Production Test Analysis of XYZ-Well at Dieng Geothermal Field. Using Horizontal Discharge Lip Pressure Method with

Size: px
Start display at page:

Download "Production Test Analysis of XYZ-Well at Dieng Geothermal Field. Using Horizontal Discharge Lip Pressure Method with"

Transcription

1 Proceedings World Geothermal Congress 2015 Melbourne, Australia, April 2015 Production Test Analysis of XYZ-Well at Dieng Geothermal Field Using Horizontal Discharge Lip Pressure Method with Russel James Equation and Hiriart Equation Aris Tristianto Wibowo 1, Muhammad Thasril 2, and Puji Sirait 3 1 Petroleum Engineering, ITB, aris.wibowo@outlook.com 2 Halliburton, m.thasril@gmail.com 3 Halliburton, pujigwa@yahoo.com Keywords: production test, horizontal discharge lip pressure method, Russel James equation, Hiriart equation ABSTRACT Production test is one of very crucial activities in the geothermal field development process because the condition of the well, reservoir characteristics, and production capacity of the well can be determined by the test. Production test data should be processed carefully to get the best possible determination of production capacity approaching the actual condition of the well, so that future development plans of production wells may be optimized and monitored. Errors in production test data processing would decrease the production efficiency of the wells based on the production wells development design that have been made. In the other hand, the production can be analyzed each time based on available baseline condition prior to mitigate the problems. This paper describes the production analysis results based on case studies of XYZ-well production test at Dieng geothermal field that uses the Horizontal Lip Pressure Method with two silencers and two different types of weir boxes simultaneously at the same time of production test. Data processing is accompanied by data selection process, lip pressure correction, and correction of the gas presence. Total rate and total enthalpy of the fluid, which become the objectives of this production test, will be determined by Russel James equation and Hiriart equation. The results from both equations are also compared to know the sensitivity of each equation toward the available production test data. All results will be presented in graphs, so that reservoir characteristics and XYZwell condition can be specified based on those graphs. 1. INTRODUCTION Dieng is a water-dominated geothermal field located in Dieng Plateau, Central Java and developed at an altitude of about meters above sea level with temperatures between C. Dieng field is made up of a series of volcanoes with andesite composition (Layman, 2). Geothermal manifestations that appear on the surface are in the form of solfatar, hot sping, mudpool, fumarole, and moffet. (Calibugan, et al., 0). Dieng field reservoir temperatures reach over 225 C and it is categorized as a hightemperature reservoir system. Based on the study results conducted by Layman (2), in general, Dieng geothermal field can be divided into two sectors, Sileri and Sikidang. Reservoir fluid of Sileri sector has moderate salinity, ph neutral, and low gas content characteristics, while fluid of Sikidang sector has high gas content with moderate feed zone depth and high enthalpy. Currently, Dieng geothermal field is managed by PT Geo Dipa Energy Dieng Unit (Persero). The field was developed with seven production wells and four injection wells for Unit 1, resulting in a production of 60 MW 2. THEORY 2.1 Horizontal Lip Pressure Method In this method, reservoir fluid will be ejected horizontally from the well through a lip pipe with certain diameter to the silencer. Measured parameters as input data for this method are wellhead pressure, lip pressure, and lip pipe diameter. Lip pressure is measured at the end of the lip pipe and fluid flow rate from silencer is determined using a weir box. 2.2 Weir Box Equation Weir box is used to determine the water mass flow rate from the silencer. In this case, there are two types of weir box that will be explained, V-Notch Weir Box and Rectangular Weir Box V-Notch Sharp Crested Weir Box Here are the equations used to determine water mass flow rate through the V-Notch Sharp Crested Weir Box. ( ) ( ) (1) (2) (3) 1

2 where Q, C, θ, h, and k are water flow rate (m 3 /hour), discharge coefficient, V-Notch angle (degree), weir height (m), and weir height correction (m), respectively Rectangular Sharp Crested Weir Box Figure 1: V-Notch Sharp Crested Weir Box. Slightly different from the equations before, these following equations are used for Sharp Crested Rectangular Weir Box. (4) where Q, C e, b e, h e, K, and g are water flow rate (m 3 /hour), discharge coefficient, space between weir plate (m), weir height (m), correction factor (m), and gravity acceleration (m/s 2 ), respectively. (5) (6) Figure 2. Rectangular Sharp Crested Weir Box. Discharge coefficient (C e ) and correction factor can be determined by following graphs. Figure 3. Graph to determine the value of discharge coefficient (C e ). 2

3 2.3 Russel James Equation Figure 4. Graph to determine the correction factor (K b ). Russel James equation connecting mass flow rate, enthalpy, lip pipe cross-sectional area, and lip pressure as follows. ( ) (7) (8) where W atm, H, P, A, h f, h g, h fg, and M are water mass flow rate (ton/hour), fluid enthalpy (kj/kg), lip pressure (bara), enthalpy of liquid-phase (kj/kg), enthalpy of vapor-phase (kj/kg), latent heat (kj/kg), and total mass flow rate (ton/hour), respectively. 2.4 Hiriart Equation Gerardo Hiriart creates an equation to determine the steam flow rate from vapor-dominated geothermal wells as follows. ( ) (9) This equation is quite simple, because it only requires pressure and lip pipe diameter as the variables. Hiriart equation negates the fluid enthalpy parameter, so that the accuracy level is lower than Russel James equation. Assumption applied in the Hiriart equation is steam flow to the atmosphere at sonic velocity condition as in perfect gas. However, Equation 6 can only be applied for vapor-dominated wells, so that to determine steam flow rate of the two-phase wells, Equation 6 needs to be corrected into the following equation. ( ) (10) where Q s, P, D, Q w, and Q s are vapor mass flow rate (ton/hour), lip pressure (psia), lip pipe diameter (inch), water mass flow rate at atmospheric pressure (ton/jam), and corrected vapor mass flow rate (ton/hour). 2.5 Lip Pressure Correction Equation Lip pressure obtained from measurement activity with a measuring device still needs to be corrected with a calibration factor based on lip pipe equation made by California Energy Company (CEC). ( ) (11) where P lip, P atm, P lip correction, and Corr. P lip are measured lip pressure (psig), atmospheric pressure (psia), calibration correction factor (inch), and corrected lip pressure (psia) 2.6 Gas Correction Equation Malcolm A. Grant develops an equation, which is a modification of the previous equation, to correct the results of enthalpy values due to the presence of gas in the well. The presence of gas that carried with the production fluid will give an impact on the results of enthalpy values. The effect can be very significant on certain conditions, so that the previous results need to be corrected by the following equation. ( ) ( ) ( ) (12) where ΔH, H, f lip, and H are enthalpy correction (kj/kg), initial enthalpy (kj/kg), gas mass fraction at lip pressure, and corrected enthalpy value (kj/kg). (13) 3

4 WHP (psig) Aris and Thasril 2.7 Two-Phase Fluid Enthalpy Equation Production test by using horizontal lip pressure method can also be conducted with more than one silencer for one well. If that condition exists, the enthalpy of the fluid can t be directly summed from the calculation of each silencer. Values that can be directly combined are the total fluid flow rate and water flow rate. By knowing the combination of both parameters from available silencers, enthalpy of the fluid can be determined from production test by the following equation. where H, x, W atm, M, h f, and h fg are fluid enthalpy (kj/kg), mass fraction of vapor, combined water flow rate (ton/hour), combined total fluid flow rate (ton/hour), enthalpy of liquid phase (kj/kg), and latent heat (kj/kg), respectively. 3. CASE STUDY Production test with horizontal lip pressure method, which performed on XYZ-well at Dieng geothermal field, used two lips and two different weir boxes. Lips and weir boxes specifications used are summarized in Table 1. Table 1: Lips and weir boxes specification used in XYZ-well production test. (14) (15) Static Data: Atmospheric Pressure: 11.5 psia ID of James Tube: 6.00 inch 8.00 inch Height from gauge to James Tube: cm cm Plip Correction: inch inch Left Right Rectangular Weir Box Type: V-Notch B = 1.20 m θ = 90 b = 0.34 m p = 0.73 m The production test was performed from March 24 th to 31 st, Production test profile during the time interval is shown in Figure 5. Production test measurements graph obtained shows inconsistent results in some particular time. Theoretically, the larger the valve is opened the wellhead pressure will be smaller and will be stabilized at a certain pressure during valve is opened at the same conditions. Therefore, production test data obtained need to be selected and validated more in accordance with the theory. Open valve 3.5" (10.7%) Open valve 5.25" (29.1%) WHP coming up Water turn to black Choke throtle valve due to sinker bar can not flow pass the fow tee Open valve 6.25" (40%) Open valve 7" (47.5%) 0 Open back to original position Weir on separator two overflow Open valve 7.25" (50.1%) Date and Time Figure 5: Wellhead pressure profile of XYZ-well production test. With the valid production test data, subsequent data processing can be conducted that begins with the mass flow rate calculation process of each weir box. Mass flow rate of both weir boxes are next combined to obtain total mass flow rate, so that it can be used to calculate total enthalpy of the fluid produced from XYZ-well. Total mass flow rate and total enthalpy of the fluid are determined by two equations, Russel James equation and Hiriart equation, so the results of both equations can be compared. Production potential of XYZ-well and its reservoir conditions can be predicted based on the Wellhead Pressure vs. Total Rate and Wellhead Pressure vs. Enthalpy plot. Analysis of the two plots is explained in Grant, Malcolm A. and Bixley, Paul F.: Geothermal Reservoir Engineering Second Edition, Elsevier Inc., (2011), Oxford. Plots for XYZ-well are shown in Figure 6 and Figure 7. According to Wellhead Pressure vs. Total Rate plot, it can be analyzed that XYZ-well producing two-phase fluid and the result is appropriate with the actual condition. Then, according to Wellhead Pressure vs. Enthalpy plot, it can be analyzed that XYZ-well producing two-phase fluid from the reservoir which has a pretty good permeability. Total mass flow rate and total enthalpy of the fluid obtained from the Russel James equation and the Hiriart Equation have a little difference. It happens because the two equations have different calculation assumptions. Russel James equation has more complex variables, so that the Russel James equation has better accuracy rate, while Hirirat equation is simpler because it only includes lip pressure and lip pipe diameter as the variables. 4

5 Figure 6: XYZ-well flow test plot before data selection process. Figure 7: XYZ-well flow test plot after data selection process. The data processing results based on the Hiriart equation always deliver greater value compared with the calculation results based on the Russel James equation, both for total flow rate and total enthalpy of fluid. Statistically, the average percentage of difference value resulting from the Russel James equation and the Hiriart equation is 5.34% for the total flow rate value and 3.42% for the total enthalpy value of the fluid. Hiriart equation, which is simple, can be modified in order to generate value that approaching Russel James equation, so that the modified Hiriart equation further can be easily used and produce an accurate value. Modified Hiriart equation is formulated by adding a constant in the earlier Hiriart equation. The constant is determined by calculating the average value ratio of the results obtained from the equations of line representing Russel James equation and Hiriart equation. The equations are interpolation results of the equations of line corresponding to the graphs in Figure 7. The following equations are equations of line to determine the total flow rate of fluid. Russel James: Hiriart: (16) (17) The following equations are equations of line to determine the total enthalpy of fluid. Russel James: Hiriart: 5 (18) (19)

6 Table 2: Calculation results based on Russel James equation and Hiriart Equation (a) Total Rate; (b) Enthalpy Total Rate (ton/hr) Pwh Difference (psig) Russel Hiriart (%) James Average Conversion Factor (a) 6 Enthalpy (kj/kg) Pwh Difference (psig) Russel Hiriart (%) James Average Conversion Factor (b)

7 Table 3: Calculation results based on Russel James equation and Modified Hiriart Equation (a) Total Rate; (b) Enthalpy Total Rate (ton/hr) Pwh Difference (psig) Russel Hiriart (%) James Average (a) Enthalpy (kj/kg) Pwh Difference (psig) Russel Hiriart (%) James Average (b) 7

8 The results obtained by the four equations above for some P wh values are shown in Table 2 (a) and (b). From the tables, it is known that the average value ratio obtained for the total flow rate of fluid is with error percentage 5.34%, while for the total enthalpy of fluid is with error percentage 3.42%. Based on these results, the constants used to determine the total flow rate and the total enthalpy of fluid by modified Hiriart equation are and respectively, so that modified Hiriart equation will be obtained as follows. ( ) (20) ( ) (21) Table 3 (a) and (b) show the errors of difference results between Russel James equation and modified Hiriart equation. According to the tables, it is known that the average error percentage of fluid total flow rate and fluid total enthalpy are reduced to 0.278% and 0.281% respectively. The great reduction in the average error shows that the results obtained from the modified Hiriart equation are very close to the results based on Russel James equation, as shown in Figure 8 and Figure 9. (a) Figure 8: Comparison of the total flow rate based on Russel James equation with (a) Hiriart equation; (b) modified Hiriart equation (b) (a) Figure 9: Comparison of the total enthalpy based on Russel James equation with (a) Hiriart equation; (b) modified Hiriart equation (b) 4. CONCLUSION The XYZ-well produces two-phase fluid from a geothermal reservoir that has a pretty good permeability. Total mass flow rate and total enthalpy value of the fluid based on Hiriart equation gives value that is always greater than the calculation results based on the Russel James equation. It is resulting average error percentage 5.34% for the total flow rate value and 3.42% for the total enthalpy value of the fluid. Modified Hiriart equation gives very close results according to Russel James equation with errors 0.278% for the total flow rate and 0.281% for the total enthalpy of the fluid. 8

9 REFERENCES Borromeo, CMR., and Orizonte, RG.: Output Computation for SNGP Wells Discharging Dry Steam, (1997). Cahyono, Yanuaris Dwi: The Application of Modified Hiriart for Fluids Flow Measurement in Geothermal Wells Flow Test Using Horizontal Lip Pressure Methode, (2013), Jakarta. Grant, Malcolm A. and Bixley, Paul F.: Geothermal Reservoir Engineering Second Edition, Elsevier Inc., (2011), Oxford. Hiriart, Gerardo: Steam Flow Rate Calculation by a Very Simple Equation, GRC6, , (1982). Saptadji, Nenny Miryani: Teknik Panas Bumi, ITB. 9

THE GEOTHERMAL TWO-PHASE ORIFICE PLATE

THE GEOTHERMAL TWO-PHASE ORIFICE PLATE THE EOTHERMAL TWO-PHASE ORIFICE PLATE Mohamad Husni Mubarok 1,2 *, Sadiq J. Zarrouk 1 and John E. Cater 1 1 Department of Engineering Science, The University of Auckland, Private Bag 9219, Auckland, New

More information

Heat (& Mass) Transfer. conceptual models of heat transfer. large scale controls on fluid movement. distribution of vapor-saturated conditions

Heat (& Mass) Transfer. conceptual models of heat transfer. large scale controls on fluid movement. distribution of vapor-saturated conditions Heat (& Mass) Transfer conceptual models of heat transfer temperature-pressure gradients large scale controls on fluid movement distribution of vapor-saturated conditions fluid flow paths surface manifestations

More information

The Initial-State Geochemistry as a Baseline for Geochemical Monitoring at Ulubelu Geothermal Field, Indonesia

The Initial-State Geochemistry as a Baseline for Geochemical Monitoring at Ulubelu Geothermal Field, Indonesia Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 The Initial-State Geochemistry as a Baseline for Geochemical Monitoring at Ulubelu Geothermal Field, Indonesia Mulyanto,

More information

INTERPRETATION OF INTERFERENCE EFFECTS IN THREE PRODUCTION WELLS IN THE KAWERAU GEOTHERMAL FIELD, NEW ZEALAND. Lynell Stevens and Kevin J Koorey

INTERPRETATION OF INTERFERENCE EFFECTS IN THREE PRODUCTION WELLS IN THE KAWERAU GEOTHERMAL FIELD, NEW ZEALAND. Lynell Stevens and Kevin J Koorey PROCEEDINGS, Twenty-First Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 22-24, 1996 SGP-TR-151 INTERPRETATION OF INTERFERENCE EFFECTS IN THREE PRODUCTION

More information

Laboratory exercise 1: Open channel flow measurement

Laboratory exercise 1: Open channel flow measurement Chapter 1 Laboratory exercise 1: Open channel flow measurement Laboratory exercise Open channel flow measurement is placed on the Faculty of Civil and Geodetic Engineering, on Department of Environmental

More information

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola CONCEPTS AND DEFINITIONS Prepared by Engr. John Paul Timola ENGINEERING THERMODYNAMICS Science that involves design and analysis of devices and systems for energy conversion Deals with heat and work and

More information

NUMERICAL MODELING STUDY OF SIBAYAK GEOTHERMAL RESERVOIR, NORTH SUMATRA, INDONESIA

NUMERICAL MODELING STUDY OF SIBAYAK GEOTHERMAL RESERVOIR, NORTH SUMATRA, INDONESIA PROCEEDINGS, Twenty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 29-31, 21 SGP-TR-168 NUMERICAL MODELING STUDY OF SIBAYAK GEOTHERMAL RESERVOIR,

More information

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions.

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions. We RoU No. 700095 Candidate should write his/her Roll No. here. Total No. of Questions : 7 No. of Printed Pages : 7 SEM-2017(03HI MECHANICAL ENGINEERING Paper II Time ; 3 Hours ] [ Total Marks : 0 Instructions

More information

where x represents the mass fraction of steam and % and hf the enthalpy of steam vapor and liquid water, respecively. The equation can also be

where x represents the mass fraction of steam and % and hf the enthalpy of steam vapor and liquid water, respecively. The equation can also be PROCEEDINGS, Thhkmth Workshop on Gcothcrmal R-oir Stanford University. Stanford, California, Jmuq 19-21, 1988 SOP-TR-113 EnginariDg CONPRE88IBILITY ARID 8089IC VELOCITY IN BTEAn/WATER NIXTVRES Sigurgeir

More information

HEAT TRANSFER IN A LOW ENTHALPY GEOTHERMAL WELL

HEAT TRANSFER IN A LOW ENTHALPY GEOTHERMAL WELL HEAT TRANSFER IN A LOW ENTHALPY GEOTHERMAL WELL Marcel Rosca University of Oradea, Armata Romana 5, RO-37 Oradea, Romania Key Words: low enthalpy, numerical modeling, wellbore heat transfer, Oradea reservoir,

More information

MODEL OF TEMPERATURE DISTRIBUTION GEOTHERMAL PESANGGRAHAN GEOTHERMAL SYSTEM, CENTRAL JAVA, INDONESIA

MODEL OF TEMPERATURE DISTRIBUTION GEOTHERMAL PESANGGRAHAN GEOTHERMAL SYSTEM, CENTRAL JAVA, INDONESIA MODEL OF TEMPERATURE DISTRIBUTION GEOTHERMAL PESANGGRAHAN GEOTHERMAL SYSTEM, CENTRAL JAVA, INDONESIA Muhammad Noer Ali 1, Udi Harmoko 1, Gatot Yuliyanto 1, Tony Yulianto 1 1 Department of Physics, Faculty

More information

NOTICE CONCERNING COPYRIGHT RESTRICTIONS

NOTICE CONCERNING COPYRIGHT RESTRICTIONS NOTICE CONCERNING COPYRIGHT RESTRICTIONS This document may contain copyrighted materials. These materials have been made available for use in research, teaching, and private study, but may not be used

More information

FLOW MEASUREMENT IN PIPES EXPERIMENT

FLOW MEASUREMENT IN PIPES EXPERIMENT University of Leicester Engineering Department FLOW MEASUREMENT IN PIPES EXPERIMENT Page 1 FORMAL LABORATORY REPORT Name of the experiment: FLOW MEASUREMENT IN PIPES Author: Apollin nana chaazou Partner

More information

AN EVALUATION OF JAMES' EMPIRICAL FORMULAE FOR THE DETERMINATION OF TWO-PHASE FLOW CHARACTERISTICS IN GEOTHERMAL WELLS

AN EVALUATION OF JAMES' EMPIRICAL FORMULAE FOR THE DETERMINATION OF TWO-PHASE FLOW CHARACTERISTICS IN GEOTHERMAL WELLS AN EVALUATION OF JAMES' EMPIRICAL FORMULAE FOR THE DETERMINATION OF TWO-PHASE FLOW CHARACTERISTICS IN GEOTHERMAL WELLS P. Cheng and M. Karmarkar University of Hawaii Honolulu, Hawaii 96822 Introduction

More information

Hydrostatic. Pressure distribution in a static fluid and its effects on solid surfaces and on floating and submerged bodies.

Hydrostatic. Pressure distribution in a static fluid and its effects on solid surfaces and on floating and submerged bodies. Hydrostatic Pressure distribution in a static fluid and its effects on solid surfaces and on floating and submerged bodies. M. Bahrami ENSC 283 Spring 2009 1 Fluid at rest hydrostatic condition: when a

More information

Use N 1, if sizing the valve for a flow rate in volumetric units (gpm or m 3 /h).

Use N 1, if sizing the valve for a flow rate in volumetric units (gpm or m 3 /h). ANSI/ISA/IEC Valve Sizing Catalog 2 March 202 Page 2 Introduction Standardization activities for control valve sizing can be traced back to the early 960's when an American trade association, the Fluids

More information

CIVE HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University

CIVE HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University CIVE 401 - HYDRAULIC ENGINEERING PART I Pierre Julien Colorado State University Problems with and are considered moderate and those with are the longest and most difficult. In 2018 solve the problems with

More information

EFFECT OF VERTICAL CURVATURE OF FLOW AT WEIR CREST ON DISCHARGE COEFFICIENT

EFFECT OF VERTICAL CURVATURE OF FLOW AT WEIR CREST ON DISCHARGE COEFFICIENT Ninth International Water Technology Conference, IWTC9 2005, Sharm El-Sheikh, Egypt 249 EFFECT OF VERTICAL CURVATURE OF FLOW AT WEIR CREST ON DISCHARGE COEFFICIENT Kassem Salah El-Alfy Associate Prof.,

More information

Lagrangian description from the perspective of a parcel moving within the flow. Streamline Eulerian, tangent line to instantaneous velocity field.

Lagrangian description from the perspective of a parcel moving within the flow. Streamline Eulerian, tangent line to instantaneous velocity field. Chapter 2 Hydrostatics 2.1 Review Eulerian description from the perspective of fixed points within a reference frame. Lagrangian description from the perspective of a parcel moving within the flow. Streamline

More information

Course: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec

Course: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec Course: TDEC202 (Energy II) Thermodynamics: An Engineering Approach Course Director/Lecturer: Dr. Michael Carchidi Course Website URL dflwww.ece.drexel.edu/tdec 1 Course Textbook Cengel, Yunus A. and Michael

More information

UNIT IV. Flow through Orifice and Mouthpieces and Flow through Notchs and Weirs

UNIT IV. Flow through Orifice and Mouthpieces and Flow through Notchs and Weirs SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : FM(15A01305) Year & Sem: II-B.Tech & I-Sem Course & Branch: B.Tech -

More information

RESERVOIR CHANGES DURING EIGHTEEN YEARS OF EXPLOITATION IN THE MIRAVALLES GEOTHERMAL FIELD, COSTA RICA

RESERVOIR CHANGES DURING EIGHTEEN YEARS OF EXPLOITATION IN THE MIRAVALLES GEOTHERMAL FIELD, COSTA RICA Presented at Short Course V on Conceptual Modelling of Geothermal Systems, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, February 24 - March 2, 2013. GEOTHERMAL TRAINING PROGRAMME LaGeo

More information

Tanjung Priok GFPPEP. Presentation and discussion, 22 October 2009 PT. PLN (Persero) Jasa Enjiniring Office Jl. KS Tubun I/2 Petamburan, Jakarta

Tanjung Priok GFPPEP. Presentation and discussion, 22 October 2009 PT. PLN (Persero) Jasa Enjiniring Office Jl. KS Tubun I/2 Petamburan, Jakarta Tanjung Priok GFPPEP Presentation and discussion, 22 October 2009 PT. PLN (Persero) Jasa Enjiniring Office Jl. KS Tubun I/2 Petamburan, Jakarta prepared by Department of Civil and Environmental Engineering

More information

Compressible Gas Flow

Compressible Gas Flow Compressible Gas Flow by Elizabeth Adolph Submitted to Dr. C. Grant Willson CHE53M Department of Chemical Engineering The University of Texas at Austin Fall 008 Compressible Gas Flow Abstract In this lab,

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

If a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body

If a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body Venturimeter & Orificemeter ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 5 Applications of the Bernoulli Equation The Bernoulli equation can be applied to a great

More information

Introduction CHAPTER Prime Movers. 1.2 Sources of Energy

Introduction CHAPTER Prime Movers. 1.2 Sources of Energy Introduction CHAPTER 1 1.1 Prime Movers Prime mover is a device which converts natural source of energy into mechanical work to drive machines for various applications. In olden days, man had to depend

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

RESPONSE OF WAIRAKEI GEOTHERMAL RESERVOIR TO 40 YEARS OF PRODUCTION

RESPONSE OF WAIRAKEI GEOTHERMAL RESERVOIR TO 40 YEARS OF PRODUCTION RESPONSE OF WAIRAKEI GEOTHERMAL RESERVOIR TO 4 YEARS OF PRODUCTION Allan Clotworthy Contact Energy Ltd, Private Bag 21, Taupo, New Zealand Key Words: geothermal, production, reinjection, reservoir, Wairakei

More information

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 9210-221 Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 0 You should have the following for this examination one answer book non programmable calculator pen, pencil, drawing instruments

More information

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook Reference Manual 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Book and Flow Handbook www.rosemount.com Reference Manual 405 and 1595 405 Compact Orifice Series and 1595 Conditioning

More information

Worldwide Power Density Review

Worldwide Power Density Review PROCEEDINGS, Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 24-26, 2014 SGP-TR-202 Worldwide Power Density Review Maxwell Wilmarth 1, James

More information

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Book and Flow Handbook www.rosemount.com 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Book NOTICE Read

More information

y 2 = 1 + y 1 This is known as the broad-crested weir which is characterized by:

y 2 = 1 + y 1 This is known as the broad-crested weir which is characterized by: CEE 10 Open Channel Flow, Dec. 1, 010 18 8.16 Review Flow through a contraction Critical and choked flows The hydraulic jump conservation of linear momentum y = 1 + y 1 1 + 8Fr 1 8.17 Rapidly Varied Flows

More information

Chapter 3 Basic Physical Principles Applications to Fluid Power Sy S stems

Chapter 3 Basic Physical Principles Applications to Fluid Power Sy S stems Chapter 3 Basic Physical Principles Applications to Fluid Power Systems 1 Objectives Identify and explain the design and operation of the six basic machines. Describe the factors that affect energy in

More information

Visualization of flow pattern over or around immersed objects in open channel flow.

Visualization of flow pattern over or around immersed objects in open channel flow. EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:

More information

GeothermEx, Inc. GEOTHERMAL RESERVOIR ASSESSMENT METHODOLOGY FOR THE SCIENTIFIC OBSERVATION HOLE PROGRAM, KILAUEA EAST RIFT ZONE, HAWAII TASK 1 REPORT

GeothermEx, Inc. GEOTHERMAL RESERVOIR ASSESSMENT METHODOLOGY FOR THE SCIENTIFIC OBSERVATION HOLE PROGRAM, KILAUEA EAST RIFT ZONE, HAWAII TASK 1 REPORT (415) 527 9876 CABLE ADDRESS- GEOTHERMEX TELEX 709152 STEAM UD FAX (415) 527-8164 Geotherm Ex, Inc. RICHMOND. CALIFORNIA 94804-5829 GEOTHERMAL RESERVOIR ASSESSMENT METHODOLOGY FOR THE SCIENTIFIC OBSERVATION

More information

Name: 10/21/2014. NE 161 Midterm. Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each.

Name: 10/21/2014. NE 161 Midterm. Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each. NE 161 Midterm Multiple choice 1 to 10 are 2 pts each; then long problems 1 through 4 are 20 points each. 1. Which would have a higher mass flow rate out of a 1 ft 2 break, a. 200 psia subcooled water

More information

ACE Engineering College

ACE Engineering College ACE Engineering College Ankushapur (V), Ghatkesar (M), R.R.Dist 501 301. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * MECHANICS OF FLUIDS & HYDRAULIC

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc. Permission

More information

UNIT I FLUID PROPERTIES AND STATICS

UNIT I FLUID PROPERTIES AND STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:

More information

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., June 2003

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng.,   June 2003 TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., www.lightmypump.com June 2003 Figure 1 Calculation example flow schematic. Situation Water at 150 F is to be pumped from a

More information

Orifice and Venturi Pipe Flow Meters

Orifice and Venturi Pipe Flow Meters Orifice and Venturi Pipe Flow Meters by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here The flow rate of a fluid flowing in a pipe under pressure is measured for a variety of applications,

More information

INDUSTRIAL RESOURCES, INC. Power Plant Fundamentals Training

INDUSTRIAL RESOURCES, INC. Power Plant Fundamentals Training INDUSTRIAL RESOURCES, INC Power Plant Fundamentals Training Module 2 Power Plant Theory Power Plant Fundamentals Training This program is designed to provide you with a fundamental understanding of power

More information

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics ART II Some applications of fluid mechanics Fluid Mechanics ressure ressure = F/A Units: Newton's per square meter, Nm -, kgm - s - The same unit is also known as a ascal, a, i.e. a = Nm - ) English units:

More information

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Althouse Turnquist Bracciano PowerPoint Presentation by: Associated Technical Authors Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Chapter 1 History and Fundamentals of Refrigeration

More information

Exploration Results in the Tendaho Geothermal Field, Ethiopia

Exploration Results in the Tendaho Geothermal Field, Ethiopia Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24-29 April 2005 Exploration Results in the Tendaho Geothermal Field, Ethiopia Yiheyis Amdeberhan Geological Survey of Ethiopia, P.O.Boxx 24370,

More information

MCE380: Measurements and Instrumentation Lab

MCE380: Measurements and Instrumentation Lab MCE380: Measurements and Instrumentation Lab Chapter 8: Flow Measurements Topics: Basic Flow Equations Flow Obstruction Meters Positive Displacement Flowmeters Other Methods Holman, Ch. 7 Cleveland State

More information

374 Exergy Analysis. sys (u u 0 ) + P 0 (v v 0 ) T 0 (s s 0 ) where. e sys = u + ν 2 /2 + gz.

374 Exergy Analysis. sys (u u 0 ) + P 0 (v v 0 ) T 0 (s s 0 ) where. e sys = u + ν 2 /2 + gz. 374 Exergy Analysis The value of the exergy of the system depends only on its initial and final state, which is set by the conditions of the environment The term T 0 P S is always positive, and it does

More information

Hijiori HDR Reservoir Evaluation by Micro-Earthquake Observation

Hijiori HDR Reservoir Evaluation by Micro-Earthquake Observation GRC Transactions, Vol. 38, 2014 Hijiori HDR Reservoir Evaluation by Micro-Earthquake Observation Hideshi Kaieda Central Research Institute of Electric Power Industry, Abiko, Chiba, Japan Keywords HDR,

More information

INJECTION AND PRODUCTION WELL TESTING IN THE GEOTHERMAL FIELDS OF SOUTHERN HENGILL AND REYKJANES, SW-ICELAND AND THEISTAREYKIR, N-ICELAND

INJECTION AND PRODUCTION WELL TESTING IN THE GEOTHERMAL FIELDS OF SOUTHERN HENGILL AND REYKJANES, SW-ICELAND AND THEISTAREYKIR, N-ICELAND GEOTHERMAL TRAINING PROGRAMME Reports 2013 Orkustofnun, Grensasvegur 9, Number 31 IS-108 Reykjavik, Iceland INJECTION AND PRODUCTION WELL TESTING IN THE GEOTHERMAL FIELDS OF SOUTHERN HENGILL AND REYKJANES,

More information

Early Identification and Management of Calcite Deposition in the Ngatamariki Geothermal Field, New Zealand

Early Identification and Management of Calcite Deposition in the Ngatamariki Geothermal Field, New Zealand PROCEEDINGS, 42nd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 13-15, 2017 SGP-TR-212 Early Identification and Management of Calcite Deposition in the

More information

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc.

More information

Open Channel Hydraulics III - Sharpcrested

Open Channel Hydraulics III - Sharpcrested PDHonline Course H140 (2 PDH) Open Channel Hydraulics III - Sharpcrested Weirs Instructor: Harlan H. Bengtson, Ph.D., PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone

More information

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g)

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g) 1.4 Perform the following unit conversions: 0.05 ft 1 in. (a) 1L 61in. 1L 1ft (b) 1kJ 650 J 10 J 1Btu 1.0551kJ 0.616 Btu (c) 41 Btu/h 0.15 kw 1kW 1h 600 s 778.17 ft lbf 1Btu ft lbf 99.596 s (d) g 78 s

More information

2/3 Port Valves for Fluid Control Model Selection 1

2/3 Port Valves for Fluid Control Model Selection 1 / Port Valves for Control Model Selection Model Selection For product specifications such as maximum operating pressure differentials and operating temperature ranges, refer to the relevent pages of each

More information

Chapter 3 Bernoulli Equation

Chapter 3 Bernoulli Equation 1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around

More information

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 CVEN 311-501 (Socolofsky) Fluid Dynamics Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and UIN in the space

More information

TWO DIFFERENT ROLES OF FRACTURES IN GEOTHERMAL DEVELOPMENT

TWO DIFFERENT ROLES OF FRACTURES IN GEOTHERMAL DEVELOPMENT TWO DIFFERENT ROLES OF FRACTURES IN GEOTHERMAL DEVELOPMENT Mineyuki Hanano Japan Metals & Chemicals Co., Ltd., 1-3-6 Saien, Morioka-city, Iwate 020-0024, Japan, email: hananom@jmc.co.jp Key Words: geothermal

More information

Model Selection 1. Process Valves. Air. Vacuum

Model Selection 1. Process Valves. Air. Vacuum Process Valves Model Selection For product specifications such as maximum operating pressure differentials and operating temperature ranges, refer to the relevent pages of each product. Air One-touch fittings

More information

Pressure and Flow Characteristics

Pressure and Flow Characteristics Pressure and Flow Characteristics Continuing Education from the American Society of Plumbing Engineers August 2015 ASPE.ORG/ReadLearnEarn CEU 226 READ, LEARN, EARN Note: In determining your answers to

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Objectives Introduce the concept of a pure substance. Discuss

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS 1. What is the head loss ( in units of bars) across a 30mm wide open gate valve when oil ( SG=0.9) flow through at a

More information

2/3 Port Valves for Fluid Control Model Selection 1

2/3 Port Valves for Fluid Control Model Selection 1 / Port Valves for Control Model Selection Model Selection For product specifications such as maximum operating pressure differentials and operating temperature ranges, refer to the relevent pages of each

More information

Thermodynamics Introduction and Basic Concepts

Thermodynamics Introduction and Basic Concepts Thermodynamics Introduction and Basic Concepts by Asst. Prof. Channarong Asavatesanupap Mechanical Engineering Department Faculty of Engineering Thammasat University 2 What is Thermodynamics? Thermodynamics

More information

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B.

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B. CHAPTER 03 1. Write Newton's second law of motion. YOUR ANSWER: F = ma 2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False 3.Streamwise

More information

A New Combinational Terminology for Geothermal Systems

A New Combinational Terminology for Geothermal Systems International Journal of Geosciences, 2013, 4, 43-48 http://dx.doi.org/10.4236/ijg.2013.41005 Published Online January 2013 (http://www.scirp.org/journal/ijg) A New Combinational Terminology for Geothermal

More information

CALCITE INHIBITION IN THE AHUACHAPAN GEOTHERMAL FIELD, EL SALVADOR

CALCITE INHIBITION IN THE AHUACHAPAN GEOTHERMAL FIELD, EL SALVADOR Presented at Short Course on Geothermal Development and Geothermal Wells, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, March 11-17, 2012. GEOTHERMAL TRAINING PROGRAMME LaGeo S.A. de C.V.

More information

The Expansibility Factor Equations in ISO and ISO : Do They Deliver What They Promise?

The Expansibility Factor Equations in ISO and ISO : Do They Deliver What They Promise? The Expansibility Factor Equations in ISO 567-2 and ISO 567-4: Do They Deliver What They Promise? Michael Reader-Harris, NEL INTRODUCTION The expansibility factor equations in ISO 567-2:2003 [] and ISO

More information

Thermodynamics I. Properties of Pure Substances

Thermodynamics I. Properties of Pure Substances Thermodynamics I Properties of Pure Substances Dr.-Eng. Zayed Al-Hamamre 1 Content Pure substance Phases of a pure substance Phase-change processes of pure substances o Compressed liquid, Saturated liquid,

More information

Experimental Investigation on the Influence of Density of Fluid. On Efficiency of V- Notch

Experimental Investigation on the Influence of Density of Fluid. On Efficiency of V- Notch International Journal of Advances in Scientific Research and Engineering (ijasre) E-ISSN : 2454-8006 DOI: http://dx.doi.org/10.7324/ijasre.2017.32515 Vol.3 (9) Oct - 2017 Experimental Investigation on

More information

Calibration of Orifice Flow Meter and Venturi Flow Meter

Calibration of Orifice Flow Meter and Venturi Flow Meter Calibration of Orifice Flow Meter and Venturi Flow Meter D. Till Abstract Orifice and venturi flow meters decrease the pressure of a fluid b increasing its velocit as it flows through them. This is done

More information

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook

405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Data Book and Flow Handbook 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test Book and Flow Handbook www.rosemount.com 405 and 1595 405 Compact Orifice Series and 1595 Conditioning Orifice Plate Flow Test

More information

ANSI/ISA/IEC Valve Sizing Introduction and Sizing Valves for Liquids

ANSI/ISA/IEC Valve Sizing Introduction and Sizing Valves for Liquids ANSI/ISA/IEC Valve Sizing Introduction and Sizing Valves for Liquids Standardization activities for control valve sizing can be traced back to the early 960 s when an American trade association, the Fluids

More information

Engineering Thermodynamics. Chapter 1. Introductory Concepts and Definition

Engineering Thermodynamics. Chapter 1. Introductory Concepts and Definition 1.1 Introduction Chapter 1 Introductory Concepts and Definition Thermodynamics may be defined as follows : Thermodynamics is an axiomatic science which deals with the relations among heat, work and properties

More information

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET

Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW SVCET Two mark questions and answers UNIT I BASIC CONCEPT AND FIRST LAW 1. What do you understand by pure substance? A pure substance is defined as one that is homogeneous and invariable in chemical composition

More information

Discharge measurements

Discharge measurements Discharge measurements DISCHARGE MEASUREMENTS Suitability of methods and equipment for measurements where, under what conditions and for what reason discharge is measured determination of discharge in

More information

Improvement of Calculating Formulas for Volumetric Resource Assessment

Improvement of Calculating Formulas for Volumetric Resource Assessment Proceedings, 6 th African Rift Geothermal Conference Addis Ababa, Ethiopia, 2 nd 4 th November 2016 Improvement of Calculating Formulas for Volumetric Resource Assessment Shinya TAKAHASHI, Satoshi YOSHIDA

More information

Head Discharge Relationship of Thin Plated Rectangular Lab Fabricated Sharp Crested Weirs

Head Discharge Relationship of Thin Plated Rectangular Lab Fabricated Sharp Crested Weirs Journal of Applied Fluid Mechanics, Vol. 9, No. 3, pp. 1231-1235, 2016. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.68.228.23128 Head Discharge Relationship

More information

Final 1. (25) 2. (10) 3. (10) 4. (10) 5. (10) 6. (10) TOTAL = HW = % MIDTERM = % FINAL = % COURSE GRADE =

Final 1. (25) 2. (10) 3. (10) 4. (10) 5. (10) 6. (10) TOTAL = HW = % MIDTERM = % FINAL = % COURSE GRADE = MAE101B: Advanced Fluid Mechanics Winter Quarter 2017 http://web.eng.ucsd.edu/~sgls/mae101b_2017/ Name: Final This is a three hour open-book exam. Please put your name on the top sheet of the exam. Answer

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Optimization of Gas Injection Allocation in Multi Gas Lift Wells System

Optimization of Gas Injection Allocation in Multi Gas Lift Wells System EngOpt 2008 - International Conference on Engineering Optimization Rio de Janeiro, Brazil, 01-05 June 2008. Optimization of Gas Injection Allocation in Multi Gas Lift Wells System Deni Saepudin 1,4, Pudjo

More information

Model Selection 1. Process Valves

Model Selection 1. Process Valves Process Valves Model Selection For product specifications such as maximum operating pressure differentials and operating temperature ranges, refer to the relevent pages of each product. Air, Inert gas

More information

1. (25 points) C 6 H O 2 6CO 2 + 7H 2 O C 6 H O 2 6CO + 7H 2 O

1. (25 points) C 6 H O 2 6CO 2 + 7H 2 O C 6 H O 2 6CO + 7H 2 O MEEBAL Exam 2 November 2013 Show all work in your blue book. Points will be deducted if steps leading to answers are not shown. No work outside blue books (such as writing on the flow sheets) will be considered.

More information

Reservoir Monitoring in the Okuaizu Geothermal Field Using Multi-Geophysical Survey Techniques

Reservoir Monitoring in the Okuaizu Geothermal Field Using Multi-Geophysical Survey Techniques Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24-29 April 2005 Reservoir Monitoring in the Okuaizu Geothermal Field Using Multi-Geophysical Survey Techniques 1 Yuji Nishi, Tuneo Ishido, Mituhiko

More information

1. Mark the correct statement(s)

1. Mark the correct statement(s) 1. Mark the correct statement(s) Figure to the right shows a mass measurement scale using a spring. 1.1 The span of the scale is a) 16 kg b) 21 kg c) 11 kg d) 5-16 kg 1.2 The range of the scale is a) 16

More information

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A 1. What is meant by thermodynamics system? (A/M 2006) Thermodynamics system is defined as any space or matter or group of matter

More information

DIRECT MEASUREMENT OF IN-SITU WATER SATURATION IN THE GEYSERS ROCK

DIRECT MEASUREMENT OF IN-SITU WATER SATURATION IN THE GEYSERS ROCK PROCEEDINGS, Twenty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 27-29, 2003 SGP-TR-173 DIRECT MEASUREMENT OF IN-SITU WATER SATURATION IN THE GEYSERS

More information

Determination of Calcite Scaling Potential in OW-903 and OW-914 of the Olkaria Domes field, Kenya

Determination of Calcite Scaling Potential in OW-903 and OW-914 of the Olkaria Domes field, Kenya PROCEEDINGS, Fortieth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 26-28, 2015 SGP-TR-204 Determination of Calcite Scaling Potential in OW-903 and OW-914

More information

COURSE CODE : 3072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

COURSE CODE : 3072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : FLUID MECHANICS COURSE CODE : 307 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIOD 1 Properties of Fluids 0 Fluid Friction and Flow

More information

Review of Mathematics

Review of Mathematics Review for Exam #1 Review of Mathematics 2 Weighted Mean A certain property of material 1 is P 1 and that of material 2 is P 2 If x 1 amount (weight or volume) of material 1 is mixed with x 2 amount of

More information

Copyright 1991 by ASME. The Design and Development of an Electrically Operated Fuel Control Valve for Industrial Gas Turbines

Copyright 1991 by ASME. The Design and Development of an Electrically Operated Fuel Control Valve for Industrial Gas Turbines THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 E. 47 St., New York, N.Y. 10017 (0s The Society shall not be responsible for statements or opinions advanced in papers or in discussion at meetings of the

More information

The Research of Heat Transfer Area for 55/19 Steam Generator

The Research of Heat Transfer Area for 55/19 Steam Generator Journal of Power and Energy Engineering, 205, 3, 47-422 Published Online April 205 in SciRes. http://www.scirp.org/journal/jpee http://dx.doi.org/0.4236/jpee.205.34056 The Research of Heat Transfer Area

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc.

More information

Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118 CVEN 311-501 (Socolofsky) Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and

More information

PERFORMANCE EVALUATION OF DEEPENED WELLS 420DA AND 517DA IN THE LEYTE GEOTHERMAL PRODUCTION FIELD, PHILIPPINES

PERFORMANCE EVALUATION OF DEEPENED WELLS 420DA AND 517DA IN THE LEYTE GEOTHERMAL PRODUCTION FIELD, PHILIPPINES PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 213 SGP-TR-198 PERFORMANCE EVALUATION OF DEEPENED WELLS 42DA AND 517DA

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

Annubar Primary Element Flow Calculations

Annubar Primary Element Flow Calculations Rosemount 485 Annubar Annubar Primary Element Flow Calculations ANNUBAR PRIMARY ELEMENT FLOW EQUATIONS The Annubar primary element flow equations are all derived from the hydraulic equations which are

More information

Given Find Water Properties

Given Find Water Properties Venturi Example Given: A venturi is to be used to measure a 50 gpm flow of 70 F water in a 4-in ID pipe. Find: Select a throat diameter that provides Re d > 00,000 in the throat, and determine what differential

More information