Holland Nuclear Fission We convert mass into energy by breaking large atoms (usually Uranium) into smaller atoms. Note the increases

More information

Role of the Halden Reactor Project for TVEL nuclear fuels & materials development. B. Volkov IFE/HRP (Norway) Sochi, May 14-16

Role of the Halden Reactor Project for TVEL nuclear fuels & materials development. B. Volkov IFE/HRP (Norway) Sochi, May 14-16 Role of the Halden Reactor Project for TVEL nuclear fuels & materials development B. Volkov IFE/HRP (Norway) Sochi, May 14-16 1 International OECD Halden Reactor Project foundation and history organisation

More information

Water Chemistry. Program Overview

Water Chemistry. Program Overview Water Chemistry Program Description Program Overview Water chemistry conditions at nuclear power plants can impact corrosion rates, fuel performance, and radiation management. In light of increasing demands

More information

Comparison of assessment of neutron fluence affecting VVER 440 reactor pressure vessel using DORT and TORT codes

Comparison of assessment of neutron fluence affecting VVER 440 reactor pressure vessel using DORT and TORT codes Comparison of assessment of neutron fluence affecting VVER 440 reactor pressure vessel using DORT and TORT codes P. Montero Department of Neutronics, Research Center Rez, Cz International Conference on

More information

Institute of Atomic Energy POLATOM OTWOCK-SWIERK POLAND. Irradiations of HEU targets in MARIA RR for Mo-99 production. G.

Institute of Atomic Energy POLATOM OTWOCK-SWIERK POLAND. Irradiations of HEU targets in MARIA RR for Mo-99 production. G. Instytut Energii Atomowej Institute of Atomic Energy OTWOCK-SWIERK POLAND Irradiations of HEU targets in MARIA RR for Mo-99 production G. Krzysztoszek IAEA TM on Commercial Products and Services of Research

More information

Davis-Besse Reactor Pressure Vessel Head Degradation. Overview, Lessons Learned, and NRC Actions Based on Lessons Learned

Davis-Besse Reactor Pressure Vessel Head Degradation. Overview, Lessons Learned, and NRC Actions Based on Lessons Learned Davis-Besse Reactor Pressure Vessel Head Degradation Overview, Lessons Learned, and NRC Actions Based on Lessons Learned 1 Davis Besse Reactor Pressure Vessel Head Degradation Davis-Besse Reactor Pressure

More information

Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process

Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process Assessment of Radioactivity Inventory a key parameter in the clearance for recycling process MR2014 Symposium, April 8-10, 2014, Studsvik, Nyköping, Sweden Klas Lundgren Arne Larsson Background Studsvik

More information

Nuclear Research Facilities in Russia for innovative nuclear development N. Arkhangelskiy, ROSATOM IAEA Consultancy Meeting June 2013

Nuclear Research Facilities in Russia for innovative nuclear development N. Arkhangelskiy, ROSATOM IAEA Consultancy Meeting June 2013 State Atomic Energy Corporation Rosatom Nuclear Research Facilities in Russia for innovative nuclear development N. Arkhangelskiy, ROSATOM IAEA Consultancy Meeting 10-12 June 2013 1 Introduction Russia

More information

Structural Health Monitoring of Nuclear Power Plants using Inverse Analysis in Measurements

Structural Health Monitoring of Nuclear Power Plants using Inverse Analysis in Measurements Structural Health Monitoring of Nuclear Power Plants using Inverse Analysis in Measurements Fumio Kojima Organization of Advanced Science and Technology, Kobe University 1-1, Rokkodai, Nada-ku Kobe 657-8501

More information

11. Radioactive Waste Management AP1000 Design Control Document

11. Radioactive Waste Management AP1000 Design Control Document CHAPTER 11 RADIOACTIVE WASTE MANAGEMENT 11.1 Source Terms This section addresses the sources of radioactivity that are treated by the liquid and gaseous radwaste systems. Radioactive materials are generated

More information

Nuclear Theory - Course 227 FAILED FUEL MONITORING

Nuclear Theory - Course 227 FAILED FUEL MONITORING Nuclear Theory - Course 227 FAILED FUEL MONITORING The operating conditions in CANDU reactors impose severe stresses on the fuel. Sometimes fuel cladding failures occur. Failures vary in size from minute

More information

RADIOACTIVE WASTE CHARACTERIZATION IN BELGIUM. Tractebel Ariane Avenue, 7 B-1200, Brussels, Belgium ABSTRACT

RADIOACTIVE WASTE CHARACTERIZATION IN BELGIUM. Tractebel Ariane Avenue, 7 B-1200, Brussels, Belgium ABSTRACT RADIOACTIVE WASTE CHARACTERIZATION IN BELGIUM Serge Vanderperre, Christine Vanhaeverbeek, Koen Mannaerts, Baudouin Centner, Philippe Beguin and Michel Detilleux Tractebel Ariane Avenue, 7 B-1200, Brussels,

More information

Young Researchers Meeting 2012

Young Researchers Meeting 2012 Karen Verrall Date: 27/03/12 Career History Berkeley Nuclear Labs (BNFL Magnox Generation) Environmental & Effluent Monitoring / Waste Radiochemistry Electric Power Research Institute (EPRI) PWR Chemistry

More information

Research Program on Water Chemistry of Supercritical Pressure Water under Radiation Field

Research Program on Water Chemistry of Supercritical Pressure Water under Radiation Field 14th International Conference on the Properties of Water and Steam in Kyoto Research Program on Water Chemistry of Supercritical Pressure Water under Radiation Field Yosuke Katsumura 1, Kiyoshi Kiuchi

More information

RECH-1 RESEARCH REACTOR: PRESENT AND FUTURE APPLICATIONS

RECH-1 RESEARCH REACTOR: PRESENT AND FUTURE APPLICATIONS RECH-1 RESEARCH REACTOR: PRESENT AND FUTURE APPLICATIONS E.Vargas, S. Bustamante, R. Crispieri Subdepartamento de reactores Comisión Chilena de Energía Nuclear, Amunategui 95, P.O.Box 188-D, Santiago Chile

More information

Project ALLEGRO: ÚJV Group Activities in He-related Technologies

Project ALLEGRO: ÚJV Group Activities in He-related Technologies Project ALLEGRO: ÚJV Group Activities in He-related Technologies L. Bělovský, J. Berka, M. Janák et al. K. Gregor, O. Frýbort et al. 9 th Int. School on Nuclear Power, Warsaw, Poland, Nov 17, 2017 Outline

More information

AP1000 European 11. Radioactive Waste Management Design Control Document

AP1000 European 11. Radioactive Waste Management Design Control Document CHAPTER 11 RADIOACTIVE WASTE MANAGEMENT 11.1 Source Terms This section addresses the sources of radioactivity that are treated by the liquid and gaseous radwaste systems. Radioactive materials are generated

More information

Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning

Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning Paper presented at the seminar Decommissioning of nuclear facilities, Studsvik, Nyköping, Sweden, 14-16 September 2010. Title: Assessment of activity inventories in Swedish LWRs at time of decommissioning

More information

Lesson 14: Reactivity Variations and Control

Lesson 14: Reactivity Variations and Control Lesson 14: Reactivity Variations and Control Reactivity Variations External, Internal Short-term Variations Reactivity Feedbacks Reactivity Coefficients and Safety Medium-term Variations Xe 135 Poisoning

More information

Chem 481 Lecture Material 4/22/09

Chem 481 Lecture Material 4/22/09 Chem 481 Lecture Material 4/22/09 Nuclear Reactors Poisons The neutron population in an operating reactor is controlled by the use of poisons in the form of control rods. A poison is any substance that

More information

The Radioactive Aerosol Particle Size Distribution in the Air Effluents from Nuclear Power Plants obtained by the Use of Cascade Impactor

The Radioactive Aerosol Particle Size Distribution in the Air Effluents from Nuclear Power Plants obtained by the Use of Cascade Impactor The Radioactive Aerosol Particle Size Distribution in the Air Effluents from Nuclear Power Plants obtained by the Use of Cascade Impactor P. Rulík National Radiation Protection Institute, Srobarova 48,

More information

Background Tritium in Environmental Water Samples. Paul Snead NCHPS Fall Meeting November 2, 2006

Background Tritium in Environmental Water Samples. Paul Snead NCHPS Fall Meeting November 2, 2006 Background Tritium in Environmental Water Samples Paul Snead NCHPS Fall Meeting November 2, 2006 Tritium Basics Tritium ( 3 H) is a radioactive isotope of hydrogen Nucleus has one proton and two neutrons

More information

IL H DESIGN FOR KRYPTON-85 ENRICHMENT BY THERMAL DIFFUSION

IL H DESIGN FOR KRYPTON-85 ENRICHMENT BY THERMAL DIFFUSION IL H DESIGN FOR KRYPTON-85 ENRICHMENT BY THERMAL DIFFUSION Roger A. Schwind and William M. Rutherford Monsanto Research Corporation Mound Laboratory* Miamisburg, Ohio 45342 Substantial quantities*of krypton

More information

NUCLEAR EDUCATION AND TRAINING COURSES AS A COMMERCIAL PRODUCT OF A LOW POWER RESEARCH REACTOR

NUCLEAR EDUCATION AND TRAINING COURSES AS A COMMERCIAL PRODUCT OF A LOW POWER RESEARCH REACTOR NUCLEAR EDUCATION AND TRAINING COURSES AS A COMMERCIAL PRODUCT OF A LOW POWER RESEARCH REACTOR H.BÖCK, M.VILLA, G.STEINHAUSER Vienna University of Technology/Atominstitut Vienna Austria boeck@ati.ac.at

More information

Metropolitan Community College COURSE OUTLINE FORM LAB: 3.0

Metropolitan Community College COURSE OUTLINE FORM LAB: 3.0 Metropolitan Community College COURSE OUTLINE FORM Course Title: Nuclear Plant Operation II Course Prefix & No.: LEC: PROT - 2420 3.0 COURSE DESCRIPTION: LAB: 0 Credit Hours: 3.0 This course introduces

More information

Fission Reactors. Alternatives Inappropriate. Fission Reactors

Fission Reactors. Alternatives Inappropriate. Fission Reactors Page 1 of 5 Fission Reactors The Polywell Reactor Nuclear Reactions Alternatives Inappropriate Hidden Costs of Carbon Web Site Home Page Fission Reactors There are about 438 Neutron Fission Power Reactors

More information

12 Moderator And Moderator System

12 Moderator And Moderator System 12 Moderator And Moderator System 12.1 Introduction Nuclear fuel produces heat by fission. In the fission process, fissile atoms split after absorbing slow neutrons. This releases fast neutrons and generates

More information

ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS

ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS Hernán G. Meier, Martín Brizuela, Alexis R. A. Maître and Felipe Albornoz INVAP S.E. Comandante Luis Piedra Buena 4950, 8400 San Carlos

More information

The Effect of Hydrazine Addition on the Formation of Oxygen Molecule by Fast Neutron Radiolysis

The Effect of Hydrazine Addition on the Formation of Oxygen Molecule by Fast Neutron Radiolysis International Conference on Nuclear Energy Technologies and Sciences (2015), Volume 2016 Conference Paper The Effect of Hydrazine Addition on the Formation of Oxygen Molecule by Fast Neutron Radiolysis

More information

Correlation between neutrons detected outside the reactor building and fuel melting

Correlation between neutrons detected outside the reactor building and fuel melting Attachment 2-7 Correlation between neutrons detected outside the reactor building and fuel melting 1. Introduction The Fukushima Daiichi Nuclear Power Station (hereinafter referred to as Fukushima Daiichi

More information

THE IMPLEMENTATION OF RADIOLOGICAL CHRACTERIZATION FOR REACTOR DECOMMISSIONING. China Nuclear Power Engineering Co. Ltd, Beijing , China

THE IMPLEMENTATION OF RADIOLOGICAL CHRACTERIZATION FOR REACTOR DECOMMISSIONING. China Nuclear Power Engineering Co. Ltd, Beijing , China Proceedings of the 18th International Conference on Nuclear Engineering ICONE18 May 17-21, 2010, Xi'an, China ICONE18- THE IMPLEMENTATION OF RADIOLOGICAL CHRACTERIZATION FOR REACTOR DECOMMISSIONING DENG

More information

The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit

The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit The Dynamical Loading of the WWER440/V213 Reactor Pressure Vessel Internals during LOCA Accident in Hot and Cold Leg of the Primary Circuit ABSTRACT Peter Hermansky, Marian Krajčovič VUJE, Inc. Okružná

More information

CONFORMITY BETWEEN LR0 MOCK UPS AND VVERS NPP PRV ATTENUATION

CONFORMITY BETWEEN LR0 MOCK UPS AND VVERS NPP PRV ATTENUATION CONFORMITY BETWEEN LR MOCK UPS AND VVERS NPP PRV ATTENUATION D. Kirilova, K. Ilieva, S. Belousov Institute for Nuclear Research and Nuclear Energy, Bulgaria Email address of main author: desi.kirilova@gmail.com

More information

Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors

Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors January 15, 2015 Japan Atomic Energy Agency Tanaka Precious Metals Tanaka Holdings Co., Ltd. Successful Development of a New Catalyst for Efficiently Collecting Tritium in Nuclear Fusion Reactors World

More information

JHR PROJECT. IRRADIATION DEVICES IN-SERVICE INSPECTION OF NUCLEAR PRESSURE EQUIPMENT S.

JHR PROJECT. IRRADIATION DEVICES IN-SERVICE INSPECTION OF NUCLEAR PRESSURE EQUIPMENT S. JHR PROJECT. IRRADIATION DEVICES IN-SERVICE INSPECTION OF NUCLEAR PRESSURE EQUIPMENT S. Investigation of Non DESTRUCTIVE EXAMINATIONS For INSPECTION Purposes. S.Gaillot CEA-France IGORR 18 & IAEA Workshop

More information

Primary Coolant Chemistry: Fundamental Aspects & Improvements/Optimizations

Primary Coolant Chemistry: Fundamental Aspects & Improvements/Optimizations Primary Coolant Chemistry: Fundamental Aspects & Improvements/Optimizations 1/ 89 Content of presentation > Water chemistry: Fundamental aspects & requirements Material compatibility Control of radiation

More information

Electric Power Research Institute. Water Chemistry. Program Overview

Electric Power Research Institute. Water Chemistry. Program Overview Water Chemistry Program Description Program Overview Water chemistry conditions at nuclear power plants can impact corrosion rates, fuel performance, and radiation management. In light of increasing demands

More information

Research Article Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code

Research Article Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code Hindawi Science and Technology of Nuclear Installations Volume 2017, Article ID 5151890, 8 pages https://doi.org/10.1155/2017/5151890 Research Article Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal

More information

Episode 528: Controlling fission

Episode 528: Controlling fission Episode 528: Controlling fission In this episode, you can look at the different features of the core of a nuclear reactor, and explain its operation using your students knowledge of nuclear physics. Summary

More information

GRAPHITE GAS REACTORS SLA1 & SLA2 : FROM SAMPLING STRATEGY TO WORKING CONDITIONS

GRAPHITE GAS REACTORS SLA1 & SLA2 : FROM SAMPLING STRATEGY TO WORKING CONDITIONS Decomissioning & Waste Management Unit GRAPHITE GAS REACTORS SLA1 & SLA2 : FROM SAMPLING STRATEGY TO WORKING CONDITIONS Atoms for the future 27 th -30 th June 2016 Contact : Clémence WEILL clemence.weill@edf.fr

More information

Jason T. Harris, Ph.D. Department of Nuclear Engineering and Health Physics

Jason T. Harris, Ph.D. Department of Nuclear Engineering and Health Physics Jason T. Harris, Ph.D. Department of Nuclear Engineering and Health Physics Idaho State University North American Technical Center July 24, 2012 1 2 Commercial Nuclear Power Plants (NPPs) produce gaseous,

More information

1. INTRODUCTION 2. EAEA EXISTING CAPABILITIES AND FACILITIES

1. INTRODUCTION 2. EAEA EXISTING CAPABILITIES AND FACILITIES EGYPT FINAL REPORT FOR THE CRP ON DEVELOPING TECHNIQUES FOR SMALL- SCALE, INDIGENOUS PRODUCTION OF MO-99 USING LOW- ENRICHED URANIUM (LEU) OR NEUTRON ACTIVATION 1. INTRODUCTION The Egypt country report

More information

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6 Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to Thermal-Hydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture

More information

SUB-CHAPTER D.1. SUMMARY DESCRIPTION

SUB-CHAPTER D.1. SUMMARY DESCRIPTION PAGE : 1 / 12 CHAPTER D. REACTOR AND CORE SUB-CHAPTER D.1. SUMMARY DESCRIPTION Chapter D describes the nuclear, hydraulic and thermal characteristics of the reactor, the proposals made at the present stage

More information

Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel

Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel Development of depletion models for radionuclide inventory, decay heat and source term estimation in discharged fuel S. Caruso, A. Shama, M. M. Gutierrez National Cooperative for the Disposal of Radioactive

More information

ACTA PHYSICA DEBRECENIENSIS XLI, 29 (2007) ADVANCED METHODS OF RADIATION DETECTION FOR THE SAFETY OPERATION OF NUCLEAR POWER PLANTS.

ACTA PHYSICA DEBRECENIENSIS XLI, 29 (2007) ADVANCED METHODS OF RADIATION DETECTION FOR THE SAFETY OPERATION OF NUCLEAR POWER PLANTS. ACTA PHYSICA DEBRECENIENSIS XLI, 29 (2007) ADVANCED METHODS OF RADIATION DETECTION FOR THE SAFETY OPERATION OF NUCLEAR POWER PLANTS P. Raics 1, J. Szabó 1, T. Sztaricskai 1, S. Scheiner 2, J.C. Széles

More information

Utilization of Egyptian Research Reactor and modes of collaboration

Utilization of Egyptian Research Reactor and modes of collaboration Utilization of Egyptian Research Reactor and modes of collaboration Mohamed A. GAHEEN Director of ETRR-2, Egypt TM on Research Reactor Application for Materials Under High Neutron Fluence, Vienna, 17-21

More information

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT

MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT R. KHAN, M. VILLA, H. BÖCK Vienna University of Technology Atominstitute Stadionallee 2, A-1020, Vienna, Austria ABSTRACT The Atominstitute

More information

SIMPLIFIED BENCHMARK SPECIFICATION BASED ON #2670 ISTC VVER PIE. Ludmila Markova Frantisek Havluj NRI Rez, Czech Republic ABSTRACT

SIMPLIFIED BENCHMARK SPECIFICATION BASED ON #2670 ISTC VVER PIE. Ludmila Markova Frantisek Havluj NRI Rez, Czech Republic ABSTRACT 12 th Meeting of AER Working Group E on 'Physical Problems of Spent Fuel, Radwaste and Nuclear Power Plants Decommissioning' Modra, Slovakia, April 16-18, 2007 SIMPLIFIED BENCHMARK SPECIFICATION BASED

More information

Some Results in studying NPP accidents using PCTRAN-2 LOOP and WWER-1000 simulators

Some Results in studying NPP accidents using PCTRAN-2 LOOP and WWER-1000 simulators Technical Meeting on Effective Utilization of Nuclear Power Plant Simulators as Introductory Educational Tools Some Results in studying NPP accidents using PCTRAN-2 LOOP and WWER-1 simulators Vo Hong Hai,

More information

DISTRIBUTION LIST. Preliminary Safety Report Chapter 21 Reactor Chemistry UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF

DISTRIBUTION LIST. Preliminary Safety Report Chapter 21 Reactor Chemistry UK HPR1000 GDA. GNS Executive. GNS all staff. GNS and BRB all staff CGN EDF Rev: 000 Page: 2 / 23 DISTRIBUTION LIST Recipients GNS Executive GNS all staff Cross Box GNS and BRB all staff CGN EDF Regulators Public Rev: 000 Page: 3 / 23 SENSITIVE INFORMATION RECORD Section Number

More information

Question to the class: What are the pros, cons, and uncertainties of using nuclear power?

Question to the class: What are the pros, cons, and uncertainties of using nuclear power? Energy and Society Week 11 Section Handout Section Outline: 1. Rough sketch of nuclear power (15 minutes) 2. Radioactive decay (10 minutes) 3. Nuclear practice problems or a discussion of the appropriate

More information

Data analysis with uncertainty evaluation for the Ignalina NPP RBMK 1500 gas-gap closure evaluation

Data analysis with uncertainty evaluation for the Ignalina NPP RBMK 1500 gas-gap closure evaluation Data analysis with uncertainty evaluation for the Ignalina NPP RBMK 1500 gas-gap closure evaluation M. Liaukonisl &J. Augutis2 Department ofmathematics and Statistics, Vytautas Magnus University, Lithuania.

More information

AN OVERVIEW OF NUCLEAR ENERGY. Prof. Mushtaq Ahmad, MS, PhD, MIT, USA

AN OVERVIEW OF NUCLEAR ENERGY. Prof. Mushtaq Ahmad, MS, PhD, MIT, USA AN OVERVIEW OF NUCLEAR ENERGY Prof. Mushtaq Ahmad, MS, PhD, MIT, USA Outline of the Seminar 2 Motivation and Importance of Nuclear Energy Future Energy Planning in the Kingdom Current Status of Nuclear

More information

A Brief Sensitivity Analysis for the GIRM and Other Related Technique using a One-Group Cross Section Library for Graphite- Moderated Reactors

A Brief Sensitivity Analysis for the GIRM and Other Related Technique using a One-Group Cross Section Library for Graphite- Moderated Reactors A Brief Sensitivity Analysis for the GIRM and Other Related Technique using a One-Group Cross Section Library for Graphite- Moderated Reactors Kristin E. Chesson, William S. Charlton Nuclear Security Science

More information

Experience with different methods for on- and off-line detection of small releases of fission products from fuel elements at the HOR

Experience with different methods for on- and off-line detection of small releases of fission products from fuel elements at the HOR Experience with different methods for on- and off-line detection of small releases of fission products from fuel elements at the HOR T.V. Delorme, A.C. Groenewegen, A. van der Kooij, W.J.C. Okx Reactor

More information

APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS

APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS APPLICATION OF THE COUPLED THREE DIMENSIONAL THERMAL- HYDRAULICS AND NEUTRON KINETICS MODELS TO PWR STEAM LINE BREAK ANALYSIS Michel GONNET and Michel CANAC FRAMATOME Tour Framatome. Cedex 16, Paris-La

More information

Impact of the Hypothetical RCCA Rodlet Separation on the Nuclear Parameters of the NPP Krško core

Impact of the Hypothetical RCCA Rodlet Separation on the Nuclear Parameters of the NPP Krško core International Conference Nuclear Energy for New Europe 2005 Bled, Slovenia, September 5-8, 2005 Impact of the Hypothetical RCCA Rodlet Separation on the Nuclear Parameters of the NPP Krško core ABSTRACT

More information

Chemistry 500: Chemistry in Modern Living. Topic 5: The Fires of Nuclear Fission. Atomic Structure, Nuclear Fission and Fusion, and Nuclear.

Chemistry 500: Chemistry in Modern Living. Topic 5: The Fires of Nuclear Fission. Atomic Structure, Nuclear Fission and Fusion, and Nuclear. Chemistry 500: Chemistry in Modern Living 1 Topic 5: The Fires of Nuclear Fission Atomic Structure, Nuclear Fission and Fusion, and Nuclear Weapons Chemistry in Context, 2 nd Edition: Chapter 8, Pages

More information

Introduction to Reactivity and Reactor Control

Introduction to Reactivity and Reactor Control Introduction to Reactivity and Reactor Control Larry Foulke Adjunct Professor Director of Nuclear Education Outreach University of Pittsburgh IAEA Workshop on Desktop Simulation October 2011 Learning Objectives

More information

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature.

The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. Moderator Temperature Coefficient MTC 1 Moderator Temperature Coefficient The moderator temperature coefficient MTC is defined as the change in reactivity per degree change in moderator temperature. α

More information

Luminescent Oxygen Sensor for Monitoring of Nuclear Primary Water Cycles

Luminescent Oxygen Sensor for Monitoring of Nuclear Primary Water Cycles Luminescent Oxygen Sensor for Monitoring of Nuclear Primary Water Cycles Frank A. Dunand Nicolas Ledermann Serge Hediger Max Haller Christoph Weber ABSTRACT When we introduced a luminescent sensor to measure

More information

M.Cagnazzo Atominstitut, Vienna University of Technology Stadionallee 2, 1020 Wien, Austria

M.Cagnazzo Atominstitut, Vienna University of Technology Stadionallee 2, 1020 Wien, Austria Measurements of the In-Core Neutron Flux Distribution and Energy Spectrum at the Triga Mark II Reactor of the Vienna University of Technology/Atominstitut ABSTRACT M.Cagnazzo Atominstitut, Vienna University

More information

Uncertainty Quantification of EBR-II Loss of Heat Sink Simulations with SAS4A/SASSYS-1 and DAKOTA

Uncertainty Quantification of EBR-II Loss of Heat Sink Simulations with SAS4A/SASSYS-1 and DAKOTA 1 IAEA-CN245-023 Uncertainty Quantification of EBR-II Loss of Heat Sink Simulations with SAS4A/SASSYS-1 and DAKOTA G. Zhang 1, T. Sumner 1, T. Fanning 1 1 Argonne National Laboratory, Argonne, IL, USA

More information

FUEL PERFORMANCE EVALUATION THROUGH IODINE ACTIVITY MONITORING K.ANANTHARAMAN, RAJESH CHANDRA

FUEL PERFORMANCE EVALUATION THROUGH IODINE ACTIVITY MONITORING K.ANANTHARAMAN, RAJESH CHANDRA 6A-46 FUEL PERFORMANCE EVALUATION THROUGH IODINE ACTIVITY MONITORING K.ANANTHARAMAN, RAJESH CHANDRA CA9800600 Refuelling Technology Division Bhabha Atomic Research Centre Bo m ba,-4000 85,INDIA ABSTRACT

More information

Heterogeneous Description of Fuel Assemblies for Correct Estimation of Control Rods Efficiency in BR-1200

Heterogeneous Description of Fuel Assemblies for Correct Estimation of Control Rods Efficiency in BR-1200 XIII International Youth Scientific and Practical Conference FUTURE OF ATOMIC ENERGY - AtomFuture 2017 Volume 2017 Conference Paper Heterogeneous Description of Fuel Assemblies for Correct Estimation of

More information

COMMISSIONING TESTS OF THE NEW NEUTRON RADIOGRAPHY FACILITY AT THE LVR-15 REACTOR ABSTRACT

COMMISSIONING TESTS OF THE NEW NEUTRON RADIOGRAPHY FACILITY AT THE LVR-15 REACTOR ABSTRACT COMMISSIONING TESTS OF THE NEW NEUTRON RADIOGRAPHY FACILITY AT THE LVR-15 REACTOR J. ŠOLTÉS, L. VIERERBL Neutron Physics Department, Research Centre Rez Ltd., Hlavní 130, 250 68 Husinec-Řež, Czech Republic

More information

VVER-1000 Reflooding Scenario Simulation with MELCOR Code in Comparison with MELCOR Simulation

VVER-1000 Reflooding Scenario Simulation with MELCOR Code in Comparison with MELCOR Simulation VVER-1000 Reflooding Scenario Simulation with MELCOR 1.8.6 Code in Comparison with MELCOR 1.8.3 Simulation Jiří Duspiva Nuclear Research Institute Řež, plc. Nuclear Power and Safety Division Dept. of Reactor

More information

NDT as a tool, for Post-Irradiation Examination.

NDT as a tool, for Post-Irradiation Examination. 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China NDT as a tool, for Post-Irradiation Examination. Abdeldjalil ALGHEM, Mourad KADOUMA, Rabah BENADDAD Nuclear research center

More information

Safety Analyses for Dynamical Events (SADE) SAFIR2018 Interim Seminar Ville Sahlberg

Safety Analyses for Dynamical Events (SADE) SAFIR2018 Interim Seminar Ville Sahlberg VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Safety Analyses for Dynamical Events (SADE) SAFIR2018 Interim Seminar Ville Sahlberg SADE Project SADE produces more reliable answers to safety requirements

More information

Term 3 Week 2 Nuclear Fusion & Nuclear Fission

Term 3 Week 2 Nuclear Fusion & Nuclear Fission Term 3 Week 2 Nuclear Fusion & Nuclear Fission Tuesday, November 04, 2014 Nuclear Fusion To understand nuclear fusion & fission Nuclear Fusion Why do stars shine? Stars release energy as a result of fusing

More information

Profile SFR-64 BFS-2. RUSSIA

Profile SFR-64 BFS-2. RUSSIA Profile SFR-64 BFS-2 RUSSIA GENERAL INFORMATION NAME OF THE A full-scale physical model of a high-power BN-type reactor the «BFS-2» critical facility. FACILITY SHORT NAME BFS-2. SIMULATED Na, Pb, Pb-Bi,

More information

Characterization of Large Structures & Components

Characterization of Large Structures & Components Structures & Components KEY BENEFITS Key Drivers: Lack of good knowledge about the position, the identification and the radiological specification of contamination on or inside large components. Significant

More information

Available online at ScienceDirect. Energy Procedia 71 (2015 ) 52 61

Available online at  ScienceDirect. Energy Procedia 71 (2015 ) 52 61 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 71 (2015 ) 52 61 The Fourth International Symposium on Innovative Nuclear Energy Systems, INES-4 Reactor physics and thermal hydraulic

More information

DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK CALCULATIONS FOR DIFFERENT ENRICHMENTS OF UO 2

DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK CALCULATIONS FOR DIFFERENT ENRICHMENTS OF UO 2 Supercomputing in Nuclear Applications (M&C + SNA 2007) Monterey, California, April 15-19, 2007, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) DOPPLER COEFFICIENT OF REACTIVITY BENCHMARK

More information

Estimation of accidental environmental release based on containment measurements

Estimation of accidental environmental release based on containment measurements Estimation of accidental environmental release based on containment measurements Péter Szántó, Sándor Deme, Edit Láng, Istvan Németh, Tamás Pázmándi Hungarian Academy of Sciences Centre for Energy Research,

More information

Hybrid Low-Power Research Reactor with Separable Core Concept

Hybrid Low-Power Research Reactor with Separable Core Concept Hybrid Low-Power Research Reactor with Separable Core Concept S.T. Hong *, I.C.Lim, S.Y.Oh, S.B.Yum, D.H.Kim Korea Atomic Energy Research Institute (KAERI) 111, Daedeok-daero 989 beon-gil, Yuseong-gu,

More information

«CALCULATION OF ISOTOPE BURN-UP AND CHANGE IN EFFICIENCY OF ABSORBING ELEMENTS OF WWER-1000 CONTROL AND PROTECTION SYSTEM DURING BURN-UP».

«CALCULATION OF ISOTOPE BURN-UP AND CHANGE IN EFFICIENCY OF ABSORBING ELEMENTS OF WWER-1000 CONTROL AND PROTECTION SYSTEM DURING BURN-UP». «CALCULATION OF ISOTOPE BURN-UP AND CHANGE IN EFFICIENCY OF ABSORBING ELEMENTS OF WWER-1000 CONTROL AND PROTECTION SYSTEM DURING BURN-UP». O.A. Timofeeva, K.U. Kurakin FSUE EDO «GIDROPRESS», Podolsk, Russia

More information

SPACE-DEPENDENT DYNAMICS OF PWR. T. Suzudo Japan Atomic Energy Research Institute, JAERI Tokai-Mura, Naka-Gun Japan

SPACE-DEPENDENT DYNAMICS OF PWR. T. Suzudo Japan Atomic Energy Research Institute, JAERI Tokai-Mura, Naka-Gun Japan SPACE-DEPENDENT DYNAMICS OF PWR T. Suzudo Japan Atomic Energy Research Institute, JAERI Tokai-Mura, Naka-Gun 319-11 Japan E. Türkcan and J.P. Verhoef Netherlands Energy Research Foundation P.O. Box 1,

More information

Nuclear power plants

Nuclear power plants Nuclear power plants Introduction: There is a common trend throughout the world to use nuclear energy as a source of power. This is because of the rapid depletion of conventional energy sources. Transportation

More information

Application Note. InSpector 1000-based CZT Package for Nuclear Power Plant Isotope Mix Analysis

Application Note. InSpector 1000-based CZT Package for Nuclear Power Plant Isotope Mix Analysis Application Note InSpector 1000-based CZT Package for Nuclear Power Plant Isotope Mix Analysis A collaboration between Mirion/Canberra and EDF, owner of 58 Operating Reactor units in France. Background

More information

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea Feasibility Study of using Gamma Emission Tomography for Identification of Leaking Fuel Rods in Commercial Fuel Assemblies P. Andersson 1, S. Holcombe 2 1 Uppsala University, Department of Physics and

More information

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy.

The outermost container into which vitrified high level waste or spent fuel rods are to be placed. Made of stainless steel or inert alloy. Glossary of Nuclear Waste Terms Atom The basic component of all matter; it is the smallest part of an element having all the chemical properties of that element. Atoms are made up of protons and neutrons

More information

DEVELOPMENT OF HIGH RESOLUTION X-RAY CT TECHNIQUE FOR IRRADIATED FUEL ASSEMBLY

DEVELOPMENT OF HIGH RESOLUTION X-RAY CT TECHNIQUE FOR IRRADIATED FUEL ASSEMBLY More Info at Open Access Database www.ndt.net/?id=18598 DEVELOPMENT OF HIGH RESOLUTION X-RAY CT TECHNIQUE FOR IRRADIATED FUEL ASSEMBLY A. Ishimi, K. Katsuyama, H. Kodaka, H. Furuya Japan Atomic Energy

More information

Cambridge University Press An Introduction to the Engineering of Fast Nuclear Reactors Anthony M. Judd Excerpt More information

Cambridge University Press An Introduction to the Engineering of Fast Nuclear Reactors Anthony M. Judd Excerpt More information INTRODUCTION WHAT FAST REACTORS CAN DO Chain Reactions Early in 1939 Meitner and Frisch suggested that the correct interpretation of the results observed when uranium is bombarded with neutrons is that

More information

ENGINEERING OF NUCLEAR REACTORS. Fall December 17, 2002 OPEN BOOK FINAL EXAM 3 HOURS

ENGINEERING OF NUCLEAR REACTORS. Fall December 17, 2002 OPEN BOOK FINAL EXAM 3 HOURS 22.312 ENGINEERING OF NUCLEAR REACTORS Fall 2002 December 17, 2002 OPEN BOOK FINAL EXAM 3 HOURS PROBLEM #1 (30 %) Consider a BWR fuel assembly square coolant subchannel with geometry and operating characteristics

More information

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code

The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Journal of Nuclear and Particle Physics 2016, 6(3): 61-71 DOI: 10.5923/j.jnpp.20160603.03 The Effect of Burnup on Reactivity for VVER-1000 with MOXGD and UGD Fuel Assemblies Using MCNPX Code Heba K. Louis

More information

MEASUREMENT OF SPENT FUEL ASSEMBLIES IN SPRR-300

MEASUREMENT OF SPENT FUEL ASSEMBLIES IN SPRR-300 MEASUREMENT OF SPENT FUEL ASSEMBLIES IN SPRR-300 CHEN Wei, HU Zhiyong, YANG Rui Institute of Nuclear Physics and Chemistry, Sichuan, China 1 Preface SPRR-300 is a pool-typed research reactor which uses

More information

Title: Development of a multi-physics, multi-scale coupled simulation system for LWR safety analysis

Title: Development of a multi-physics, multi-scale coupled simulation system for LWR safety analysis Title: Development of a multi-physics, multi-scale coupled simulation system for LWR safety analysis Author: Yann Périn Organisation: GRS Introduction In a nuclear reactor core, different fields of physics

More information

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name:

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name: Wallace Hall Academy Physics Department Radiation Pupil Notes Name: Learning intentions for this unit? Be able to draw and label a diagram of an atom Be able to state what alpha particles, beta particles

More information

SIMULATION OF LEAKING FUEL RODS

SIMULATION OF LEAKING FUEL RODS SIMULATION OF LEAKING FUEL RODS Zoltán Hózer KFKI Atomic Energy Research Institute P.O.B. 49, H-1525 Budapest, Hungary Hozer@sunserv.kfki.hu Abstract The behaviour of failed fuel rods includes several

More information

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p (July 2004)

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p (July 2004) Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 41, No. 7, p. 765 770 (July 2004) TECHNICAL REPORT Experimental and Operational Verification of the HTR-10 Once-Through Steam Generator (SG) Heat-transfer

More information

Sampling based on Bayesian statistics and scaling factors

Sampling based on Bayesian statistics and scaling factors JRP ENV54 MetroDecom 2nd Workshop EC-JRC Directorate Nuclear Safety and Security Ispra, Italy, 11-12 October 2016 Sampling based on Bayesian statistics and scaling factors P. De Felice (1), S. Jerome (2),

More information

Characterisation of materials present on decommissioning sites

Characterisation of materials present on decommissioning sites MetroDECOM work package 1: Characterisation of materials present on decommissioning sites Simon Jerome (NPL-UK); Sven Boden (SCK CEN- Belgium); Pierino de Felice (ENEA-Italy) and María García-Miranda (NPL-UK)

More information

Role of the Oarai Branch as a Facility open for University Researchers in Utilization of Research Reactors

Role of the Oarai Branch as a Facility open for University Researchers in Utilization of Research Reactors Role of the Oarai Branch as a Facility open for University Researchers in Utilization of Research Reactors Tatsuo Shikama Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aobaku, Sendai,

More information