Sensors & Transducers 2015 by IFSA Publishing, S. L.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Sensors & Transducers 2015 by IFSA Publishing, S. L."

Transcription

1 Sensors & Transducers 15 by IFSA Publishing, S. L. Mössbauer, VSM and X-ray Diffraction Study of Fe 3 O (NP s)/pvoh for Biosensors Applications 1 Almuatasim Alomari, Hasan M. El Ghanem, 3 Abdel-Fatah Lehlooh, Isam M. Arafa, 5 Ibrahim Bsoul, 1 Ashok Batra 1 Department of Physics, Chemistry and Mathematics (Materials Science Group) College of Engineering, Technology, and Physical Sciences Alabama A&M University Normal, Alabama 3576 USA Department of Physics, Jordan University of Science & Technology, Irbid, 11, Jordan 3 Physics Department, Yarmouk University, Irbid 11-63, Jordan Department of Chemistry, Jordan University of Science & Technology, Irbid, 11, Jordan 5 Physics Department, Al al-bayt University, Mafraq 13, Jordan 1 Tel.: (56)37-819, fax: (56) Received: 8 August 15 /Accepted: 1 September 15 /Published: 3 September 15 Abstract: In this article, structure and magnetic properties of nano magnetic Fe 3 O (magnetite) nanoparticles functionalized polyvinyl alcoholic (PVOH) have been investigated by X-ray diffraction (XRD), Vibrating sample magnetometer (VSM) and Mossbauer Spectroscopy (MS) for use in biosensor applications. XRD showed an average of cluster sizes using Debye Scherrer formula are between 1-13 nm. The magnetization data at room temperature shows weak hysteresis loops and the isotherms of the magnetization curves indicate that superparamagnetism superimposed on the paramagnetic behavior exists in all coated samples. The paramagnetic contribution in coated samples was found to perfectly fit a Langevin equation, with an average number of magnetic dipole moments around Bohr magnetons. The results of MS showed that all magnetic components corresponding to iron oxide particles in polymer spectrum split into a number of sextet separated by about 1-35 T. The line width, relative intensity and the values of the hyperfine fields and isomer shifts for the magnetic components of the samples are estimated. It was found that only the Fe 3 O sample is suitable for practical medical applications such as, drug delivery systems and to design artificial muscles due to its sufficiently high value of saturation magnetization and attraction to magnet ability. Copyright 15 IFSA Publishing, S. L. Keywords: Nano magnetic Fe 3 O nanoparticles, X-ray diffraction, Debye Scherrer formula, Vibrating sample magnetometer, Mossbauer Spectroscopy, Langevin equation. 1. Introduction Synthesis of superparamagnetic iron oxide nanoparticles (SPION) with polymers has gained increasing interest for emerging applications as tissue repair, drug delivery and in cell separation, cellular imaging in magnetic resonance imaging (MRI), sensors, imaging agents, storage media and catalysis 53

2 in biotechnology and biomedical application [1-7]. One of the most important features is to prepare coated particles with iron oxide core shell for use in applications that require high magnetization values at room temperature, nontoxic fine particles and have long time stability with size smaller than 1 nm [8]. Many researchers have studied structure and magnetic properties of iron oxide as metal alloy and produced new spinel iron oxide hybrids [9-11], they have also studied it as amorphous with a short-range crystallinity, where amorphous nature of the atomic arrangements has been observed [1]. Uniformly dispersed amorphous nanoparticles of magnetite in a polyvinyl alcohol matrix have been obtained by ultrasound radiation [13]. In other research composite was prepared by mechanical milling of Fe 3 O / SiO material constitutes a mixture of ultrafine Fe-rich spinel particles (magnetite/maghemite) [1]. The preparation of magnetite (Fe 3 O ) has been typically performed by particle precipitation from the hydrolysis and condensation of iron (II)/iron (III) salts in basic media stable aqueous dispersions of magnetic iron oxide colloids were initially generated by ball milling of large particles in the presence of organic stabilizers [15-18]. Solution methods were also developed to prepare aqueous Fe 3 O sols, it was reported that the particle size of Fe 3 O colloids approximate of 1 nm [19-]. Dextran coated iron oxide nanoparticles were synthesized by addition of FeCl and FeCl 3 in the presence of ammonium hydroxide (NH OH) and the polysaccharide surfactant (M n =, g/mol), SEM showed the size of Iron oxide nanoparticles is between 1 nm [1]. Polymer coated magnetite nanoparticles were synthesized by in situ precipitation in the presence of poly (vinyl alcohol) (PVOH) (M n =, g/mol) from an aqueous mixture of ferric and ferrous chloride salts in an alkaline media []. It was reported that the prepared samples showed superparamagnetic Fe 3 O colloid behavior with nanoparticles size is in the range of 1 nm using XRD, VSM, and TEM. A comparative study of dextran versus the PVOH surfactants in the precipitation of iron oxide colloids was also conducted [3]. A recent report showed the preparation of PVOH coated Fe 3 O colloids using sonochemical methods from iron (II) acetate precursors yielding superparamagnetic hybrid materials []. PVOH magnetite ferrogels prepared using freezing and thawing cycles showed superparamagnetic properties that can be tailored for drug delivery systems and to design artificial muscles [5]. One of the important material which can be immobilized on magnetic nanoparticles in order to use them for biosensing purposes is Streptavidin [6]. Streptavidin is known for its special affinity towards the vitamin biotin and hence it is suitable for detection of diverse biomolecules in immunoassays, e.g. detection of viral nucleic acids in vitro [7]. This paper is aimed at the study of basic magnetic properties of iron oxide Fe 3 O coated with PVOH and non-coated iron oxide Fe 3 O prepared by low-cost conventional sonication method to determined functionality for use in biosensing and biomedical applications.. Experimental Section Polyvinyl alcohol (PVOH,7g/mol) was suspended in 1 ml of 1, ethylenedichloride (C H Cl ) in a closed container and subjected to sonication for about 1 h at 6-7 o C. To this solution palmatoyl chloride (C 15 H 31 COCl, xxxx g/mol) was added with continuous sonication. The reaction mixture proceeded rapidly after addition of triethylamine base (NEt 3 ) with the elimination of triethylammonium chloride salt. The obtained reaction mixture was left overnight in the closed container. This afford.15 g of different amounts of palmatoyl chloride is added to afford.15 g of the required modified matrix (palmatoyl-pvoh) with different degree of substitution, see Table 1. Table 1. Relative samples contents of PVOH, C15H31COCl (g) and Number of palmatoyl substituted vinyloh units in poly (palm-g- PVOH) polymer backbone. Sample PVOH (g) C15H31COCl (g) Number of palmatoyl substituted vinyloh units on palmatoyl PVOH polymer backbone S : S : S :6 S :8 S :1 S :1 To each of the above rapidly stirred solutions 1 ml of aqueous solution containing 1: molar ratio of FeCl :H O (1.19 g) and FeCl 3 :6H O (3.3 g) was added. The resulting colloidal mixture was sonicated for 3- minutes to ensure homogeneous distribution of Fe + and Fe 3+ in the colloidal solution of the matrix system. The chloride salt of iron was then converted into oxide by adding 5-6 ml ammonia while the solution is under sonication. Immediately the colloidal solution becomes dark indicating the formation of magnetic particles. Sonication continued for ~ 1 h and left for few hours before suction filtration. The obtained materials were vacuum dried at 7 o C. This procedure gives 1.39 g of Fe 3 O tiny particles entrapped into the spaces provided by.15 g of the palmatoyl-modified PVOH matrix. In other words, the percent of magnetite in each matrix is 5.1 %. Approximate particle size of samples was determined using X-ray diffraction and Debye Scherrer formula. The vibrating sample magnetometer has become a widely used instrument 5

3 for determining magnetic properties of a large variety of materials: diamagnetic, paramagnetic, ferromagnetic and antiferromagnetic. In this case we used VSM MicroMag 39, Princeton Measurements Corporation. The value of magnetic field was between to 1 Tesla at different temperatures. The source of γ ray in Mössbauer device was a 5 mci of Co 57. The computer processing of the spectra showed intensities I of the components (atomic fraction of Fe atoms), hyperfine inductions B hf, isomer shifts δ, and quadrupole splitting QS. field on the material (Oe), kt: is the thermal energy (ev), χ: is the susceptibility. The reduced magnetization M * (H, T) can be obtained by [3]: M * (H, T) =M (H, T) - χ p H, (5) where M is the total measured magnetization, a is a fitting parameter and χ p is the high field paramagnetic susceptibility. 3. Mathematical Section 3.1. X-ray Diffraction (XRD) X-ray diffraction (XRD) is a versatile, nondestructive technique that reveals detailed information about the chemical composition and crystallographic structure of natural and manufactured materials. The Debye Scherrer formula can be used to determine the size of particles of crystals in the form of powder. The Debye Scherrer formula can be written as [8]: Kλ D =, (1) β cosθ. Results and Discussion Fig. 1 shows the X-ray diffraction patterns of uncoated and coated Fe 3 O magnetite NP s synthesized by sonication method. All peaks of the uncoated Fe 3 O particles matches exactly the prepared peaks of six coated samples. The calculations of uncoated and coated Fe 3 O particles made on the peak centered at 1 o, using Equation (1). The average diameter of the particles assuming spherical Fe 3 O clusters is of the order of 13 nm (nano-sized particles). where D is the mean size of the ordered domains, K is a dimensionless shape factor, λ is the X-ray wavelength (1.556 Å), β is the line broadening at half the maximum intensity (FWHM). 3.. Langevin Function The Langevin function can be written as [9]: M M s 1 = coth( a), () a Intensity (a. u.) S1 S S3 S S5 S6 Fe 3 O where M is the total magnetization (emu/g), M s is the saturation magnetization (emu/g), a is the ratio of the Zeeman energy of the magnetic moment in the external field to the thermal energy. The Langevin theory also leads to the Curie law. For small a [9]: Therefore: nμ H M = (3) 3kT nμ χ =, () 3kT where n is the number of atoms per unit volume, µ is the magnetic moment (emu), H is the acted magnetic θ Fig. 1. X-ray diffraction patterns of all samples with Fe3O. The magnetization (M) versus the applied magnetic field (H) was carried out at room temperature as shown in Fig.. The results showed weak hysteresis loop for all six uncoated samples at room temperature. The corriesive field (H c ) was too low to be measured, while the remnance magnetization (M r ) varies for samples as shown in Fig. 3 (a) for sample (S3), while Fe 3 O showed high value of magnetization compared to other samples as shown in Fig. 3 (b). 55

4 Magnetization (emu/g) S1 S S3 S S5 S6 shown in Fig. 5. The susceptibility, the saturation magnetization M s and the average magnetic dipole moment for all samples are calculated and tabulated in Table H (koe) Fig.. Magnetic hysteresis curves of all coated samples. M (emu/g) T= 98 o K T= 33 o K T= 373 o K T= 3 o K T= 73 o K H c = Oe Mr=. (emu/g) Magnetization (emu/g) H (Oe) H (koe) (a) - H c =51 Oe Mr=5. (emu/g) Magnetization (emu/g) (a) H (Oe) - M (emu/g) H (koe) (b) T= 98 o K T= 33 o K T= 373 o K T= 3 o K T= 73 o K -6 (b) Fig. 3. Magnetic hysteresis curves of (a) sample 3 (S3), and (b) Fe3O. The isothermal magnetization curves of different samples have been determined at temperatures between 98 to 73 K o. The isothermal curves of samples show a large initial slope and nearly linear behavior for large fields; this suggests that the system contains paramagnetic and apparently superparamagnetic contribution, as shown in Fig.. A very good agreement between the reduced magnetization and the Langevin function found as Fig.. Selected isothermal total magnetization measurements for (a) sample 3 (S3), and (b) sample Fe3O at different selected temperature from 98 to 73 (K o ). Table. The susceptibilities, the saturation magnetization Ms and the average magnetic dipole moment µ. Sample χo χp Ms μ (emu/g) (emu/g) S S S S S S Fe3O

5 M (emu/g) 1 M (Measured) M* Langevin H (koe) Fig. 5. Magnetization curve of the sample 3 (S3). The best least square fit with Equation (). The Mössbauer spectra show magnetic ordering with broad magnetic splitting, and superparamagnetic behavior. Hence, the spectra are fitted with (one or more) magnetic sextets and one quadrupole. The fitted Mössbauer spectra are shown in Fig. 6. The Mössbauer parameters are listed in Table 3. Table 3. Hyperfine field Beff, Quadruple Splitting (QS), and Isomer Shift (δ) Results of Mössbauer Spectra for all samples. Sample S1 S S3 S S5 S6 Fe3O Sub spectra Beff (T) QS (mm/s) δ (mm/s) The spectrum for Sample 1 (S1) is fitted by one broad magnetic sextet with a hyperfine field (B hf =1 T) and one quadrupole with quadrupole splitting (QS=.7 mm/s) and relative intensity I %=8 %. The spectrum for Sample (S) is fitted with three magnetic sextets with an average hyperfine field (B hf =35.9 T) and one quadrupole with quadrupole splitting (QS=.71 mm/s) and relative intensity I %=8 %. The spectrum for Sample 3 (S3) is fitted with three magnetic sextets with an average hyperfine field (B hf =39.9 T) and one quadrupole with quadrupole splitting (QS=.69 mm/s) and relative intensity I %=65 %. The spectrum for Sample (S) is fitted with three magnetic sextets with an average hyperfine field (B hf =37.9 T) and one quadrupole with quadrupole splitting (QS=.7 mm/s) and relative intensity I %=58 %. The spectrum for Sample 5 (S5) is fitted with two magnetic sextets with an average hyperfine field (B hf =39.7 T) and one quadrupole with quadrupole splitting (QS=.73 mm/s) and relative intensity I %=7 %. The spectrum for Sample 6 (S6) is fitted with two magnetic sextets with an average hyperfine field (B hf =39. T) and one quadrupole with quadrupole splitting (QS=.73 mm/s) and relative intensity I %=63 %. The spectrum for sample Fe 3 O is fitted by five magnetic sextets with an average hyperfine field (B hf =3 T) without quadrupole splitting. The magnetic ordered phases represented by magnetic sextets correspond to iron atoms in an iron oxide phases (magnetite) with large particle sizes, large enough to have net magnetic moment manifested by magnetic Zeeman splitting but not large enough to have well define magnetic splitting as in bulk magnetite. The quadrupole in the spectra which is found to be around (QS.7 mm/s) could be attributed to iron oxide phase (most probable magnetite as the XRD data shows) with small particle sizes, small enough that the particles behave superparamagnetic (zero net magnetic moment). The relative intensity of the quadrupole is found to be greater than that of the magnetic sextet in the spectra of nearly all the samples. This indicates that the iron oxide phases produced are below the blocking volumes at room temperature or blocking temperatures below room temperature (fine particle sizes), hence, behaving superparamagnetically. In brief; all samples show as indicative of superparamagnetic particles of magnetite and slight hyperfine splitting. The MS parameters are similar to all samples indicating that the iron oxide particles have the same environment for all samples. The slight difference of hyperfine spectrum in samples suggests that small sized particles are produced (fine nanoparticles) when iron oxides nanoparticles were synthesized in presence of PVOH-palmitoyl chloride matrix [3]. 57

6 S1 S S3 Relative Transmission (a.u.) S S5 S6 Relative Transmission (a.u.) Fe 3 O Relative Transmission (a.u.) Fig. 6. Mössbauer spectra of samples: S1, S, S3, S, S5, S6 and Fe3O sample. 5. Conclusions In this research, we report the preparation of iron oxide (Fe 3 O ) coated with PVOH polymer in different number of palmatoyl chloride relative to hydroxyl group on the backbone. The XRD data used to determine the average size of the Fe 3 O clusters is found to be around 1-13 nm. The magnetization measurement on all samples is carried out at different temperature, revealing that all samples contain superparamagnetic contribution. The paramagnetic saturation magnetization was calculated using Langevin function and found to be between -9 emu/g for coated samples and 6 emu/g for Fe 3 O sample. The average magnetic dipole moment was calculated to be around Bohr magnetons. 58

7 The Mössbauer data indicate that the samples have superparamagnetic behavior and fine particles. The isomer shift, the relative intensities and quadruple splitting appear to be independent on the number of palmatoyl chloride relative to number of hydroxyl group, and this was confirmed by the value of the slight hyperfine splitting. In short, only the Fe 3 O sample is suitable for practical medical applications such as, drug delivery systems and biosensing purposes due to its sufficiently high value of saturation magnetization and attraction to magnet ability. References [1]. A. K. Gupta, S. Wells, Surface modified superparamagnetic nanoparticles for drug delivery: preparation, characterization and cytotoxicity studies, IEEE Transaction on Nanobioscience, Vol. 3, Issue 1,, pp []. A. K. Gupta, M. Gupta, Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles, Biomaterials, Vol. 6, Issue 13, 5, pp [3]. H. Gu, K. Xu, C. Xu, B. Xu, Biofunctional magnetic nanoparticles for protein separation and pathogen detection, Chemical Communications, Vol. 9, Issue 9, 5, pp []. F. Shamsipour, et al., Conjugation of Monoclonal Antibodies to Super Paramagnetic Iron Oxide Nanoparticles for Detection of her/neu Antigen on Breast Cancer Cell Lines, Avicenna J. Med Biotechnol, Vol. 1, Issue 1, 9, pp [5]. D. K. Kim, et al., Superparamagnetic iron oxide nanoparticles for bio-medical application, Scripta Materialia, Vol., Issue 8-9, 1, pp [6]. Andrea Fornara, et al., Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples, Nano Letters, Vol. 8, Issue 1, 8, pp [7]. J. Lodhia, G. Mandarano, N. J. Ferris, S. F. Cowell, Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI, Biomedical Imaging and Intervention Journal, Vol. 6, No., 1, pp [8]. Y. Zhang, N. Kohler, M. Zhang, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake, Biomaterials, Vol. 3, No. 7,, pp [9]. R. Y. Hong, et al., On the Fe3O/Mn1-xZnxFeO core/shell magnetic nanoparticles, Journal of Alloys and Compounds, Vol. 8, Issue, 9, pp [1]. A. P. Douvalis, et al., Revealing the interparticle magnetic interactions of iron oxide nanoparticlescarbon nanotubes hybrid materials, in Proceedings of the International Conference on the Applications of the Mössbauer Effect (ICAME 9), Vienna, Austria, 19- July 9, pp. 1-. [11]. G. A. Al-Nawashi, S. H. Mahmood, A. D. Lehlooh, A. S. Saleh, Mössbauer spectroscopic study of orderdisorder phenomena in Fe3-xMnxSi, Physica B: Condensed Matter, Vol. 31, Issues 1-,, pp [1]. S. M. Yusuf, et al., Structural and magnetic properties of amorphous iron oxide, Physica B: Condensed Matter, Vol. 5, Issue, 1, pp [13]. C. Yee, et al., Self-Assembled Monolayers of Alkanesulfonic and -phosphonic Acids on Amorphous Iron Oxide Nanoparticles, Langmuir, Vol. 15, No. 1, 1999, pp [1]. J. H. Yu, C. W. Lee, S. S Im, J. S. Lee, Structure and magnetic properties of SiO coated FeO3 nanoparticles synthesized by chemical vapor condensation process, Reviews on Advanced Materials Science, Vol., Issue 1, 3, pp [15]. P. S. Stephen, Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles, U.S. Patent , November [16]. R. E. Rosensweig, J. W. Nestor, R. S. Timmins, Ferrohydrodynamic fluids for direct conversion of heat energy, in Mater. Assoc. Direct Energy Convers. Proc. Symp. AIChE-I. Chem. Eng. Ser. 5, 1965, pp [17]. R. Kaiser, G. Miskolczy, Magnetic properties of stable dispersion of subdomain magnetite particles, Journal of Applied Physics, Vol. 1, No. 3, 197, pp [18]. A. E. Berkowitz, J. A. Lahut, C. E. Van Buren, Properties of magnetic fluid particles, IEEE Transaction on Magnetics, Vol. 16, Issue, 198, pp [19]. W. C. Elmore, Ferromagnetic colloid for studying magnetic structures, Physical Review Letters, Vol. 5, Issue, 1938, pp []. R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE Transaction on Magnetics, Vol. 17, Issue, 1981, pp [1]. R. S. Molday, D. Mackenzie, Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells, Journal of Immunological Methods, Vol. 5, Issue 3, 198, pp []. J. Lee, T. Isobe, M. Senna, Preparation of ultrafine Fe3O particles by precipitation in the presence of PVA at high ph, Journal of Colloid and Interface Science, Vol. 177, Issue, 1996, pp [3]. H. Pardoe, W. Chua-Anusorn, T. G. St. Pierre, J. Dobson, Structural and magnetic properties of nanoscale iron oxide synthesized in the presence of dextran, or polyvinylalcohol, Journal of Magnetism and Magnetic Materials, Vol. 5, Issue 1-, 1, pp []. R. Abu-Much, U. Meridor, A. Frydman, A. Gedanken, Formation of a three-dimensional microstructure of Fe3O-poly (vinyl alcohol) composite by evaporating the hydrosol under a magnetic field, Journal of Physical Chemistry B, Vol. 11, Issue 16, 6, pp [5]. P. J. Reséndiz-Hernández, O. S. Rodríguez- Fernández, L. A. Garcia-Cerda, Synthesis of poly (vinyl alcohol) magnetite ferrogel obtained by freezing thawing technique, Journal of Magnetism and Magnetic Materials, Vol. 3, Issue 1, 8, pp. e373-e376. [6]. H. L. Liu, C. H. Sonn, J. H. Wu, K. M. Lee, Y. K. Kim, Synthesis of streptavidin-fitc-conjugated core-shell Fe3O-Au nanocrystals and their application for the purification of CD(+) lymphocytes, Biomaterials, Vol. 9, Issue 9, 8, pp [7]. J. Drbohlavova, et al., Preparation and Properties of Various Magnetic Nanoparticles, Sensors, Vol. 9, Issue, 9, pp

8 [8]. B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, 3 rd ed., Prentice-Hall Inc., Upper Saddle River, NJ, 1. [9]. B. D. Cullity, C. D. Graham, Introduction to Magnetic Materials, nd ed., Addison-Wesley Publishing Company, 9. [3]. P. V. Finotelli, D. A. Sampaio, M. A. Morales, A. M. Rossi, M. H. Rocha-Leão, Ca Alginate As Scaffold For Iron Oxide Nanoparticles Synthesis, Brazilian Journal of Chemical Engineering, Vol. 5, No., 8 pp Copyright, International Frequency Sensor Association (IFSA) Publishing, S. L. All rights reserved. ( 6

MAGNETIC NANOPARTICLES FOR HYPERTHERMIA APPLICATIONS. Mohamed DARWISH and Ivan STIBOR

MAGNETIC NANOPARTICLES FOR HYPERTHERMIA APPLICATIONS. Mohamed DARWISH and Ivan STIBOR MAGNETIC NANOPARTICLES FOR HYPERTHERMIA APPLICATIONS Mohamed DARWISH and Ivan STIBOR Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17Liberec, Czech

More information

An investigation on the optimum conditions of synthesizing a magnetite based ferrofluid as MRI contrast agent using Taguchi method

An investigation on the optimum conditions of synthesizing a magnetite based ferrofluid as MRI contrast agent using Taguchi method Materials Science-Poland, 31(2), 2013, pp. 253-258 http://www.materialsscience.pwr.wroc.pl/ DOI: 10.2478/s13536-012-0098-9 An investigation on the optimum conditions of synthesizing a magnetite based ferrofluid

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Au nanoparticles supported on magnetically separable Fe 2 O 3 - graphene

More information

Karine Chesnel BYU. Idaho State University, Physics department 22 September 2014

Karine Chesnel BYU. Idaho State University, Physics department 22 September 2014 Karine Chesnel BYU Idaho State University, Physics department 22 September 2014 Potential applications of magnetic nanoparticles Magnetic recording Biomedical applications J. Mater. Chem., 19, 6258 6266

More information

Synthesis of 12 nm iron oxide nanoparticles

Synthesis of 12 nm iron oxide nanoparticles Electronic Supporting Information for Dendronized iron oxide nanoparticles as contrast agent for MRI Brice Basly, a Delphine Felder-Flesch,* a Pascal Perriat, b Claire Billotey, c Jacqueline Taleb, c Geneviève

More information

Research Article Preparation of γ-fe 2 O 3 /Ni 2 O 3 /FeCl 3 (FeCl 2 ) Composite Nanoparticles by Hydrothermal Process Useful for Ferrofluids

Research Article Preparation of γ-fe 2 O 3 /Ni 2 O 3 /FeCl 3 (FeCl 2 ) Composite Nanoparticles by Hydrothermal Process Useful for Ferrofluids Smart Materials Research Volume 2011, Article ID 351072, 5 pages doi:10.1155/2011/351072 Research Article Preparation of γ-fe 2 O 3 /Ni 2 O 3 /FeCl 3 (FeCl 2 ) Composite Nanoparticles by Hydrothermal Process

More information

Supporting Information:

Supporting Information: Supporting Information: In Situ Synthesis of Magnetically Recyclable Graphene Supported Pd@Co Core-Shell Nanoparticles as Efficient Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane Jun Wang,

More information

Synthesis and Characterisation of Calcium Phosphate Nanoparticles

Synthesis and Characterisation of Calcium Phosphate Nanoparticles Chapter 3 Synthesis and Characterisation of Calcium Phosphate Nanoparticles Abstract The in-situ prepared nanoparticles of calcium phosphate were characterized by various analytical methods such as XRD

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

enzymatic cascade system

enzymatic cascade system Electronic Supplementary Information Fe 3 O 4 -Au@mesoporous SiO 2 microsphere: an ideal artificial enzymatic cascade system Xiaolong He, a,c Longfei Tan, a Dong Chen,* b Xiaoli Wu, a,c Xiangling Ren,

More information

Chapter 6 Magnetic nanoparticles

Chapter 6 Magnetic nanoparticles Chapter 6 Magnetic nanoparticles Magnetic nanoparticles (MNPs) are a class of nanoparticle which can be manipulated using magnetic field gradients. Such particles commonly consist of magnetic elements

More information

Adsorption of Amino Acids, Aspartic Acid and Lysine onto Iron-Oxide Nanoparticles

Adsorption of Amino Acids, Aspartic Acid and Lysine onto Iron-Oxide Nanoparticles Supporting Information Adsorption of Amino Acids, Aspartic Acid and Lysine onto Iron-Oxide Nanoparticles Klementina Pušnik, Mojca Peterlin, Irena Kralj Cigić, Gregor Marolt, Ksenija Kogej, Alenka Mertelj,

More information

NANOMEDICINE. WILEY A John Wiley and Sons, Ltd., Publication DESIGN AND APPLICATIONS OF MAGNETIC NANOMATERIALS, NANOSENSORS AND NANOSYSTEMS

NANOMEDICINE. WILEY A John Wiley and Sons, Ltd., Publication DESIGN AND APPLICATIONS OF MAGNETIC NANOMATERIALS, NANOSENSORS AND NANOSYSTEMS NANOMEDICINE DESIGN AND APPLICATIONS OF MAGNETIC NANOMATERIALS, NANOSENSORS AND NANOSYSTEMS Vijay K. Varadan Linfeng Chen Jining Xie WILEY A John Wiley and Sons, Ltd., Publication Preface About the Authors

More information

Relaxivity of Hydrogen Protons of Water Molecules in the Aqueous Solutions of Dextran - and Chitosan - Coated Ferrite Nanoparticles

Relaxivity of Hydrogen Protons of Water Molecules in the Aqueous Solutions of Dextran - and Chitosan - Coated Ferrite Nanoparticles ISSN 1749-8023 (print), 1749-8031 (online) International Journal of Magnetic Resonance Imaging Vol. 01, No. 01, 2007, pp. 015-020 Relaxivity of Hydrogen Protons of Water Molecules in the Aqueous Solutions

More information

Supporting Information

Supporting Information Supporting Information Self-assembly of smallest magnetic particles Sara Mehdizadeh Taheri 1, Maria Michaelis 1, Thomas Friedrich 2, Beate Förster 3, Markus Drechsler 1, Florian M. Römer 4, Peter Bösecke

More information

SPM ( ) NANOBRICK CO., Ltd o

SPM ( ) NANOBRICK CO., Ltd o SPM ( ) NANOBRICK CO., Ltd www.nanobrick.co.kr 2015. o8. 12 Overview Management Profile Established : May 2007 Capital : 3 Million USD Employees : 45 (PhD 4, MD 12) Location : Head Office (Suwon), Marketing

More information

The characterization of MnO nanostructures synthesized using the chemical bath deposition method

The characterization of MnO nanostructures synthesized using the chemical bath deposition method The characterization of MnO nanostructures synthesized using the chemical bath deposition method LF Koao 1, F B Dejene 1* and HC Swart 2 1 Department of Physics, University of the Free State (Qwaqwa Campus),

More information

ECE Lecture #8 ECE 5320

ECE Lecture #8 ECE 5320 Lecture #8 Synthesis and Application of Magnetic Nanoparticles Top Down Synthesis by Physical Methods Up Bottom Synthesis by Chemical Methods Bulk Classical behavior 1. High Energy Ball Milling 2. Laser

More information

Chapter 2 Magnetic Properties

Chapter 2 Magnetic Properties Chapter 2 Magnetic Properties Abstract The magnetic properties of a material are the basis of their applications. Specifically, the contrast agents that will be developed in Chaps. 4 and 5 use their magnetic

More information

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment

Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Mat. Res. Soc. Symp. Vol. 635 2001 Materials Research Society Multi-Layer Coating of Ultrathin Polymer Films on Nanoparticles of Alumina by a Plasma Treatment Donglu Shi, Zhou Yu, S. X. Wang 1, Wim J.

More information

Field Dependence of Blocking Temperature in Magnetite Nanoparticles

Field Dependence of Blocking Temperature in Magnetite Nanoparticles Journal of Metastable and Nanocrystalline Materials Vols. 2-21 (24) pp. 673-678 online at http://www.scientific.net Citation 24 Trans & Tech Publications, Switzerland Copyright (to be inserted by the publisher)

More information

Field Dependence of Blocking Temperature in Magnetite Nanoparticles

Field Dependence of Blocking Temperature in Magnetite Nanoparticles J. Metastable and Nanocrystalline Materials 20-21,(2004) 673 Field Dependence of Blocking Temperature in Magnetite Nanoparticles G. F. Goya 1 and M. P. Morales 2 1 Instituto de Física, Universidade de

More information

CHAPTER 5. STUDY OF CoFe 2 O 4 PARTICLES SYNTHESIZED WITH PVP AND CITRIC ACID

CHAPTER 5. STUDY OF CoFe 2 O 4 PARTICLES SYNTHESIZED WITH PVP AND CITRIC ACID 58 CHAPTER 5 STUDY OF CoFe 2 O 4 PARTICLES SYNTHESIZED WITH PVP AND CITRIC ACID This chapter deals with the synthesis of CoFe 2 O 4 particles using metal nitrates, PVP and citric acid. The structure, morphology

More information

SPHERO TM Magnetic Particles

SPHERO TM Magnetic Particles SPHER TM Particles SPHER TM Microparticles provide high quality and reproducible results for your application Allow for rapid and reliable binding between the target and magnetic particle Consists of a

More information

Synthesis and Characterization of Polymeric Composites Embeded with Silver Nanoparticles

Synthesis and Characterization of Polymeric Composites Embeded with Silver Nanoparticles World Journal of Nano Science and Engineering, 2012, 2, 19-24 http://dx.doi.org/10.4236/wjnse.2012.21004 Published Online March 2012 (http://www.scirp.org/journal/wjnse) 19 Synthesis and Characterization

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting information: Iron Nanoparticle Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane for Chemical Hydrogen Storage Jun-Min Yan,

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary material (ESI) for Nanoscale Electronic Supplementary Information (ESI) Synthesis of Nanostructured Materials by Using Metal-Cyanide Coordination Polymers and Their Lithium Storage

More information

Transition Elements. pranjoto utomo

Transition Elements. pranjoto utomo Transition Elements pranjoto utomo Definition What is transition metal? One of which forms one or more stable ions which have incompletely filled d orbitals. 30Zn? Definition Zink is not transition elements

More information

Synthesis of nano sized particles using supercritical fluids

Synthesis of nano sized particles using supercritical fluids Synthesis of nano sized particles using supercritical fluids Yong-Suk Youn 1, Young-Ho Lee 1, Ki Ho Ahn 1, Bambang Veriansyah 2, Jaehoon Kim 2, Jae-Duck Kim 2, Youn-Woo Lee 1,* 1) School of Chemical and

More information

EFFECT OF TEMPERATURE ON SYNTHESIS OF HYDROXYAPATITE FROM LIMESTONE

EFFECT OF TEMPERATURE ON SYNTHESIS OF HYDROXYAPATITE FROM LIMESTONE Estd. 2008 Vol. 8 No.1 133-137 January - March 2015 ISSN: 0974-1496 e-issn: 0976-0083 CODEN: RJCABP http://www.rasayanjournal.com http://www.rasayanjournal.co.in EFFECT OF TEMPERATURE ON SYNTHESIS OF HYDROXYAPATITE

More information

Clean synthesis of propylene carbonate from urea and 1,2-propylene glycol over zinc iron double oxide catalyst

Clean synthesis of propylene carbonate from urea and 1,2-propylene glycol over zinc iron double oxide catalyst Journal of Chemical Technology and Biotechnology J Chem Technol Biotechnol 81:794 798 (2006) DOI: 10.1002/jctb.1412 Clean synthesis of propylene carbonate from urea and 1,2-propylene glycol over zinc iron

More information

Chemistry Research Journal, 2016, 1(3): Research Article

Chemistry Research Journal, 2016, 1(3): Research Article , 2016, 1(3):14-20 Available online www.chemrj.org Research Article ISSN: 2455-8990 CODEN(USA): CRJHA5 Synthesis and Characterization of Fe 3 O 4 Magnetite Nanoparticles Coated with Silica Nanoparticles

More information

Urchin-like Ni-P microstructures: A facile synthesis, properties. and application in the fast removal of heavy-metal ions

Urchin-like Ni-P microstructures: A facile synthesis, properties. and application in the fast removal of heavy-metal ions SUPPORTING INFORMATION Urchin-like Ni-P microstructures: A facile synthesis, properties and application in the fast removal of heavy-metal ions Yonghong Ni *a, Kai Mi a, Chao Cheng a, Jun Xia a, Xiang

More information

SYNTHESIS IN SUPERCRITICAL AMMONIA AND CHARACTERIZATION OF NANOSTRUCTURED NICKEL OXINITRIDE

SYNTHESIS IN SUPERCRITICAL AMMONIA AND CHARACTERIZATION OF NANOSTRUCTURED NICKEL OXINITRIDE SYNTHESIS IN SUPERCRITICAL AMMONIA AND CHARACTERIZATION OF NANOSTRUCTURED NICKEL OXINITRIDE Sophie Desmoulins-Krawiec, Sandy Moisan, Cyril Aymonier, Anne Loppinet-Serani, François Weill, Jean Etourneau,

More information

Observation of magnetism in Au thin films.

Observation of magnetism in Au thin films. Observation of magnetism in Au thin films. S. Reich*, G. Leitus and Y. Feldman. Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovoth, Israel. *e-mail: shimon.reich@weizmann.ac.il

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

MOHAMED R. BERBER Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt.

MOHAMED R. BERBER Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt. Advanced Materials Development and Performance (AMDP211) International Journal of Modern Physics: Conference Series Vol. 6 (212) 133-137 World Scientific Publishing Company DOI: 1.1142/S21194512366 CONTROL

More information

Structural effects on catalytic activity of carbon-supported magnetite. nanocomposites in heterogeneous Fenton-like reactions

Structural effects on catalytic activity of carbon-supported magnetite. nanocomposites in heterogeneous Fenton-like reactions Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2018 Supplementary Information Structural effects on catalytic activity of carbon-supported magnetite

More information

Electromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1

Electromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1 Electromagnetism II Instructor: Andrei Sirenko sirenko@njit.edu Spring 013 Thursdays 1 pm 4 pm Spring 013, NJIT 1 PROBLEMS for CH. 6 http://web.njit.edu/~sirenko/phys433/phys433eandm013.htm Can obtain

More information

One-pot Solvent-free Synthesis of Sodium Benzoate from the Oxidation of Benzyl Alcohol over Novel Efficient AuAg/TiO 2 Catalysts

One-pot Solvent-free Synthesis of Sodium Benzoate from the Oxidation of Benzyl Alcohol over Novel Efficient AuAg/TiO 2 Catalysts Electronic Supplementary Information One-pot Solvent-free Synthesis of Sodium Benzoate from the Oxidation of Benzyl Alcohol over Novel Efficient AuAg/TiO 2 Catalysts Ying Wang, Jia-Min Zheng, Kangnian

More information

SYNTHESIS AND CHARACTERIZATION OF POLYVINYL ALCOHOL (PVA) COATED FUNTIONALIZED γ-fe2o3 NANOPARTICALS

SYNTHESIS AND CHARACTERIZATION OF POLYVINYL ALCOHOL (PVA) COATED FUNTIONALIZED γ-fe2o3 NANOPARTICALS SYNTHESIS AND CHARACTERIZATION OF POLYVINYL ALCOHOL (PVA) COATED FUNTIONALIZED γ-fe2o3 NANOPARTICALS Tayyab Ali 1 and A. Venkataraman 2 1 Department of Materials Science, Gulbarga University Gulbarga.585106

More information

Surface to Volume Ratio

Surface to Volume Ratio Nanomaterials Metals and Alloys Fe, Al, Au Semiconductors Band gap, CdS, TiO 2, ZnO Ceramic Al 2 O 3, Si 3 N 4, MgO,, SiO 2, ZrO 2 Carbon based Diamond, graphite, nanotube, C60, graphene Polymers Soft

More information

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P

More information

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Xavier Batlle, A. Labarta, Ò. Iglesias, M. García del Muro and M. Kovylina Goup of Magnetic Nanomaterials

More information

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core

A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core A soft-templated method to synthesize sintering-resistant Au/mesoporous-silica core-shell nanocatalysts with sub-5 nm single-core Chunzheng Wu, ab Zi-Yian Lim, a Chen Zhou, a Wei Guo Wang, a Shenghu Zhou,

More information

Supporting Information

Supporting Information Supporting Information Eco-friendly Composite of Fe 3 O 4 -Reduced Grapene Oxide Particles for Efficient Enzyme Immobilization Sanjay K. S. Patel a,, Seung Ho Choi b,, Yun Chan Kang b,*, Jung-Kul Lee a,*

More information

3) Accounts for strands of DNA being held together into a double helix. 7) Accounts for the cohesive nature of water and its high surface tension

3) Accounts for strands of DNA being held together into a double helix. 7) Accounts for the cohesive nature of water and its high surface tension AP Chemistry Test (Chapter 11) Multiple Choice (50%) Please use the following choices to answer questions 1-7. A) London dispersion forces B) Ion-ion attractions C) Dipole-dipole attractions D) Dipole-ion

More information

1 Supporting Information. 2 Reconfigurable and resettable arithmetic logic units based. 4 Siqi Zhang a, Kun Wang a, Congcong Huang b and Ting Sun a*

1 Supporting Information. 2 Reconfigurable and resettable arithmetic logic units based. 4 Siqi Zhang a, Kun Wang a, Congcong Huang b and Ting Sun a* Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 1 Supporting Information 2 Reconfigurable and resettable arithmetic logic units based 3 on magnetic

More information

Facile decoration and characterization of multi-walled carbon nanotubes with magnetic Fe 3 O 4 nanoparticles

Facile decoration and characterization of multi-walled carbon nanotubes with magnetic Fe 3 O 4 nanoparticles JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 14, No. 3-4, March April 2012, p. 245-250 Facile decoration and characterization of multi-walled carbon nanotubes with magnetic Fe 3 O 4 nanoparticles

More information

Adsorption of Cd(II) ions by synthesize chitosan from fish shells

Adsorption of Cd(II) ions by synthesize chitosan from fish shells British Journal of Science 33 Adsorption of Cd(II) ions by synthesize chitosan from fish shells Angham G. Hadi Babylon University, College of Science, Chemistry Department. Abstract One of the major applications

More information

CEINT/NIST PROTOCOL REPORTING GUIDELINES FOR THE PREPARATION OF AQUEOUS NANOPARTICLE DISPERSIONS FROM DRY MATERIALS. Ver. 2.0

CEINT/NIST PROTOCOL REPORTING GUIDELINES FOR THE PREPARATION OF AQUEOUS NANOPARTICLE DISPERSIONS FROM DRY MATERIALS. Ver. 2.0 CEINT/NIST PROTOCOL REPORTING GUIDELINES FOR THE PREPARATION OF AQUEOUS NANOPARTICLE DISPERSIONS FROM DRY MATERIALS Ver. 2.0 July 8, 2010 Protocol Contributors: J. S. Taurozzi 1, V. A. Hackley 1, M. R.

More information

ADSORPTION AND DESORPTION OF L-PHENYLALANINE ON NANO-SIZED MAGNETIC PARTICLES

ADSORPTION AND DESORPTION OF L-PHENYLALANINE ON NANO-SIZED MAGNETIC PARTICLES ADSORPTION AND DESORPTION OF L-PHENYLALANINE ON NANO-SIZED MAGNETIC PARTICLES N. Balaji 1, K. M. Meera Sheriffa Begum 1, N. Anantharaman 1 and M. S. Uddin 2 1 Department of Chemical Engineering, National

More information

PREPARATION OF MCM-48 MESOPOROUS MOLECULAR SIEVE INFLUENCE OF PREPARATION CONDITIONS ON THE STRUCTURAL PROPERTIES

PREPARATION OF MCM-48 MESOPOROUS MOLECULAR SIEVE INFLUENCE OF PREPARATION CONDITIONS ON THE STRUCTURAL PROPERTIES Digest Journal of Nanomaterials and Biostructures Vol. 11, No. 1, January - March 2016, p. 271-276 PREPARATION OF MCM-48 MESOPOROUS MOLECULAR SIEVE INFLUENCE OF PREPARATION CONDITIONS ON THE STRUCTURAL

More information

From Polymer Gel Nanoparticles to Nanostructured Bulk Gels

From Polymer Gel Nanoparticles to Nanostructured Bulk Gels From Polymer Gel Nanoparticles to Nanostructured Bulk Gels Zhibing Hu Departments of Physics and Chemistry, University of North Texas Denton, TX 76203, U. S. A. Phone: 940-565 -4583, FAX: 940-565-4824,

More information

Structural and magnetic properties of Ni doped CeO 2 nanoparticles

Structural and magnetic properties of Ni doped CeO 2 nanoparticles *E-mail: shailuphy@gmail.com Abstract: We report room temperature ferromagnetism in Ni doped CeO 2 nanoparticles using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM),

More information

Magnetic Properties of La 0.7 Sr 0.3 Mn 1-x Ni x O 3 Perovskites

Magnetic Properties of La 0.7 Sr 0.3 Mn 1-x Ni x O 3 Perovskites Magnetic Properties of La 0.7 Sr 0.3 Mn 1-x Ni x O 3 Perovskites Ruben Medina 2011 NSF/REU Program Physics Department, University of Notre Dame Advisor: Prof. Howard A. Blackstead Abstract: Using the SQUID

More information

Synthesis and characterization of hybride polyaniline / polymethacrylic acid/ Fe 3 O 4 nanocomposites

Synthesis and characterization of hybride polyaniline / polymethacrylic acid/ Fe 3 O 4 nanocomposites Synthesis and characterization of hybride polyaniline / polymethacrylic acid/ Fe 3 O 4 nanocomposites Mohammad Reza Saboktakin*, Abel Maharramov, Mohammad Ali Ramazanov Department of Chemistry, Baku State

More information

Chapter 12 & 13 Test Review. Bond, Ionic Bond

Chapter 12 & 13 Test Review. Bond, Ionic Bond Chapter 12 & 13 Test Review A solid solute dissolved in a solid solvent is an Alloy What is happening in a solution at equilibrium? The Ionic rate of Bond dissolving is equal to the rate of crystallization.

More information

A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a. "Magic" Reagent?

A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a. Magic Reagent? SUPPORTING INFORMATION A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a "Magic" Reagent? Qiao Zhang, Na Li,, James Goebl, Zhenda Lu, Yadong Yin*, Department of Chemistry, University

More information

A Facile Synthetic Approach for Copper Iron Sulfide. Nanocrystals with Enhanced Thermoelectric Performance

A Facile Synthetic Approach for Copper Iron Sulfide. Nanocrystals with Enhanced Thermoelectric Performance Electronic Supplementary Information A Facile Synthetic Approach for Copper Iron Sulfide Nanocrystals with Enhanced Thermoelectric Performance Daxin Liang, Ruoshui Ma, Shihui Jiao, Guangsheng Pang* and

More information

Jordan M. Rhodes, Caleb A. Jones, Lucas B. Thal, Janet E. Macdonald*

Jordan M. Rhodes, Caleb A. Jones, Lucas B. Thal, Janet E. Macdonald* Supporting Information for: Jordan M. Rhodes, Caleb A. Jones, Lucas B. Thal, Janet E. Macdonald* Department of Chemistry and Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University,

More information

Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny , Russia 2

Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny , Russia 2 Graphene oxide linking layers: a versatile platform for biosensing Yu.V. Stebunov 1, O.A. Aftenieva 1, A.V. Arsenin 1, and V.S. Volkov 1,2 1 Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny

More information

Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with. High Oxidation-Resistant Property as Efficient and Durable

Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with. High Oxidation-Resistant Property as Efficient and Durable Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Sub-10-nm Au-Pt-Pd Alloy Trimetallic Nanoparticles with High

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supplementary Information Multifunctional Fe 2 O 3 /CeO 2 Nanocomposites for Free Radical Scavenging

More information

College of Mechanical Engineering, Yangzhou University, Yangzhou , China; 2

College of Mechanical Engineering, Yangzhou University, Yangzhou , China; 2 Proceedings Light-Assisted Room-Temperature NO2 Sensors Based on Black Sheet-Like NiO Xin Geng 1,2,3, Driss Lahem 4, Chao Zhang 1, *, Marie-Georges Olivier 3 and Marc Debliquy 3 1 College of Mechanical

More information

Current efficiency of synthesis magnesium hydroxide nanoparticles via. electrodeposition

Current efficiency of synthesis magnesium hydroxide nanoparticles via. electrodeposition 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 015) Current efficiency of synthesis magnesium hydroxide nanoparticles via electrodeposition XinZhong. Deng 1 ;

More information

PARTICLE SIZE ANALYSIS OF GOLD NANOPARTICLES

PARTICLE SIZE ANALYSIS OF GOLD NANOPARTICLES PARTICLE SIZE ANALYSIS OF GOLD NANOPARTICLES Scientific interest in well dispersed suspensions of colloidal gold (or nanoparticles) can be traced back to ancient times. Original uses of colloidal gold

More information

Polymer Science, Series A, 2017, Vol. 59, No. 3 SUPPORTING INFORMATION. The Screening and Evaluating of Chitosan/β-cyclodextrin

Polymer Science, Series A, 2017, Vol. 59, No. 3 SUPPORTING INFORMATION. The Screening and Evaluating of Chitosan/β-cyclodextrin Polymer Science, Series A, 2017, Vol. 59, No. 3 SUPPORTING INFORMATION The Screening and Evaluating of Chitosan/β-cyclodextrin Nanoparticles for Effective Delivery Mitoxantrone Hydrochloride Yiwen Wang,

More information

Supporting Information

Supporting Information Supporting Information Phenyl-Modified Carbon Nitride Quantum Dots with Distinct Photoluminescence Behavior Qianling Cui, Jingsan Xu,* Xiaoyu Wang, Lidong Li,* Markus Antonietti, and Menny Shalom anie_201511217_sm_miscellaneous_information.pdf

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Rare double spin canting antiferromagnetic behaviours in a [Co 24 ] cluster Guang-Ming Liang, Qing-Ling

More information

Synthesis and Study of Magnesium Oxide and Cadmium Doped Magnesium Oxide Nanoparticles

Synthesis and Study of Magnesium Oxide and Cadmium Doped Magnesium Oxide Nanoparticles Synthesis and Study of Magnesium Oxide and Cadmium Doped Magnesium Oxide Nanoparticles Prateek Kumar Gour 1, Sanchita Dass Roy 2 gourprateek0000@gmail.com Abstract Magnesium Oxide play a very important

More information

XRD and Mössbauer spectroscopy study of Ho doped BiFeO 3

XRD and Mössbauer spectroscopy study of Ho doped BiFeO 3 Hyperfine Interact DOI 10.1007/s10751-012-0729-x XRD and Mössbauer spectroscopy study of Ho doped BiFeO 3 M. Ncube D. Naidoo K. Bharuth-Ram D. Billing H. Masenda D. R. Sahu B. K. Roul R. M. Erasmus Springer

More information

Electronic Supplementary Material. Methods. Synthesis of reference samples in Figure 1(b) Nano Res.

Electronic Supplementary Material. Methods. Synthesis of reference samples in Figure 1(b) Nano Res. Electronic Supplementary Material Shaped Pt Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction Jun Gu 1,, Guangxu

More information

Preparation and Characterization of Double Metal Cyanide Complex Catalysts

Preparation and Characterization of Double Metal Cyanide Complex Catalysts Molecules 2003, 8, 67-73 molecules ISSN 1420-3049 http://www.mdpi.org Preparation and Characterization of Double Metal Cyanide Complex Catalysts Hanxia Liu 1, Xikui Wang 1, *, Yao Gu 2 and Weilin Guo 1

More information

Application of Nano-ZnO on Antistatic Finishing to the Polyester Fabric

Application of Nano-ZnO on Antistatic Finishing to the Polyester Fabric Modern Applied Science January, 2009 Application of Nano-ZnO on Antistatic Finishing to the Polyester Fabric Fan Zhang & Junling Yang School of Material Science and Chemical Engineer Tianjin Polytechnic

More information

Pt-Ni alloyed nanocrystals with controlled archtectures for enhanced. methanol oxidation

Pt-Ni alloyed nanocrystals with controlled archtectures for enhanced. methanol oxidation Supplementary Information Pt-Ni alloyed nanocrystals with controlled archtectures for enhanced methanol oxidation Xiao-Jing Liu, Chun-Hua Cui, Ming Gong, Hui-Hui Li, Yun Xue, Feng-Jia Fan and Shu-Hong

More information

Supplementary Figure 1. SEM and TEM images of the metal nanoparticles (MNPs) and metal oxide templates.

Supplementary Figure 1. SEM and TEM images of the metal nanoparticles (MNPs) and metal oxide templates. Supplementary Figure 1. SEM and TEM images of the metal nanoparticles (MNPs) and metal oxide templates. (a) 13 nm Au, (b) 60 nm Au, (c) 3.3 nm Pt, (d) ZnO spheres, (e) Al 2O 3 spheres and (f) Cu 2O cubes.

More information

Ceramic Processing Research

Ceramic Processing Research Journal of Ceramic Processing Research. Vol. 13, Special. 1, pp. s123~s127 (2012) J O U R N A L O F Ceramic Processing Research Synthesis of silica coated zinc powder by sol-gel processes Yong-Sun Won

More information

Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light

Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light Supplementary Information Efficient Co-Fe layered double hydroxide photocatalysts for water oxidation under visible light Sang Jun Kim, a Yeob Lee, a Dong Ki Lee, a Jung Woo Lee a and Jeung Ku Kang* a,b

More information

Room-temperature ferromagnetism in nanoparticles of Superconducting materials

Room-temperature ferromagnetism in nanoparticles of Superconducting materials Room-temperature ferromagnetism in nanoparticles of Superconducting materials Shipra, A. Gomathi, A. Sundaresan* and C. N. R. Rao* Chemistry and Physics of Materials Unit and Department of Science and

More information

Preparation of Silver Nanoparticles and Their Characterization

Preparation of Silver Nanoparticles and Their Characterization Preparation of Silver Nanoparticles and Their Characterization Abstract The preparation of stable, uniform silver nanoparticles by reduction of silver ions by ethanol is reported in the present paper.

More information

A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin

A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin This journal is The Royal Society of Chemistry 11 Electronic Supplementary Information (ESI) A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin Xiujuan Xu, a Jing Huang,

More information

Three Dimensional Nano-assemblies of Noble Metal. Nanoparticles-Infinite Coordination Polymers as a Specific

Three Dimensional Nano-assemblies of Noble Metal. Nanoparticles-Infinite Coordination Polymers as a Specific Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Three Dimensional Nano-assemblies of Noble Metal Nanoparticles-Infinite

More information

Optical Characterizations of Zn-doped CuO Nanoparticles

Optical Characterizations of Zn-doped CuO Nanoparticles 91 Sciencia Acta Xaveriana An International Science Journal ISSN. 0976-1152 Optical Characterizations of Zn-doped CuO Nanoparticles Volume 4 No. 1 pp. 91-98 March 2013 S.G.Rejith a*, C.Krishnan b a Department

More information

Experimental Investigation on the Synthesis and Size Control of Copper Nanoparticle via Chemical Reduction Method

Experimental Investigation on the Synthesis and Size Control of Copper Nanoparticle via Chemical Reduction Method Int. J. Nanosci. Nanotechnol., Vol. 6, No. 3, Sep. 21, pp. 144-149 Experimental Investigation on the Synthesis and Size Control of Copper Nanoparticle via Chemical Reduction Method P. Rahimi 1, H. Hashemipour

More information

Transformation Products of Iron(III Title Shigematsu on the Occasion of his R.

Transformation Products of Iron(III Title Shigematsu on the Occasion of his R. Transformation Products of Iron(III Title Hydrolysis at Elevated Temperatures (Commemoration Issue Dedicated to P Shigematsu on the Occasion of his R Author(s) Kiyama, Masao; Takada, Toshio Citation Bulletin

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information MoS 2 nanosheet/mo 2 C-embedded N-doped

More information

Facile Synthesis and Catalytic Properties of CeO 2 with Tunable Morphologies from Thermal Transformation of Cerium Benzendicarboxylate Complexes

Facile Synthesis and Catalytic Properties of CeO 2 with Tunable Morphologies from Thermal Transformation of Cerium Benzendicarboxylate Complexes Electronic Supplementary Information Facile Synthesis and Catalytic Properties of CeO 2 with Tunable Morphologies from Thermal Transformation of Cerium Benzendicarboxylate Complexes Yuhua Zheng, Kai Liu,

More information

Department of Petroleum Engineering, African University of Science and Technology, Abuja, Nigeria

Department of Petroleum Engineering, African University of Science and Technology, Abuja, Nigeria Journal of Physical Science and Application 5 (6) (215) 415-422 doi: 1.17265/2159-5348/215.6.5 D DAVID PUBLISHING Effect of Fe 4 O 3 Nanoparticles on the Rheological Properties of Water Based Mud Amarfio

More information

11) What thermodynamic pressure encourages solution formation of two nonpolar substances?

11) What thermodynamic pressure encourages solution formation of two nonpolar substances? AP Chemistry Test (Chapter 11) Class Set Multiple Choice (54%) Please use the following choices to answer questions 1-10. A) London dispersion forces (temporary dipole attractions) B) Ion-ion attractions

More information

PREPARATION AND CHARACTERIZATION OF CdO/PVP NANOPARTICLES BY PRECIPITATION METHOD

PREPARATION AND CHARACTERIZATION OF CdO/PVP NANOPARTICLES BY PRECIPITATION METHOD Indian Journal of Pure and Applied Physics (IJPAP) Vol.1.No.1 2013 pp 1-6 available at: www.goniv.com Paper Received :05-03-2013 Paper Published:28-03-2013 Paper Reviewed by: 1. Dr.S.Selvakumar 2. Hendry

More information

-:Vijay Singh(09CEB023)

-:Vijay Singh(09CEB023) Heterogeneous Semiconductor Photocatalyst -:Vijay Singh(09CEB023) Guided by Azrina Abd Aziz Under Dr. Saravanan Pichiah Preparation of TiO 2 Nanoparticle TiO 2 was prepared by hydrolysis and poly-condensation

More information

Different Biodegradable Silica Structures In Drug Delivery. Mika Jokinen

Different Biodegradable Silica Structures In Drug Delivery. Mika Jokinen Different Biodegradable Silica Structures In Drug Delivery Mika Jokinen & Different Morphologies of Biodegradable Silica - Several levels of morphology ; different forms & structures - monoliths, fibers,

More information

PHY331 Magnetism. Lecture 6

PHY331 Magnetism. Lecture 6 PHY331 Magnetism Lecture 6 Last week Learned how to calculate the magnetic dipole moment of an atom. Introduced the Landé g-factor. Saw that it compensates for the different contributions from the orbital

More information

Chapter 1. Particle Size Analysis

Chapter 1. Particle Size Analysis Chapter 1. Particle Size Analysis 1.1 Introduction Particle size/particle size distribution: a key role in determining the bulk properties of the powder... μ μ μ Size ranges of particles (x) - Coarse particles

More information

Effect of Metal Concentration on Shape and Composition Changes in Gold-Silver Bimetallic Systems Md. Jahangir Alam

Effect of Metal Concentration on Shape and Composition Changes in Gold-Silver Bimetallic Systems Md. Jahangir Alam Noto-are 15542466: Chemical technology. 2013-07-15. Effect of Metal Concentration on Shape and Composition Changes in Gold-Silver Bimetallic Systems Md. Jahangir Alam Department of Agronomy and Agricultural

More information

EFFECT OF SOLIDS CONCENTRATION ON POLYMER ADSORPTION AND CONFORMATION

EFFECT OF SOLIDS CONCENTRATION ON POLYMER ADSORPTION AND CONFORMATION 2 EFFECT OF SOLIDS CONCENTRATION ON POLYMER ADSORPTION AND CONFORMATION Tsung-yuan Chen,. Chidambaram Maltesh,2 and Ponisseril Somasundaranl IHerny Krumb School of Mines Columbia University New York, New

More information

Preparation of Cu Nanoparticles with a chemical reduction method

Preparation of Cu Nanoparticles with a chemical reduction method International Academic Institute for Science and Technology International Academic Journal of Science and Engineering Vol. 3, No. 2, 2016, pp. 1-10. ISSN 2454-3896 International Academic Journal of Science

More information

Fast Nucleation for Silica Nanoparticle Synthesis in. Sol-Gel Method

Fast Nucleation for Silica Nanoparticle Synthesis in. Sol-Gel Method Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Fast Nucleation for lica Nanoparticle Synthesis in Sol-Gel Method Chandra K. Dixit*, Snehasis

More information