Chemical Oxidation Overview. Jim Jacobs Tel:

Size: px
Start display at page:

Download "Chemical Oxidation Overview. Jim Jacobs Tel:"

Transcription

1 Chemical Oxidation Overview Jim Jacobs Tel: Chemical oxidation uses reagents to transform, degrade, or immobilize organic wastes. Chemical oxidizers have been used for decades in the waste-water industry for the treatment of carbon-containing (organic) compounds, such as petroleum hydrocarbons and chlorinated solvents, and numerous other contaminants. In-Situ Chemical Oxidation (ISCO) relies on the destructive capacity of oxidants to chemically destroy the bonds of the hydrocarbons. Complete chemical oxidation of gasoline would produce carbon dioxide and water. Chemical oxidants work by producing free radicals, such as the hydroxyl radical, which oxidize the gasoline. Several commonly used chemical oxidants have been used for in-situ applications on gasoline and MTBE, including hydrogen peroxide, Fenton s Reagent (hydrogen peroxide with an iron catalyst, frequently performed at a low ph), sodium persulfate and ozone. In Situ Chemical Oxidation Injection In Situ Chemical Oxidation (ISCO) remedial process involves injecting an oxidizing agent, such as hydrogen peroxide (H 2 O 2 ), activated sodium persulfate (Na 2 S 2 O 8 ), or other oxidant into the subsurface to destroy organic compounds. The by-products for complete mineralization of carbon-based compounds by most chemical oxidizers include carbon dioxide (CO 2 ), water (H 2 O), and oxygen (O 2 ) as well as minor concentrations of nontoxic ions, salts, and acids.

2 Hydrogen Peroxide and Fenton s Reagent Hydrogen peroxide (H 2 O 2 ) is one of the most powerful oxidizers known. A stronger oxidizer than chlorine (Cl 2 ), hydrogen peroxide is also a natural metabolite of many organisms that use oxygen, a byproduct of the decomposition of the low concentration hydrogen peroxide. The autodecomposition can be represented overall as follows: 2H 2 O 2 2H 2 O + O 2. Pure hydrogen peroxide and its aqueous solutions are clear liquids resembling water. Unlike water, hydrogen peroxide has a slightly sharp and distinctive odor. Low concentrations (1% to 3%) of hydrogen peroxide are sold in drug stores as a mild antiseptic. Hydrogen peroxide is available commercially at aqueous concentration as high as 80%. In the presence of a transition metal such as iron or copper, hydrogen peroxide reacts much more vigorously and aggressively than without the metal (acting as a catalyst). The reaction of ironcatalyzed hydrogen peroxide oxidation is called a Fenton's Reagent after its discoverer H.J.H. Fenton in Even after over 100 years of study and use in water treatment, in-situ remediation methods were slow to use Fenton s Reagent, owing to safety concerns. For in-situ remediation applications, Leetham et al. (2002), describe gasoline and MTBE destruction using Fenton s Reagent. For in situ remedial applications, naturally occurring iron in the soil or fill materials dramatically increases the oxidative strength of hydrogen peroxide. This increase in oxidation power is attributed to the production of hydroxyl radicals (OH ). In addition, a chain reaction is initiated, forming more radicals, which are very reactive and destroy chemical bonds of organic compounds. The iron is not destroyed but rather cycles between the iron(ii) and iron(iii) oxidation states, yielding the hydroxyl radical and other by-products (Suthersan, 2002). Frequently, when natural concentrations of iron are too low in the field, iron salts such as iron(ii) sulfate are added. Iron(III) also improves the oxidizing power of H 2 O 2, albeit at a reduced rate. In addition, ph adjustment using a strong acid such as sulfuric acid (H 2 SO 4 ) or hydrochloric acid (HCl), is common since reactions of classic Fenton s Reagent is more rapid and efficient under low ph conditions (ph 2 to 4 is optimal). Residual hydrogen peroxide not used in the oxidation process breaks down to water and oxygen in a matter of hours. In addition to the much simplified reaction described in Equation 1 there are also a large number of competing reactions including the free radical scavengers, most importantly, carbonate and hydrogen carbonate alkalinity that will greatly affect the overall reaction scheme. After the Fenton s Reagent has been completely depleted, the breakdown products of the spent hydrogen peroxide can serve as an oxygen source for microbes in the subsurface to enhance biodegradation of contaminants. Fe 2+ + H 2 O 2 OH + OH + Fe 3+ EQUATION 1 H 2 O 2 = hydrogen peroxide Fe 2+ = iron(ii) ion Fe 3+ = iron(iii) ion OH = hydroxyl radical O 2 = peroxide ion

3 Classic Fenton s Reagent includes the use of a low to moderate concentration of hydrogen peroxide (1% to 30%), with iron addition at a ph of 2 to 4. Classic Fenton s Reagent is exothermic and can increase temperatures of aquifers, as well as produce steam, reaction foam, and generate subsurface pressures in the treatment area capable of moving or cracking paved surfaces when used with hydrogen peroxide in the 10% to 12% concentration range. Any deviation from the classic Fenton s Reagent, referred to as modified Fenton's Reagent includes the use of slurried solid peroxides and metallic or organo-metallic chelating catalysts, such as iron(ii) EDTA to create a Fenton s Reagent at a neutral (ph 7) or higher ph. Persulfate with Hydrogen Peroxide Persulfate oxidation commonly uses sodium persulfate (Na 2 S 2 O 8 ) catalyzed by a chelated iron complex such as iron(ii) EDTA at a neutral ph to produce sulfate radicals (SO 4 ) that attack most petroleum hydrocarbons and selected chlorinated solvents. Liang et al. (2004) describes persulfate in situ remediation. The reaction mechanism (Equation 2) associated with the persulfate (S 2 O 8 2 ) process is shown as follows: S 2 O 8 2 2SO 4 EQUATION 2 S 2 O 2 8 = persulfate ion SO 4 = sulfate radical Heat, hydrogen peroxide (H 2 O 2 ), and sodium hydroxide (NaOH) have also been used separately as activators for the persulfate. However, the by-product generated by injecting activated persulfate is long lasting sulfate (SO 4 2 ). There is a secondary drinking water standard for sulfates of 250 mg/l. Potassium permanganate (KMnO 4 ) lasts longer and can react in an environment with much higher ph compared to hydrogen peroxide. Permanganate has been well documented (Siegrist et al., 2001) for destruction of trichloroethene (TCE; C 2 HCl 3 ) and other chlorinated solvents, but it is generally not used for petroleum hydrocarbons or methyl tertiary-butyl ether (MTBE) (Jacobs et al. 2000). For field use, potassium permanganate is shipped as a powder and is mixed with water creating a deep purple liquid. The solubility of potassium permanganate is strongly influenced by temperature. At 30 o C, the solubility is more than 8%. The ph range is critical in being able to determine whether the oxidation reaction will be fast or slow. Equation 3 summarizes the permanganate reaction: 2KMnO 4 + C 2 HCl 3 2CO 2 + 2MnO 2 + 2K + + H + +3Cl EQUATION 3 Ozone (O 3 ) is a powerful gaseous oxidizer that can be used to treat volatile organic compounds. Ozone is generated on-site because the gas is very difficult to store; therefore all the ozone gas that is generated must be injected into the subsurface or destroyed using an ozone destruction unit on the ozone generator. The ozone gas can be bubbled into closely spaced injection ports that release the bubbles into the aquifer for remediation. The smaller the bubbles, the more surface area and the faster they can travel through small pore spaces. Pumping the ozone gas through specially designed ozone diffusers can produce micro-bubbles. Advanced oxidation

4 processes refer to when ozone is catalyzed or enhanced by ultraviolet (UV) light, hydrogen peroxide, or other oxidizers, to increase the power of the ozone by producing more hydroxyl radicals. Treatability testing in the laboratory can evaluate the cost benefit of the different ozone enhancements prior to mobilizing into the field. Peroxone, a type of advanced oxidative process (AOP), uses hydrogen peroxide activated ozone to create the hydroxyl and perhydroxyl radicals (Equation 4). Ozone and peroxone can mineralize most petroleum hydrocarbons and chlorinated solvents into water and carbon dioxide. O 3 +H 2 O 2 OH + HO 2 + O 2 EQUATION 4 O 3 =ozone OH = hydroxyl radical HO 2 = perhydroxyl radical REFERENCES WEB SITES FMC: ARTICLES AND BOOKS: Arnarante, D., 2000, In-Situ Chemical Oxidation, Pollution Engineering, February, p Barb, W.G., Buxendale, J.H., Hargrave, K.R., 1950, Reactions of ferrous and ferric ions with hydrogen peroxide. Part 1: The ferrous iron reaction, Journal Chem. Soc., 121, 462. Fenton, H.J.H., 1894, Journal Chem. Soc., Vol. 65; 899. Fenton, H.J.H., 1893, Proc. Chem. Soc., Vol. 9; 113. Jacobs, J. A., and Testa, S. M., 2003, Design Considerations for In-Situ Chemical Oxidation Using High Pressure Jetting Technologies, Soil Sediment and Water, March/April, AEHS, p Jacobs, J., 2001, In-Situ Liquid Delivery Systems for Chemical Oxidation, Bioremediation and Metals Stabilization, Association for Environmental Health and Sciences, 1 1th Annual West Coast Coff on Contaminated Soils, Sediments and Water, March 21, 2001, San Diego, California, Abstracts.

5 Leethem,, J.T., 2002, In-Situ Chemical Oxidation of MTBE: A Case Study of the Successful Remediation of a Large Gasoline Release, Contaminated Soil Sediment and Water, July/August 2002, p Kelly, K.L., Marley, M.C., and Sperry, K.L., 2002, In-Situ Chemical Oxidation of MTBE; Contaminated Soil Sediment and Water, July/August 2002, p Suthersan, S.S., 2002, Natural and Enhanced Remediation Systems, CRC Press / Lewis Publishers, Boca Raton, FL, 419 p. Watts, R.J., Udell, M.D., Rauch, P.A. and Leung, S.W., 1990 Treatment of Pentachlorophenol Contaminated Soils Using Fenton s Reagent. Hazardous Waste Hazardous Materials, Vol. 7, p Watts, R.J., Smith, B.R., and Miller, G.C., 1991, Treatment of Octachlorodibenzo-p-dioxin (OCDD) in Surface Soils Using Catalyzed Hydrogen Peroxide. Chemosphere, Vol. 23, p Watts, R.J., et. al., 1992, Hydrogen Peroxide for Physicochemically Degrading Petroleum- Contaminated Soils, Remediation, Vol. 2, p Watts, R.J. and Stanton, P.C., 1994, Process Conditions for the Total Oxidation of Hydrocarbons in the Catalyzed Hydrogen Peroxide Treatment of Contaminated Soils. WA-RD, Vol , Washington State Dept. of Transportation, Olympia, Washington. CONTACT: Jim Jacobs jimjacobs@ebsinfo.com Tel:

Optimization of In-Situ Chemical Oxidation Design Parameters

Optimization of In-Situ Chemical Oxidation Design Parameters Optimization of In-Situ Chemical Oxidation Design Parameters by Amine Dahmani, PhD Director, Site Assessment & Remediation Laboratories Ken Huang, PhD Remediation Laboratory Manager Environmental Research

More information

Chemical Oxidation - How Oxidants Work

Chemical Oxidation - How Oxidants Work Chemical Oxidation - How Oxidants Work Charles Blanchard, PE Regional Engineer Groundwater & Environmental Services, Inc. Chemical Oxidation Overview Direct oxidation is a reaction between a compound and

More information

Chemical Oxidation Update: New Method for Activating Persulfate. SMART Remediation Vancouver, ON February 11, 2016

Chemical Oxidation Update: New Method for Activating Persulfate. SMART Remediation Vancouver, ON February 11, 2016 Chemical Oxidation Update: New Method for Activating Persulfate Jean Paré Chemco SMART Remediation Vancouver, ON February 11, 2016 SMART is Powered by: www.vertexenvironmental.ca Chemical Oxidation Update:

More information

Chemical Oxidation and Reduction

Chemical Oxidation and Reduction Chemical Oxidation and Reduction Benno Rahardyan FTSL-ITB Taken from : PIERO M. ARMENANTE NJIT What is oxidation? Simply put: The adding of an oxygen atom You are changing the composition of a molecule

More information

Drillox Technology. Technology Covered by Patent Application

Drillox Technology. Technology Covered by Patent Application Drillox Technology Technology Covered by Patent Application Presentation Outline Calcium Peroxide Properties The Drillox Technology Principle Comparison with other oxidants Testing protocol Lab studies

More information

Stuart M. Peters, Tai T. Wong and John G. Agar O Connor Associates Environmental Inc., Calgary, Alberta, CANADA, T2G 0Y2. Abstract

Stuart M. Peters, Tai T. Wong and John G. Agar O Connor Associates Environmental Inc., Calgary, Alberta, CANADA, T2G 0Y2. Abstract Field Aspects of Oxidation and Enhanced Biodegradation: Understanding and Controlling Chemical Reactions during the Injection of Hydrogen Peroxide for In Situ Remediation of Petroleum Hydrocarbons Stuart

More information

Chemical Oxidation Update: New Method for Activating Persulfate. Brant Smith PeroxyChem. SMART Remediation Toronto, ON January 28, 2016

Chemical Oxidation Update: New Method for Activating Persulfate. Brant Smith PeroxyChem. SMART Remediation Toronto, ON January 28, 2016 Chemical Oxidation Update: New Method for Activating Persulfate Brant Smith PeroxyChem SMART Remediation Toronto, ON January 28, 2016 SMART is Powered by: www.vertexenvironmental.ca Chemical Oxidation

More information

CHEMICAL OXIDATION TECHNIQUES FOR THE IN SITU REMEDIATION OF HYDROCARBON IMPACTED SOILS

CHEMICAL OXIDATION TECHNIQUES FOR THE IN SITU REMEDIATION OF HYDROCARBON IMPACTED SOILS CHEMICAL OXIDATION TECHNIQUES FOR THE IN SITU REMEDIATION OF HYDROCARBON IMPACTED SOILS Cheryl Kluck and Gopal Achari Center for Environmental Engineering Research and Education (CEERE) University of Calgary

More information

Andrew Hart Golder Associates (NZ) Limited. Assessment of ISCO for Remediation of PCP Impacted Soil

Andrew Hart Golder Associates (NZ) Limited. Assessment of ISCO for Remediation of PCP Impacted Soil Andrew Hart Golder Associates (NZ) Limited Assessment of ISCO for Remediation of PCP Impacted Soil Overview Introduction to In-Situ Chemical Oxidation (ISCO) Case Study PCP contamination at a timber treatment

More information

In Situ Chemical Oxidation (ISCO) Overview

In Situ Chemical Oxidation (ISCO) Overview In Situ Chemical Oxidation (ISCO) Overview presentation for TEMADAG VINTERMØDE 2010 Vingstedcentret, Vejle, Denmark by: Prasad Kakarla In-Situ Oxidative Technologies, Inc. (ISOTEC SM ) West Windsor, New

More information

Chemical Oxidation. Jim Harrington, Chief Training and Technical Support Section May 7, 2005

Chemical Oxidation. Jim Harrington, Chief Training and Technical Support Section May 7, 2005 Chemical Oxidation Jim Harrington, Chief Training and Technical Support Section May 7, 2005 1 From ITRC Internet Seminar What s New with In Situ Chemical Oxidation ITRC Technical and Regulatory Guidance:

More information

Chemical Oxidation of MTBE and TBA

Chemical Oxidation of MTBE and TBA Chemical Oxidation of and Marc Carver (ERM, Inc., Ewing, New Jersey), Richard A. Brown, Ph.D., (ERM, Inc., Ewing, New Jersey) ABSTRACT: Methyl tertiary butyl ether () is a synthetic chemical that was historically

More information

Chemical Oxidation Oxidizing agents

Chemical Oxidation Oxidizing agents Chemical Oxidation CENG 4710 Environmental Control Chemical oxidation is used to detoxify waste by adding an oxidizing agent to chemically transform waste compounds. It is capable of destroying a wide

More information

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed CHEMICAL OXIDATION The use of oxidizing agents without the need of microorganisms for the reactions to proceed oxidizing agents : O 3, H 2 O 2, Cl 2 or HOCl or O 2 etc catalysts : ph, transition metals,

More information

IN-SITU CHEMICAL OXIDATION OF MTBE By Kara L. Kelley, Michael C. Marley & Kenneth L. Sperry, P.E., XDD-LLC

IN-SITU CHEMICAL OXIDATION OF MTBE By Kara L. Kelley, Michael C. Marley & Kenneth L. Sperry, P.E., XDD-LLC IN-SITU CHEMICAL OXIDATION OF MTBE By Kara L. Kelley, Michael C. Marley & Kenneth L. Sperry, P.E., XDD-LLC ABSTRACT In-situ chemical oxidation (ISCO) can be a cost-effective method for the destruction

More information

Chem!stry. Assignment on Redox

Chem!stry. Assignment on Redox Chem!stry Name: ( ) Class: Date: / / Assignment on Redox Question 1: Which one of the following elements is the most powerful reducing agent? A Aluminium B Copper C Lead D Potassium Question 2: Which of

More information

Chapter - III THEORETICAL CONCEPTS. AOPs are promising methods for the remediation of wastewaters containing

Chapter - III THEORETICAL CONCEPTS. AOPs are promising methods for the remediation of wastewaters containing Chapter - III THEORETICAL CONCEPTS 3.1 Advanced Oxidation Processes AOPs are promising methods for the remediation of wastewaters containing recalcitrant organic compounds such as pesticides, surfactants,

More information

Potassium permanganate as an oxidant in the remediation of soils polluted by Bonny light crude oil

Potassium permanganate as an oxidant in the remediation of soils polluted by Bonny light crude oil Sky Journal of Soil Science and Environmental Management Vol. 3(2), pp. 4-19, February, 2014 Available online http://www.skyjournals.org/sjssem ISSN 2315-8794 2014 Sky Journals Full Length Research Paper

More information

Techniques for effluent treatment. Lecture 5

Techniques for effluent treatment. Lecture 5 Techniques for effluent treatment Lecture 5 Techniques for effluent treatment Dye effluent treatment methods are classified into three main categories: 1. Physical treatment method 2. Chemical treatment

More information

Lower Sixth Chemistry. Sample Entrance Examination

Lower Sixth Chemistry. Sample Entrance Examination Lower Sixth Chemistry Sample Entrance Examination Time allowed: 60 minutes Name: Total : 60 Marks INSTRUCTIONS : Answer all questions Answers should be written in the spaces provided Dictionaries or reference

More information

CE 370. Disinfection. Location in the Treatment Plant. After the water has been filtered, it is disinfected. Disinfection follows filtration.

CE 370. Disinfection. Location in the Treatment Plant. After the water has been filtered, it is disinfected. Disinfection follows filtration. CE 70 Disinfection 1 Location in the Treatment Plant After the water has been filtered, it is disinfected. Disinfection follows filtration. 1 Overview of the Process The purpose of disinfecting drinking

More information

Draw one line from each solution to the ph value of the solution. Solution ph value of the solution

Draw one line from each solution to the ph value of the solution. Solution ph value of the solution 1 The ph scale is a measure of the acidity or alkalinity of a solution. (a) Draw one line from each solution to the ph value of the solution. Solution ph value of the solution 5 Acid 7 9 Neutral 11 13

More information

DEGRADATION OF REACTIVE RED 2 BY FENTON AND PHOTO-FENTON OXIDATION PROCESSES

DEGRADATION OF REACTIVE RED 2 BY FENTON AND PHOTO-FENTON OXIDATION PROCESSES DEGRADATION OF REACTIVE RED 2 BY FENTON AND PHOTO-FENTON OXIDATION PROCESSES Tuty Emilia A., Yourdan Wijaya A. and Febrian Mermaliandi Department of Chemical Engineering, Faculty of Engineering, University

More information

DEVELOPMENT AND DEPLOYMENT OF THE MODULOX PROCESS FOR THE DESTRUCTION OF ORGANICALLY CONTAMINATED WASTES

DEVELOPMENT AND DEPLOYMENT OF THE MODULOX PROCESS FOR THE DESTRUCTION OF ORGANICALLY CONTAMINATED WASTES DEVELOPMENT AND DEPLOYMENT OF THE MODULOX PROCESS FOR THE DESTRUCTION OF ORGANICALLY CONTAMINATED WASTES ABSTRACT T.J. Abraham, M. Williams AEA Technology Engineering Services, Inc. J. Wilks AEA Technology,

More information

Chem!stry. Mole Calculations Assignment Twelve

Chem!stry. Mole Calculations Assignment Twelve Chem!stry Name: ( ) Class: Date: / / Mole Calculations Assignment Twelve 1. A gas is 46.2% carbon and 53.8% nitrogen. Under conditions of room temperature and pressure (r.t.p.) the volume of the gas is

More information

Chemical Reactions CHAPTER Reactions and Equations

Chemical Reactions CHAPTER Reactions and Equations CHAPTER 9 Chemical Reactions 9.1 Reactions and Equations The process by which atoms of one or more substances are rearranged to form different substances is called a chemical reaction. There are a number

More information

What type of solution that contains all of the

What type of solution that contains all of the What type of solution that contains all of the solute it can hold at a given temperature? Saturated Solution What type of solution that contains less solute than it is able to hold at a given temperature?

More information

Chapter 8: Ethers and Epoxides. Diethyl ether in starting fluid

Chapter 8: Ethers and Epoxides. Diethyl ether in starting fluid Chapter 8: Ethers and Epoxides Diethyl ether in starting fluid 8.1 Nomenclature of Ethers Ethers are usually named by giving the name of each alkyl or aryl group, in alphabetical order, followed by the

More information

Part 01 - Notes: Reactions & Classification

Part 01 - Notes: Reactions & Classification Objectives: Identify, define, and explain: combination reaction, synthesis reaction, decomposition reaction, single replacement reaction, double replacement reaction, combustion reaction, rapid oxidation,

More information

WRITING AP EQUATIONS

WRITING AP EQUATIONS WRITING AP EQUATIONS AP equation sets are found in the free-response section of the AP test. You get three equations to complete. The equations are of mixed types. The section is worth 15 points and is

More information

Danyal Education (Contact: ) A commitment to teach and nurture

Danyal Education (Contact: ) A commitment to teach and nurture Chemistry of Reactions: Redox (#) Candidates should be able to: a) define oxidation and reduction (redox) in terms of oxygen/hydrogen gain/loss b) define redox in terms of electron transfer and changes

More information

Unit 4: Reactions and Stoichiometry

Unit 4: Reactions and Stoichiometry Unit 4: Reactions and Stoichiometry Reactions Chemical equation Expression representing a chemical reaction Formulas of reactants on the left side Formulas of products on the right side Arrow(s) connect(s)

More information

Physicochemical Processes

Physicochemical Processes Lecture 3 Physicochemical Processes Physicochemical Processes Air stripping Carbon adsorption Steam stripping Chemical oxidation Supercritical fluids Membrane processes 1 1. Air Stripping A mass transfer

More information

Characteristics of Fenton s Oxidation of 2, 4, 6 Trichlorophenol

Characteristics of Fenton s Oxidation of 2, 4, 6 Trichlorophenol Characteristics of Fenton s Oxidation of 2, 4, 6 Trichlorophenol *M Farrokhi 1, A R Mesdaghinia 2, A R Yazdanbakhsh 3, S Nasseri 2 1 Dept. of Environmental Health, Giulan University of Medical Sciences,

More information

(18) WMP/Jun10/CHEM5

(18) WMP/Jun10/CHEM5 Electrochemistry 18 7 The electrons transferred in redox reactions can be used by electrochemical cells to provide energy. Some electrode half-equations and their standard electrode potentials are shown

More information

1. What is the sum of all coefficients when the following equation is balanced using the smallest possible whole numbers? D.

1. What is the sum of all coefficients when the following equation is balanced using the smallest possible whole numbers? D. 1. What is the sum of all coefficients when the following equation is balanced using the smallest possible whole numbers? A. 5 B. 7 C. 11 C 2 H 2 + O 2 CO 2 + H 2 O D. 13 2. 1.7 g of NaNO 3 (M r = 85)

More information

CHEMISTRY HIGHER LEVEL

CHEMISTRY HIGHER LEVEL *P15* PRE-LEAVING CERTIFICATE EXAMINATION, 2008 CHEMISTRY HIGHER LEVEL TIME: 3 HOURS 400 MARKS Answer eight questions in all These must include at least two questions from Section A All questions carry

More information

1 (a) Describe a chemical test which shows the presence of water. Describe how water is treated before it is supplied to homes and industry.

1 (a) Describe a chemical test which shows the presence of water. Describe how water is treated before it is supplied to homes and industry. 1 (a) Describe a chemical test which shows the presence of water. test... colour change if water is present...... [3] (b) How could you show that a sample of water is pure?...[1] (c) Describe how water

More information

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Boomer Publications

OCR AS Chemistry A H032 for first assessment in Complete Tutor Notes. Section: Boomer Publications R AS hemistry A 032 for first assessment in 2016 omplete Tutor Notes www.boomerchemistry.com Section: 4.2.1 Alcohols 4.2.2 aloalkanes 2015 Boomer Publications page 145 page 152 40 Alcohols Page 155 Ethanol

More information

Chemical formula - tells you how many atoms of each element are in a compound example: CO 2 (carbon dioxide) has one carbon atom and two oxygen atoms

Chemical formula - tells you how many atoms of each element are in a compound example: CO 2 (carbon dioxide) has one carbon atom and two oxygen atoms Chemical Reactions Chemical formula - tells you how many atoms of each element are in a compound example: CO 2 (carbon dioxide) has one carbon atom and two oxygen atoms 2 points Chemical Equation - a short,

More information

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 0620 CHEMISTRY

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 0620 CHEMISTRY UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 0620 CHEMISTRY

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

A Green Oxidant for In-Situ Chemical Oxidation. Jack Peabody Regenesis

A Green Oxidant for In-Situ Chemical Oxidation. Jack Peabody Regenesis A Green xidant for In-Situ Chemical xidation Jack Peabody Regenesis jpeabody@regenesis.com The New Era of Environmentalism Green Sustainable Renewable Energy Chemistry Vehicles Farming Technologies Lifestyles

More information

CHEMISTRY HIGHER LEVEL

CHEMISTRY HIGHER LEVEL *P15* PRE-LEAVING CERTIFICATE EXAMINATION, 2009 CHEMISTRY HIGHER LEVEL TIME: 3 HOURS 400 MARKS Answer eight questions in all These must include at least two questions from Section A All questions carry

More information

Key factors for a successful ISCO application with Permanganate

Key factors for a successful ISCO application with Permanganate Key factors for a successful ISCO application with Permanganate Prepared by: Richard W Lewis CPG Program Manager ERM 1, 11/22/2002 1 1 ISCO Treatment Two key issues Does the reaction take place? Competing

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission M. 34 Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2003 CHEMISTRY - HIGHER LEVEL TUESDAY, 17 JUNE - AFTERNOON 2.00 to 5.00 400 MARKS Answer eight questions

More information

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons Chapter 1 Reactions of Organic Compounds Reactions Involving Hydrocarbons Reactions of Alkanes Single bonds (C-C) are strong and very hard to break, therefore these compounds are relatively unreactive

More information

2017 Enrolment The 3rd. Japan University Examination. Chemistry. Do not open the examination booklet until the starting signal for the exam is given.

2017 Enrolment The 3rd. Japan University Examination. Chemistry. Do not open the examination booklet until the starting signal for the exam is given. 2017 Enrolment The 3rd Japan University Examination Examination Date: July 2016 Chemistry (60 min) Do not open the examination booklet until the starting signal for the exam is given. Please read the following

More information

Types of Chemical Reactions

Types of Chemical Reactions Types of Chemical Reactions There are five types of chemical reactions: 1. Formation (combination) 2. Decomposition 3. Single Displacement 4. Double Displacement 5. Combustion 1 Formation (Combination)

More information

Reuse of Produced Water for Electrolytic Oxidant Production: Challenges and Solutions

Reuse of Produced Water for Electrolytic Oxidant Production: Challenges and Solutions Reuse of Produced Water for Electrolytic Oxidant Production: Challenges and Solutions Produced Water Produced water is extracted from wells at a rate far greater than hydrocarbon extraction ~8 bblproduced

More information

Page 2. Q1.Carbon dioxide is produced when copper carbonate is heated.

Page 2. Q1.Carbon dioxide is produced when copper carbonate is heated. Q1.Carbon dioxide is produced when copper carbonate is heated. A student investigated heating copper carbonate. The student used the apparatus to measure how long it took for carbon dioxide to be produced.

More information

(DO NOT WRITE ON THIS TEST)

(DO NOT WRITE ON THIS TEST) Final Prep Chap 8&9 (DO NOT WRITE ON THIS TEST) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. After the correct formula for a reactant in an equation

More information

Ethers. Synthesis of Ethers. Chemical Properties of Ethers

Ethers. Synthesis of Ethers. Chemical Properties of Ethers Page 1 of 6 like alcohols are organic derivatives of water, but lack the labile -OH group. As a result, ethers, except for epoxides, are usually not very reactive and are often used as solvents for organic

More information

1.11 Redox Equilibria

1.11 Redox Equilibria 1.11 Redox Equilibria Electrochemical cells Electron flow A cell has two half cells. The two half cells have to be connected with a salt bridge. Simple half cells will consist of a metal (acts an electrode)

More information

Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind.

Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind. Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind. 1. calcium + oxygen 2. cupric carbonate 3. aluminum + hydrochloric

More information

Unit 6.3 Types of Chemical reactions

Unit 6.3 Types of Chemical reactions Unit 6.3 Types of Chemical reactions Most chemical reactions can be classified into one of five types of reactions. It depends on both the reactants used and the products formed. The possible chemical

More information

Representing Chemical Change

Representing Chemical Change Representing Chemical Change As we have already mentioned, a number of changes can occur when elements react with one another. These changes may either be physical or chemical. One way of representing

More information

Unit IV: Chemical Equations & Stoichiometry

Unit IV: Chemical Equations & Stoichiometry Unit IV: Chemical Equations & Stoichiometry A. The chemical equation B. Types of chemical reactions A. Activity series of metals B. Solubility rules C. Rules for writing and balancing equations D. Calculations

More information

Identification of Ions and Gases

Identification of Ions and Gases Identification of Ions and Gases Question Paper 1 Level IGSE Subject hemistry (0620/0971) Exam oard ambridge International Examinations (IE) Topic cids, bases and salts Sub-Topic Identification of ions

More information

REMOVAL OF METHYL TERTIARY BUTYL ETHER FROMSYNTHETIC WASTEWATER

REMOVAL OF METHYL TERTIARY BUTYL ETHER FROMSYNTHETIC WASTEWATER Number 2 Volume 16 June 2010 Journal of Engineering REMOVAL OF METHYL TERTIARY BUTYL ETHER FROMSYNTHETIC WASTEWATER Suondos K. A. Barno Chemical and Biological Monitoring Committee- University of Baghdad

More information

for sodium ion (Na + )

for sodium ion (Na + ) 3.4 Unit 2 Chemistry 2 Throughout this unit candidates will be expected to write word equations for reactions specified. Higher tier candidates will also be expected to write and balance symbol equations

More information

CHAPTER HYDROCARBONS. Chapterwise Previous year Qs. (a) Na (b) HCl in H2O (c) KOH in C2H5OH (d) Zn in alcohol. Ans: (c)

CHAPTER HYDROCARBONS. Chapterwise Previous year Qs. (a) Na (b) HCl in H2O (c) KOH in C2H5OH (d) Zn in alcohol. Ans: (c) 122 CHAPTER HYDROCARBONS 1. Acetylenic hydrogens are acidic because [1989] Sigma electron density of C Hbond in acetylene is nearer to carbon, which has 50% s- character Acetylene has only open hydrogen

More information

EFFECT OF SULFATE IONS ON THE OXIDATION OF MTBE BY FENTON S REAGENT

EFFECT OF SULFATE IONS ON THE OXIDATION OF MTBE BY FENTON S REAGENT EFFECT OF SULFATE IONS ON THE OXIDATION OF MTBE BY FENTON S REAGENT Ewa Maria Siedlecka, Anna Januszewska, Piotr Glamowski Department of Environmental Engineering, Faculty of Chemistry, University of Gdańsk,

More information

Brant A. Smith P.E., Ph.D. Remediation Technologies (RemTech) Symposium Banff, Alberta October 14, 2015

Brant A. Smith P.E., Ph.D. Remediation Technologies (RemTech) Symposium Banff, Alberta October 14, 2015 Application of Alkaline Activated Persulfate to Treat Petroleum Hydrocarbon Contamination Beneath the Active Construciton of a 32-Story High-Rise Residential Tower Brant A. Smith P.E., Ph.D. Remediation

More information

Slow Release Persulfate and MultiOx Cylinders for Passive, Long term Treatment of Petroleum Hydrocarbon Contaminated Sites

Slow Release Persulfate and MultiOx Cylinders for Passive, Long term Treatment of Petroleum Hydrocarbon Contaminated Sites Slow Release Persulfate and MultiOx Cylinders for Passive, Long term Treatment of Petroleum Hydrocarbon Contaminated Sites Jean Paré Chemco Inc. SMART Remediation Ottawa, ON February 12, 2015 SMART is

More information

The electrolysis of sodium chloride solution produces useful substances. covalent ionic non-metallic

The electrolysis of sodium chloride solution produces useful substances. covalent ionic non-metallic 1 The electrolysis of sodium chloride solution produces useful substances. (a) (i) Choose a word from the box to complete the sentence. covalent ionic non-metallic Electrolysis takes place when electricity

More information

Organic Chemistry. REACTIONS Grade 12 Physical Science Mrs KL Faling

Organic Chemistry. REACTIONS Grade 12 Physical Science Mrs KL Faling Organic Chemistry REACTIONS Grade 12 Physical Science Mrs KL Faling SUBSTITUTION REACTIONS This is a reaction where an atom or group of atoms is replaced by another atom or group of atoms Substitution

More information

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only I. Addition Reactions of Alkenes Introduction Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem 2310 An addition reaction always involves changing a double bond to a single bond and adding a new bond

More information

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry:

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry: AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry: Water as a solvent Strong and Weak Electrolytes Solution Concentrations How to Make up a solution Types of Reactions Introduction

More information

YEAR 10- Chemistry Term 1 plan

YEAR 10- Chemistry Term 1 plan YEAR 10- Chemistry Term 1 plan 2016-2017 Week Topic Learning outcomes 1 1. The particulate nature of matter State the distinguishing properties of solids, liquids and gases. Describe the structure of solids,

More information

Please hand your completed booklet to your Chemistry tutor when you begin A Level Chemistry in September

Please hand your completed booklet to your Chemistry tutor when you begin A Level Chemistry in September #THIS I S TH E P L AC E A-LEVEL CHEMSITRY NAME: You should complete this work ready for starting Year 1 A Level Chemistry. If there are any questions that you cannot do, even after using your GCSE notes

More information

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes Additions to Alkenes Chapter 8 Alkenes and Alkynes II: Addition Reactions Generally the reaction is exothermic because one p and one s bond are converted to two s bonds Alkenes are electron rich The carbocation

More information

4.4. Revision Checklist: Chemical Changes

4.4. Revision Checklist: Chemical Changes 4.4. Revision Checklist: Chemical Changes Reactivity of metals When metals react with other substances the metal atoms form positive ions. The reactivity of a metal is related to its tendency to form positive

More information

Equations. Chemical Reactions #1

Equations. Chemical Reactions #1 Equations Chemical Reactions #1 equations show the complete chemical formulas. Does not indicate ionic character equation shows all ions. Actually how the particles exist in the solution Steps for Writing

More information

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4 APPARATUS Page 2 APPARATUS Page 3 Reducing Copper(III) Oxide to Copper EXPERIMENTS Page 4 Testing products of combustion: EXPERIMENTS Showing that oxygen and water is needed for rusting iron Page 5 Showing

More information

Part of the practical procedure is given below.

Part of the practical procedure is given below. A peptide is hydrolysed to form a solution containing a mixture of amino acids. This mixture is then analysed by silica gel thin-layer chromatography (TLC) using a toxic solvent. The individual amino acids

More information

Alcohols. Contents. Structure. structure

Alcohols. Contents. Structure. structure Page 1 of 9 Alcohols Contents structure Physical Properties Classification of Alcohols Nomenclature of Alcohols Preparation of Alcohols Oxidation of Alcohols oxidation of aldehydes Structure Alcohols can

More information

CHAPTER 8 CHEMICAL REACTIONS AND EQUATIONS

CHAPTER 8 CHEMICAL REACTIONS AND EQUATIONS CHAPTER 8 CHEMICAL REACTIONS AND EQUATIONS CHEMICAL REACTIONS Occurs when matter combines or breaks apart to produce new kinds of matter with different properties with a change in energy. EVIDENCE FOR

More information

Honors text: Ch 10 & 12 Unit 06 Notes: Balancing Chemical Equations

Honors text: Ch 10 & 12 Unit 06 Notes: Balancing Chemical Equations Notes: Balancing Chemical Equations Effects of chemical reactions: Chemical reactions rearrange atoms in the reactants to form new products. The identities and properties of the products are completely

More information

DOUBLE DISPLACEMENT REACTIONS. Double your pleasure, double your fun

DOUBLE DISPLACEMENT REACTIONS. Double your pleasure, double your fun DOUBLE DISPLACEMENT REACTIONS Double your pleasure, double your fun Industrial processes produce unwanted by-products. Dissolved toxic metal ions-copper, mercury, and cadmium-are common leftovers in the

More information

NCEA Level 1 Science (90944) 2017 page 1 of 6. Q Evidence Achievement Achievement with Merit Achievement with Excellence

NCEA Level 1 Science (90944) 2017 page 1 of 6. Q Evidence Achievement Achievement with Merit Achievement with Excellence Assessment Schedule 2017 NCEA Level 1 Science (90944) 2017 page 1 of 6 Science: Demonstrate understanding of aspects of acids and bases (90944) Evidence Point Q Evidence Achievement Achievement with Merit

More information

Classification of Mystery Substances

Classification of Mystery Substances Classification of Mystery Substances This document supports the safety activity Mystery Substance Identification: The Identification of Unlabeled Chemicals Found on School Premises from Flinn Scientific.

More information

1. How many moles of hydrogen are needed to completely react with 2.00 moles of nitrogen?

1. How many moles of hydrogen are needed to completely react with 2.00 moles of nitrogen? Stoichiometry Mole-to-Mole 1. How many moles of hydrogen are needed to completely react with 2.00 moles of nitrogen? N 2 + H 2 NH 3 2. If 5.50 moles of calcium carbide (CaC 2 ) reacts with an excess of

More information

Oxidation numbers. and. balancing equations

Oxidation numbers. and. balancing equations Oxidation numbers and balancing equations Oxidation was originally named for dealing with processes where oxygen was transferred during reactions Oxidation was originally named for dealing with processes

More information

4.4. Revision Checklist: Chemical Changes

4.4. Revision Checklist: Chemical Changes 4.4. Revision Checklist: Chemical Changes Reactivity of metals When metals react with other substances the metal atoms form positive ions. The reactivity of a metal is related to its tendency to form positive

More information

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens). Reactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. Normally: Oxidation

More information

Definition: the process by which one or more substances are rearranged to form different substances. Another name for a chemical change.

Definition: the process by which one or more substances are rearranged to form different substances. Another name for a chemical change. Chemical Reactions I. What is a chemical reaction? Definition: the process by which one or more substances are rearranged to form different substances. Another name for a chemical change. A. How can you

More information

FORM 4 CHEMISTRY - SUMMER REVISION WORK

FORM 4 CHEMISTRY - SUMMER REVISION WORK Form 3 Syllabus: FORM 4 CHEMISTRY - SUMMER REVISION WORK Chapter 1: STATES OF MATTER Converting between the 3 states of matter Application of kinetic theory to changes of state Diffusion Physical and chemical

More information

C4 Quick Revision Questions

C4 Quick Revision Questions C4 Quick Revision Questions H = Higher tier only SS = Separate science only Question 1... of 50 Write the equation which shows the formation of iron oxide Answer 1... of 50 4Fe + 3O 2 2Fe 2 O 3 Question

More information

International Journal of Pharma and Bio Sciences

International Journal of Pharma and Bio Sciences Research Article Analytical Chemistry International Journal of Pharma and Bio Sciences ISSN 0975-6299 THE CHEMICAL PROCESSES OCCURRED IN THE REMOVAL OF POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) ON THE SOIL

More information

( ) Natural Sciences Department. Chemical Reactions

( ) Natural Sciences Department. Chemical Reactions Chemical Reactions Why do atoms cluster? The attraction which keeps atoms united one to each other to form a molecule is called chemical bond. The atoms place themselves in the molecule so that the energy

More information

Chemical Reactions. Ch. 11 Chemical Reactions. Chemical Reactions. Chemical Reactions

Chemical Reactions. Ch. 11 Chemical Reactions. Chemical Reactions. Chemical Reactions Chemical Reactions Ch. 11 Chemical Reactions when a substance changes identity Reactants - original Products - resulting law of conservation of mass total mass of reactants = total mass of products In

More information

CHEMISTRY 2b SUMMARY

CHEMISTRY 2b SUMMARY CHEMISTRY 2b SUMMARY Items in ITALLICS are HIGHER TIER NLY C2.4.1 RATES F REACTIN Speeding up, or slowing down, chemical reactions is important in everyday life and in industry The rate of a chemical reaction

More information

Describe the structure and bonding in a metallic element. You should include a labelled diagram in your answer. ... [3] ...

Describe the structure and bonding in a metallic element. You should include a labelled diagram in your answer. ... [3] ... 3 Gallium is a metallic element in Group III. It has similar properties to aluminium. (a) (i) Describe the structure and bonding in a metallic element. You should include a labelled diagram in your answer.

More information

magnesium Mg each horizontal line correct (1) [3] correct direction from zinc to lead (1)

magnesium Mg each horizontal line correct (1) [3] correct direction from zinc to lead (1) 1 (a (i) aqueous solution lead Pb magnesium Mg zinc Zn silver Ag lead (II) magnesium zinc silver(i) X each hizontal line crect (1) [3] (ii) Zn (1) An arrow from Zn to Zn 2+ (1) (iii) Zn + 2Ag + Zn 2+ +

More information

ICSE Board Class IX Chemistry Paper - 7

ICSE Board Class IX Chemistry Paper - 7 ICSE Board Class IX Chemistry Paper - 7 Time: 2 hrs Total Marks: 80 General Instructions: 1. Answers to this paper must be written on the paper provided separately. 2. You will not be allowed to write

More information

Redox. Question Paper. Cambridge International Examinations Chemical Reactions. Score: /43. Percentage: /100

Redox. Question Paper. Cambridge International Examinations Chemical Reactions. Score: /43. Percentage: /100 Redox Question Paper Level Subject Exam oard Topic Sub-Topic ooklet O Level hemistry ambridge International Examinations hemical Reactions Redox Question Paper Time llowed: 52 minutes Score: /43 Percentage:

More information

ST. FRANCIS SECONDARY SCHOOL HALF YEARLY EXAMINATION SPECIMEN PAPER FORM 4 CHEMISTRY TIME: 2 HOURS. Name: Total Mark from 90:

ST. FRANCIS SECONDARY SCHOOL HALF YEARLY EXAMINATION SPECIMEN PAPER FORM 4 CHEMISTRY TIME: 2 HOURS. Name: Total Mark from 90: ST. FRANCIS SECONDARY SCHOOL HALF YEARLY EXAMINATION SPECIMEN PAPER FORM 4 CHEMISTRY TIME: 2 HOURS Name: Total Mark from 90: A copy of the periodic table is provided during the exam. You are reminded of

More information

The calculation of kinetic parameters would be an integral part of the report.

The calculation of kinetic parameters would be an integral part of the report. Kinetic studies using UV-VIS spectroscopy Fenton reaction 2017 Abstract The goal of this exercise is to demonstrate the possibility of using a modern in-situ spectroscopic method (UV-VIS spectroscopy)

More information

C2.6 Quantitative Chemistry Foundation

C2.6 Quantitative Chemistry Foundation C2.6 Quantitative Chemistry Foundation 1. Relative masses Use the periodic table to find the relative masses of the elements below. (Hint: The top number in each element box) Hydrogen Carbon Nitrogen Oxygen

More information