Lecture 27 More Polymers

Size: px
Start display at page:

Download "Lecture 27 More Polymers"

Transcription

1 Lecture 27 More Polymers Step Chain April 25, 2018

2 Where: MEZ 1.306!! Final Exam When: Friday, May 11 th, 2:00 5:00 PM Do: Study lecture notes, homework, reading Practice: Hydrolysis, signatures and synthesis. Review: Spectroscopy and unknowns Please: Do a good job! See web site for old exams

3 MEZES Hall (MEZ) -

4 Basic Types of Polymerization Mechanisms Step-growth Dimer Tetramer Octamer Hexamer O... O HO C CH 2 CH 2 OH H O C CH 2 CH 2 O H H 2 O Chain-growth O Ring-opening RO - + O O O - RO O O H

5 Chain-Growth Polymers Chain-growth polymerization: a polymerization that involves sequential addition reactions, either to unsaturated monomers or to monomers possessing other reactive functional groups Reactive intermediates in chain-growth polymerizations include radicals, carbanions, carbocations, and organometallic complexes

6 Chain-Growth Polymers We will concentrate on chain-growth polymerizations of ethylene and substituted ethylenes R An alkene R n n

7 Radical Chain Growth Polymerization Initiation Thermolysis or phtolysis and reaction with monomer Propagation Chain end reaction with monomer Termination Chain Transfer

8 MALDI Mass Spectrum of Polystyrene

9 Molecular Weight All polymers are mixtures of individual polymer molecules of variable MWs Number average Mn: count the number of chains of a particular MW, multiply each number by the MW, sum these values, and divide by the total number of polymer chains MiNi Ni weight average Mw: record the weight of each chain of a particular length, sum these weights, and divide by the total weight of the sample Mw Mn WiMi Wi NiMi 2 NiMi

10 Polydispersity Ð Polydispersity index (PDI) Ð is Mw/Mn a measure of the breadth of the molecular weight

11 Step Growth: The Carothers Legacy Stuff is lost in this reaction

12 Kevlar is a polyaromatic amide (an aramid) used in tire cords and bullet proof vests O nhoc Polyamides O COH + nh 2 N NH 2 O O C CNH NH n + 2 nh 2 O cables of Kevlar are as strong as cables of steel, but only about 20% the weight. Kevlar fabric is used for bulletproof vests, jackets,

13

14 Step Growth Polymerization The forgoing were all examples of step growth polymerizations What Carothers called condensation polymerizations A-A, B-B vs A-B advantages Problems with achieving high Mol. Wt. But.there are tricks to be played Interfacial polymerization, etc.

15 Comparison of Step and Chain Step Growth Growth throughout the matrix between monomers, oligomers and polymers DP is low to moderate Monomer is consumed rapidly but Mw increases slowly No initiator needed and reaction same throughout process No termination step chain ends still reactive Rate decreases steadily as funcional groups are consumed Chain Growth Successive addition of monomer to a limited number of growing chain ends DP can be very high Initiation and propagation reactions are different Generally a chain termination step Polymerization rate increases initially remains relatively constant until monomer depleted

16 Chain Growth Polymerization DP = N o /N = 12 / 7 = 1.7 (for 50%, b)

17 Step Growth Polymerization DP = N o /N = 12 / 9 = 1.3 (for 50%, b)

18 The chain growth vs. step growth Step Chain

19 - Step-growth polymerization

20 - Chain-growth polymerization

21 Let s look at this closely. Consider a flask of monomer.if there are N o molecules in the flask at time = 0 and N remaining at time t then the DP at time t is the average degree of polymerization must just be N 0 /N!

22 The Carothers Equation High Molecular weights are hard to get this way If there are N o molecules at time = 0 and N remaining at time t then the amount reacted is N 0 -N and we can define p as the conversion or fraction reacted then as P= (N o N ) / N o or N = N o ( 1 P) If DP is the average degree of polymerization N 0 /N.substituting gives N/N = N o /N( 1 P) or DP = 1 / (1 P) and for P = 0.98 (98% conversion), DP = only 50!

23 The step growth system It all happens at the end!!! DP = 1 / (1 P)

24 The chain growth system The relationship between DP and conversion With termination reactions steady state

25 Chain growth system The characteristic of a chain polymer is that polymer growth takes place by monomer reacting only with the reactive centers. Monomer does not react with monomer and the different-sized species such as dimer, trimer, and n-mer do not react with each other. The polymerization ceases when the active center is destroyed by termination reaction(s).

26 Step Growth system A condensation takes place between two polyfunctional molecules to produce one larger polyfunctional molecule with the possible elimination of a small molecule such as water. The reaction continues until one of the reagents is used up.

27 Distinguishing features of chain- and step-polymerization mechanisms

28 A-A, B-B vs A-B??? O O Cl C H 2 C H 2 C A.A C Cl + HO-CH 2 -CH 2 -OH B...B O O Cl C H 2 C H 2 C C O CH 2 -CH 2 -OH A.B

29 More Historical Figures Wilhelm Schlenk Michael Szwarc

30 Anionic polymerization Some History 1914, Schlenk reacts Na with butadiene and styrene 1929, Ziegler proposes a mechanism 1952 Higginson, styrene, KNH 2, kinetic study 1956 Szwarc, sodium naphthalene, Styrene, living polymerization conception 60's, 90 s, commercial products were available study on the living polymerization of polar monomers

31 Alkenes with electron Withdrawing Groups undergo anionic polymerization examples C H 2 CH C N C H 2 O CH N O C H 2 CH 3 C C O O CH 3 Acrylonitrile Nitroethene Methyl methacrylate

32 Classical Monomers CH 3 C H 2 CH C H 2 C styrene a-me-styrene

33 Reactivity of monomers Group A: H 2 C C(CN) 2 > H 2 C C COOC 2 H 5 > CN C H 2 CH NO 2 Group B: H 2 C CHCN > H 2 C C CH 3 > CN H 2 C CH C O CH 3 Group C: C H 2 CH C O O CH 3 > H 2 C C CH 3 C O O CH 3 CH 3 Group D: H 2 C CH CH CH 2 H 2 C CH H 2 C C

34 Cyano Acrylate initiator H 2 C CN C C Jöns Jacob Berzelius ( ) O OC 2 H 5 + H 2 O POLYMER

35 Anionic Initiators and initiation (1) alkali metals.one electron reductions Lithium (Li) Sodium (Na) Potassium (K) as mirrors or fine dispersions. Na e H electron - + C CH. CH2 CH Na + 2 transfer Radical anion dimerize radical couple Na + - CH CH2 - CH 2 CH Na + Szwarc s favorite

36 Break Seal Glassware

37 Schlenk Tube Approach

38 b

39 Anionic Polymerization Apparatus

40 Szwarc s Experiment Living test Reddish Orange

41 The Living Polymerization DP t [ M ] [ I] M DP I

42 Anionic Polymerization of diblock copolymer M n = 64.2 kda M w = 65.7 kda PDI = 1.02 M n = 54.2 kda M w = 54.2 kda PDI = 1.00

43 Polymer Blends Polymers do not generally form blends or alloys. About 99% of binary blends are heterogeneous except for small regions of the phase diagram Ethylene and propylene are mutually soluble, but polyethylene and polypropylene are not.

44 Block co-polymers Covalent linkage of two or more polymers that are intrinsically incompatible. Synthesis requires special techniques.

45 A B Volume Fraction A

46 SBS Thermoplastic Elastomer Krayton 46

47 Orienting Block Copolymers Wafer Wafer Wafer Wafer Lamellae Cylinders 47

48 Directed self-assembly

49 How big is 10 nm??? 50 Micron Hair 5 Micron Bacterium

50 100 nm Virus 2-5 micron e. Coli Bacteria 50

51 10 nm wide line 0.5 nm diamet er atom

Lecture 27 More Polymers

Lecture 27 More Polymers Lecture 27 More Polymers Step Chain April 26, 2016 Midterm Exam III Where: WEL 1.316!! When: Wed., May 4 th, 7:00 9:00 PM What: Covers lectures through 4/28 Review Session: Mon & Tues. 5-6 PM Monday PAI

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry Lecture 5 Step Growth Chain Growth Paul Flory Clears Things Up Polymer Structure is distinct from polymerization process Addition Polymerization H H Condensation Polymerization

More information

Lecture 26 Classification

Lecture 26 Classification Lecture 26 Classification April 24, 2018 Industrial Influence: Trade Names PVC poly (vinylidene chloride) Saran wrap PVC poly (vinyl chloride) Pipe and records PET poly (ethylene teraphthalate) Coke bottles,

More information

Chapter 5. Ionic Polymerization. Anionic.

Chapter 5. Ionic Polymerization. Anionic. Chapter 5. Ionic Polymerization. Anionic. Anionic Polymerization Dr. Houston S. Brown Lecturer of Chemistry UH-Downtown brownhs@uhd.edu What you should know: What is anionic polymerization? What is MWD,

More information

Physical and Mechanical Properties of Polymers

Physical and Mechanical Properties of Polymers MATE 453/MSE 553 Physical and Mechanical Properties of Polymers Guided Lecture Notes for Fall 2012 Prof. Michael Kessler Department of Materials Science and Engineering Iowa State University PHYSICAL AND

More information

POLYMERS: MACROMOLECULES

POLYMERS: MACROMOLECULES C21 11/08/2013 16:8:37 Page 311 CHAPTER 21 POLYMERS: MACROMOLECULES SOLUTIONS TO REVIEW QUESTIONS 1. An addition polymer is one that is produced by the successive addition of repeating monomer molecules.

More information

PAPER No. 6: PHYSICAL CHEMISTRY-II (Statistical

PAPER No. 6: PHYSICAL CHEMISTRY-II (Statistical Subject Chemistry Paper No and Title Module No and Title Module Tag 6, PHYSICAL -II (Statistical 32, Concept of Number average and Mass average molecular weights CHE_P6_M32 TABLE OF CONTENTS 1. Learning

More information

Anionic Polymerization - Initiation and Propagation

Anionic Polymerization - Initiation and Propagation Anionic Polymerization Initiation and Propagation As in free radical polymerization, there are initiation and propagation steps. NH 2 NaNH 2 Na + + NH 2 + H 2 N CH: Propagation proceeds in the usual manner,

More information

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer =

1.1 Basic Polymer Chemistry. 1.2 Polymer Nomenclature. 1.3 Polymer Synthesis. 1.4 Chain Growth Polymerization. Polymer = 1.1 Basic Polymer hemistry Polymers are the largest class of soft materials: over 100 billion pounds of polymers made in US each year lassification systems 1.2 Polymer Nomenclature Polymer = Monomer =

More information

A polymer is a very large molecule that is built from monomers. A monomer is one of the repeating units that make up a polymer.

A polymer is a very large molecule that is built from monomers. A monomer is one of the repeating units that make up a polymer. 1.8 Polymers The General Structure of Polymers A polymer is a very large molecule that is built from monomers. A monomer is one of the repeating units that make up a polymer. Many biological molecules,

More information

Introduction to Macromolecular Chemistry

Introduction to Macromolecular Chemistry Introduction to Macromolecular Chemistry aka polymer chemistry Mondays, 8.15-9.45 am except for the following dates: 01.+29.05, 05.+12.06., 03.07. Dr. Christian Merten, Ruhr-Uni Bochum, 2017 www.ruhr-uni-bochum.de/chirality

More information

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state 2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state or concentrated from the solution, molecules are often

More information

Lecture 24 Two Germans and an Englishman

Lecture 24 Two Germans and an Englishman Lecture 24 Two Germans and an Englishman Robert Robinson 1886-1975 Nobel Laureate 1947 April 17, 2018 tto Paul Hermann Diels 1876-1954 Nobel Laureates 1950 Kurt Alder 1902-1958 Exam III Tomorrow Wed April

More information

Lecture 4 Chapter 13 - Polymers. Functional Groups Condensation Rxns Free Radical Rxns

Lecture 4 Chapter 13 - Polymers. Functional Groups Condensation Rxns Free Radical Rxns Lecture 4 Chapter 13 - Polymers Functional Groups Condensation Rxns Free Radical Rxns Chemistry the whole year on one page Last semester Basic atomic theory Stoichiometry, balancing reactions Thermodynamics

More information

JBA 2018 Chemistry Exam 2. Name: Score: /100 = /80

JBA 2018 Chemistry Exam 2. Name: Score: /100 = /80 JBA 2018 hemistry Exam 2 ame: Score: /100 = /80 Multiple choice questions are worth two points each. 1. onstitutional isomers are compounds that have a. the same chemical formulas and molecular structures

More information

Fisika Polimer Ariadne L Juwono. Sem /2007

Fisika Polimer Ariadne L Juwono. Sem /2007 Chapter 4. Ionic and coordination (addition) polymerization 4.1. Similarities and contrast on ionic polymerization 4.2. Cationic polymerization 4.3. Anionic polymerization 4.4. Coordination polymerization

More information

POLYMER CHEMISTRY Lecture/Lession Plan -2

POLYMER CHEMISTRY Lecture/Lession Plan -2 Chapter 6 POLYMER CHEMISTRY Lecture/Lession Plan -2 POLYMER CHEMISTRY 6.0.1 Classification on the basis of tactility On the basis of orientation of functional group or side groups throughout the long backbone

More information

Introduction to Polymerization Processes

Introduction to Polymerization Processes Introduction to Polymerization Processes Reference: Aspen Polymers: Unit Operations and Reaction Models, Aspen Technology, Inc., 2013. 1- Polymer Definition A polymer is a macromolecule made up of many

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office ours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Polymers Applications

More information

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25

P O L Y M E R S. The Academic Support Daytona State College (Science 106, Page 1 of 25 P O L Y M E R S The Academic Support Center @ Daytona State College (Science 106, Page 1 of 25 POLYMERS Polymers are large, long-chain molecules. found in nature, including cellulose in plants, starches

More information

Polymeric Materials. Sunan Tiptipakorn, D.Eng.

Polymeric Materials. Sunan Tiptipakorn, D.Eng. Polymeric Materials Sunan Tiptipakorn, D.Eng. Department of Chemistry, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaen Saen Campus, Nakorn Phathom, 73140 Thailand. Introduction Material

More information

Combustion and thermal degradation of polymers

Combustion and thermal degradation of polymers Polymers and biomaterials - laboratory Combustion and thermal degradation of polymers Theoretical background dr Hanna Wilczura-Wachnik University of Warsaw Faculty of Chemistry Chemical Technology Division

More information

Cationic Polymerization

Cationic Polymerization 10.569 Synthesis of Polymers Prof. Paula Hammond Lecture 26: Cationic ing pening Polymerization, ther ing pening Polymerization Cationic Polymerization Kk i k p [][ I ZY ][ M ] 2 = p k t Energetics of

More information

Organic Chemistry. Radical Reactions

Organic Chemistry. Radical Reactions For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Radical Reactions by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my & iezwan@ump.edu.my

More information

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers SCH4U Synthesis and Polymers Synthesis Reactions and Addition and Condensation Polymers ADDITION POLYMERS ADDITION POLYMERS A + A + A + A A A A A monomers polymer + + + ethylene (ethene) polyethylene

More information

Plastics are synthetic substances that can be moulded (often under heat and pressure) and retain the shape they are moulded into.

Plastics are synthetic substances that can be moulded (often under heat and pressure) and retain the shape they are moulded into. 5.7: Polymers Plastics are synthetic substances that can be moulded (often under heat and pressure) and retain the shape they are moulded into. Polymers are large molecules that are made by linking together

More information

Polymers. Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt)

Polymers. Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt) Polymers 1 Polymers Steep Slope = 3/5 : Self-Avoiding Walk (Polymer Solution) Shallow Slope = 1/2 : Gaussian Random Walk (Polymer Melt) 2 If we consider a series of chains = 0 Except when i = j, and

More information

Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College Station, TX, USA

Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College Station, TX, USA On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work. Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College

More information

Polymer Chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur

Polymer Chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur Polymer Chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur Lecture - 10 Radical Chain Polymerization (Contd.) (Refer Slide Time: 00:28) Welcome back, and we

More information

Name: % monomer conversion

Name: % monomer conversion Name: fprintedl "On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work." Exam III, April 9, 2013,100 pts Polymer Chemistry, CHEM 466, Spring 2013 Texas A&M

More information

Paul Rempp and Edward W. Merrill. Polymer Synthesis. 2nd, revised Edition. Hüthig & Wepf Verlag Basel Heidelberg New York

Paul Rempp and Edward W. Merrill. Polymer Synthesis. 2nd, revised Edition. Hüthig & Wepf Verlag Basel Heidelberg New York Paul Rempp and Edward W. Merrill Polymer Synthesis 2nd, revised Edition Hüthig & Wepf Verlag Basel Heidelberg New York Table of Contents Part I: Polymerization Reactions Chapter 1: General Considerations

More information

Top concepts Chapter : Polymers 1. Polymers are high molecular mass substance consisting of large number of repeating structural units. As polymers are single, giant molecules i.e. big size molecules,

More information

Chapter 10 Free Radicals

Chapter 10 Free Radicals hapter 10 Free Radicals This is an example of a free radical reaction. A radical is a species that has a free unpaired electron. There are several examples of stable radicals, the most common of which

More information

A Little Bit on Polymers and More on Radical Polymerizations

A Little Bit on Polymers and More on Radical Polymerizations Leo Hendrick Baekeland The Bakelizer A Little Bit on Polymers and More on Radical Polymerizations Justin Barry Group Meeting 10/7/2015 Overview of Presentation Global demand Polymerization Basic nomenclature

More information

Downloaded from Unit - 15 POLYMERS. Points to Remember

Downloaded from   Unit - 15 POLYMERS. Points to Remember Unit - 15 POLYMERS Points to Remember 1. Polymers are defined as high molecular mass macromolecules which consist of repeating structural units derived from the appropriate monomers. 2. In presence of

More information

Chapter 10 Radical Reactions"

Chapter 10 Radical Reactions Chapter 10 Radical Reactions Radicals are intermediates with an unpaired electron H. Cl. Hydrogen radical t Often called free radicals What are radicals? Chlorine radical t Formed by homolytic bond cleavage

More information

Polymer chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur. Lecture - 4 Step-growth Polymerization

Polymer chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur. Lecture - 4 Step-growth Polymerization Polymer chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur Lecture - 4 Step-growth Polymerization (Refer Slide Time: 00:27) In the last lecture, we were discussing

More information

Polymers are high molecular mass macromolecules composed of repeating structural

Polymers are high molecular mass macromolecules composed of repeating structural Question 15.1: Explain the terms polymer and monomer. Polymers are high molecular mass macromolecules composed of repeating structural units derived from monomers. Polymers have a high molecular mass (10

More information

Polypropylene. Monomer. mer

Polypropylene. Monomer. mer Polymer Polymer: Maromolecule built-up by the linking together of a large no. of small molecules Ex. Nucleic acid, paper, bakelite,pvc Monomer: The small molecule which combine with each other Mer: The

More information

Synthesis of Polymers Prof. Paula Hammond Lecture 19: Metallocene Chemistry, Intro to New Developments from Brookhart, Others H H

Synthesis of Polymers Prof. Paula Hammond Lecture 19: Metallocene Chemistry, Intro to New Developments from Brookhart, Others H H 10.569 Synthesis of Polymers Prof. Paula ammond Lecture 19: Metallocene Chemistry, Intro to ew Developments from Brookhart, thers Ionic Polymerization 1. Anionic 2. Cationic Anionic Polymerization - very

More information

Living p-quinodimethane Polymerization for the Synthesis of Well-Defined PPV Materials: Progress and Challenges

Living p-quinodimethane Polymerization for the Synthesis of Well-Defined PPV Materials: Progress and Challenges Living p-quinodimethane Polymerization for the Synthesis of Well-Defined PPV Materials: Progress and Challenges Thomas Junkers Hasselt University Wetenschapspark 1 BE 3590 Diepenbeek www.polymatter.net

More information

Polymer Molecular Weight

Polymer Molecular Weight Chapter 3 Polymer Molecular Weight 3.1 Introduction Polymer molecular weight is important because it determines many physical properties. Some examples include the temperatures for transitions from liquids

More information

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase Liquid Crystal - Liquid crystals (LCs) are a state of matter that have properties between those of a conventional liquid and those of a solid crystal. (Fourth state of matter) Liquid Crystal Orientation

More information

Lecture 25 POLYMERS. April 19, Chemistry 328N

Lecture 25 POLYMERS. April 19, Chemistry 328N Lecture 25 POLYMERS Wallace Carothers April 19, 2016 Paul Flory Wallace Hume Carothers 1896-1937 Carothers at Dupont 1.Commercializion of Nylon https://www.chemheritage.org/ Nylon was first used for fishing

More information

Experiment 5. Synthetic Polymers.

Experiment 5. Synthetic Polymers. Experiment 5. Synthetic Polymers. References: Brown & Foote, Chapters 24 INTRODUCTION: A polymer (Greek: polys + meros = many parts) is a giant or macromolecule made up of repeating structural units. The

More information

Chapter : 15. POLYMERS. Level-1:Questions

Chapter : 15. POLYMERS. Level-1:Questions 1) What are polymers? Chapter : 15. POLYMERS Level-1:Questions A: These are referred to as Macromolecules which are formed by joining of repeating structural units on a large scale. 2) Give two examples

More information

Reactions of Alkenes and Alkynes

Reactions of Alkenes and Alkynes 5 2 2 2 2 2 2 2 Reactions of Alkenes and Alkynes APTER SUMMARY Addition is the characteristic reaction of alkenes and alkynes. Since the carbons of a double or triple bond do not have the maximum number

More information

Lecture No. (1) Introduction of Polymers

Lecture No. (1) Introduction of Polymers Lecture No. (1) Introduction of Polymers Polymer Structure Polymers are found in nature as proteins, cellulose, silk or synthesized like polyethylene, polystyrene and nylon. Some natural polymers can also

More information

CHEM4. (JUN14CHEM401) WMP/Jun14/CHEM4/E6. General Certificate of Education Advanced Level Examination June 2014

CHEM4. (JUN14CHEM401) WMP/Jun14/CHEM4/E6. General Certificate of Education Advanced Level Examination June 2014 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Chemistry General Certificate of Education Advanced Level Examination June 2014 CHEM4 Question

More information

Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions

Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions Chapter 6: Organic Halogen Compounds; Substitution and Elimination Reactions Halogen compounds are important for several reasons. Simple alkyl and aryl halides, especially chlorides and bromides, are versatile

More information

(c) Dr. Payal B. Joshi

(c) Dr. Payal B. Joshi Polymer (Greek: poly=many; mer=part) Made up of large molecules characterized by repeating units called monomers held together by covalent bonds Functionality To act as monomer, it must have at least two

More information

Chapter 10 Radical Reactions

Chapter 10 Radical Reactions Chapter 10 Radical Reactions Introduction Homolytic bond cleavage leads to the formation of radicals (also called free radicals) Radicals are highly reactive, short-lived species Single-barbed arrows are

More information

Name Date Class. aryl halides substitution reaction

Name Date Class. aryl halides substitution reaction 23.1 INTRODUCTION TO FUNCTIONAL GROUPS Section Review Objectives Explain how organic compounds are classified Identify the IUPAC rules for naming halocarbons Describe how halocarbons can be prepared Vocabulary

More information

The functionality of a monomer is the number of binding sites that is/are present in that monomer.

The functionality of a monomer is the number of binding sites that is/are present in that monomer. Question 15.1: Explain the terms polymer and monomer. Polymers are high molecular mass macromolecules composed of repeating structural units derived from monomers. Polymers have a high molecular mass (10

More information

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds.

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds. This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds. Mechanism for the addition of a hydrogen halide What happens

More information

CHAPTER 4 Additional. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization

CHAPTER 4 Additional. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization. Ziegler-Natta Polymerization CHAPTER 4 Additional Ziegler-Natta polymerization is a method of vinyl polymerization. It's important because it allows one to make polymers of specific tacticity. Ziegler-Natta is especially useful, because

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry N N N Cu + BR - N Lecture 7 Decomposition of Thermal Initiator k d I 2 R Efficiency factor ( f ): CN N N CN di-tert-butylperoxide AIBN di-tert-butylperoxalate f = 0.65 f = 0.75

More information

Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College Station, TX, USA

Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M University, College Station, TX, USA Name: [printed] "On my honor, as an Aggie, I have neither given nor received unauthorized aid on this academic work." Final Exam, May 6, 2011, 200 pts Polymer Chemistry, CHEM 466, Spring 2011 Texas A&M

More information

Chapters 1-4. Numbers and Measurements in Chemistry. SI Prefixes. Units. Dimensional Analysis

Chapters 1-4. Numbers and Measurements in Chemistry. SI Prefixes. Units. Dimensional Analysis Chapters 1-4 What is Chemistry? Chemistry is the study of the composition, structure, properties and reactions of matter (the physical material of the universe). A main challenge of chemistry is to bridge

More information

Organic Chemistry Review: Topic 10 & Topic 20

Organic Chemistry Review: Topic 10 & Topic 20 Organic Structure Alkanes C C σ bond Mechanism Substitution (Incoming atom or group will displace an existing atom or group in a molecule) Examples Occurs with exposure to ultraviolet light or sunlight,

More information

Level 3 Chemistry Demonstrate understanding of the properties of organic compounds

Level 3 Chemistry Demonstrate understanding of the properties of organic compounds 1 ANSWERS Level 3 Chemistry 91391 Demonstrate understanding of the properties of organic compounds Credits: Five Achievement Achievement with Merit Achievement with Excellence Demonstrate understanding

More information

Polymer Reaction Engineering

Polymer Reaction Engineering Polymer Reaction Engineering Polymerization Techniques Bulk Solution Suspension Emulsion Interfacial Polymerization Solid-State Gas-Phase Plasma Polymerization in Supercritical Fluids Bulk Polymerization

More information

Study of Chemical Reactions

Study of Chemical Reactions Study of Chemical Reactions Introduction to Mechanisms There are four different types of organic reactions: Additions Eliminations Substitutions Rearrangements 149 Addition Reactions Occur when 2 reactants

More information

Note: Brief explanation should be no more than 2 sentences.

Note: Brief explanation should be no more than 2 sentences. Her \Hmher UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, April 26, 2017 DURATION: 2 and /2 hrs MSE245 - HiS - Second Year - MSE Organic Material Chemistry & Processing

More information

Chapter 13 - Polymers Introduction

Chapter 13 - Polymers Introduction Chapter 13 - Polymers Introduction I. Nomenclature A. Polymer/Macromolecule polymer - nonmetallic material consisting of large molecules composed of many repeating units - from Greek: poly (many) and meros

More information

Chapter 8: Ethers and Epoxides. Diethyl ether in starting fluid

Chapter 8: Ethers and Epoxides. Diethyl ether in starting fluid Chapter 8: Ethers and Epoxides Diethyl ether in starting fluid 8.1 Nomenclature of Ethers Ethers are usually named by giving the name of each alkyl or aryl group, in alphabetical order, followed by the

More information

14.11 Alkane Synthesis Using Organocopper Reagents

14.11 Alkane Synthesis Using Organocopper Reagents 14.11 Alkane Synthesis Using Organocopper Reagents Lithium Dialkylcuprates Lithium dialkylcuprates are useful synthetic reagents. They are prepared from alkyllithiums and a copper(i) halide. 2RLi + CuX

More information

Unit - 15 POLYMERS Points to Remember 1. Polymers are defined as high molecular mass macromolecules which consist of repeating structural units derived from the appropriate monomers. 2. In presence of

More information

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis OCR (A) Chemistry A-level Module 6: Organic Chemistry and Analysis Organic Synthesis Notes by Adam Robertson DEFINITIONS Heterolytic fission: The breaking of a covalent bond when one of the bonded atoms

More information

Final Exam Version 1. Chemistry 140C. Fall Good Luck! Dec 5, :30 am 2:30 pm This exam accounts for 50% of the final grade.

Final Exam Version 1. Chemistry 140C. Fall Good Luck! Dec 5, :30 am 2:30 pm This exam accounts for 50% of the final grade. Chemistry 140C Final Exam Version 1 Fall 2006 Dec 5, 2006 11:30 am 2:30 pm This exam accounts for 50% of the final grade. Mark your final answer clearly. Completely erase irrelevant information! Exams

More information

MATERIALS SCIENCE POLYMERS

MATERIALS SCIENCE POLYMERS POLYMERS 1) Types of Polymer (a) Plastic Possibly the largest number of different polymeric materials come under the plastic classification. Polyethylene, polypropylene, polyvinyl chloride, polystyrene,

More information

Worksheet Chapter 10: Organic chemistry glossary

Worksheet Chapter 10: Organic chemistry glossary Worksheet 10.1 Chapter 10: Organic chemistry glossary Addition elimination reaction A reaction in which two molecules combine with the release of a small molecule, often water. This type of reaction is

More information

Molecular Weight and Chain Transfer

Molecular Weight and Chain Transfer 1 Molecular Weight and Chain Transfer Kinetic Chain Length ( ): 動力學鏈長 Average number of monomer polymerized per radical, which initiates a polymer chain. = R p /R i = R p /R t = k p [M][M.]/2k t [M.] 2

More information

Synthesis and characterization of poly(amino acid methacrylate)-stabilized diblock copolymer nanoobjects

Synthesis and characterization of poly(amino acid methacrylate)-stabilized diblock copolymer nanoobjects Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information for Polymer Chemistry manuscript: Synthesis and characterization

More information

Chapter 11. Polymer Structures. Natural vs man-made

Chapter 11. Polymer Structures. Natural vs man-made . Polymer Structures Polymers: materials consisting of long molecules - the word polymer comes from the Greek Polys = many Meros = parts Macromolecules (long size of the chains) many parts - typically,

More information

CHEM4. General Certificate of Education Advanced Level Examination June Unit 4 Kinetics, Equilibria and Organic Chemistry

CHEM4. General Certificate of Education Advanced Level Examination June Unit 4 Kinetics, Equilibria and Organic Chemistry Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Education Advanced Level Examination June 2011 Question 1 2 Mark Chemistry

More information

2A - Amines. 2 H atoms replaced: 2 attached C's to N. 3 H atom replaced: 3 attached C's to N Ammonia, NH3 Primary amine Secondary amine Tertiary amine

2A - Amines. 2 H atoms replaced: 2 attached C's to N. 3 H atom replaced: 3 attached C's to N Ammonia, NH3 Primary amine Secondary amine Tertiary amine 2A - Amines Something fishy about amines: Have an NH 2, amine group. Amines are derivatives of ammonia: 3 H atoms 1 H atom replaced: 1 attached C to N 2 H atoms replaced: 2 attached C's to N 3 H atom replaced:

More information

Mechanisms. . CCl2 F + Cl.

Mechanisms. . CCl2 F + Cl. Mechanisms 1) Free radical substitution Alkane à halogenoalkane Initiation: Propagation: Termination: Overall: 2) Ozone depletion UV light breaks the C Cl bond releasing chlorine radical CFCl 3 F à. CCl2

More information

CH 2 = CH - CH =CH 2

CH 2 = CH - CH =CH 2 MULTIPLE CHOICE QUESTIONS 1. Styrene is almost a unique monomer, in that it can be polymerized by practically all methods of chain polymerization. A. Free radical B. Anionic C. Cationic D. Co-ordination

More information

not to be republished NCERT Unit I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals?

not to be republished NCERT Unit I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals? I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals? Cellulose Amylose Amylopectin Glycogen 2. Which of the following is not a semisynthetic polymer?

More information

Controlled Polymerization

Controlled Polymerization 4 Controlled Polymerization 4.1 Introduction In the preceding chapters we have examined the two main classes of polymerization, namely step-growth and chain-growth, with the latter exemplified by the free

More information

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group.

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group. Derivatives of Hydrocarbons A functional group is a reactive portion of a molecule that undergoes predictable reactions. All other organic compounds can be considered as derivatives of hydrocarbons (i.e.,

More information

Score: Homework Problem Set 9 Iverson CH320N Due Monday, April 17. NAME (Print): Chemistry 320N Dr. Brent Iverson 9th Homework April 10, 2017

Score: Homework Problem Set 9 Iverson CH320N Due Monday, April 17. NAME (Print): Chemistry 320N Dr. Brent Iverson 9th Homework April 10, 2017 omework Problem Set 9 Iverson C0N Due Monday, April 7 NAME (Print): SIGNATURE: Chemistry 0N Dr. ent Iverson 9th omework April 0, 07 Please print the first three letters of your last name in the three boxes

More information

Chapter 9 Alkynes. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 9 Alkynes. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 9 Alkynes Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 9.1 Sources of Alkynes Acetylene Industrial preparation of acetylene is by dehydrogenation of

More information

Chapter 19. Synthesis and Reactions of b-dicarbonyl Compounds: More Chemistry of Enolate Anions. ß-dicarbonyl compounds. Why are ß-dicarbonyls useful?

Chapter 19. Synthesis and Reactions of b-dicarbonyl Compounds: More Chemistry of Enolate Anions. ß-dicarbonyl compounds. Why are ß-dicarbonyls useful? Chapter 19 Synthesis and Reactions of b-dicarbonyl Compounds: More Chemistry of Enolate Anions ß-dicarbonyl compounds Two carbonyl groups separated by a carbon Three common types ß-diketone ß-ketoester

More information

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D Alcohols I eading: Wade chapter 10, sections 10-1- 10-12 Study Problems: 10-35, 10-37, 10-38, 10-39, 10-40, 10-42, 10-43 Key Concepts and Skills: Show how to convert alkenes, alkyl halides, and and carbonyl

More information

Introduction to Synthetic Methods in Step-Growth Polymers 1.1 INTRODUCTION Historical Perspective Some of the earliest useful polymeric

Introduction to Synthetic Methods in Step-Growth Polymers 1.1 INTRODUCTION Historical Perspective Some of the earliest useful polymeric Synthetics Polymers Introduction to Synthetic Methods in Step-Growth Polymers 1.1 INTRODUCTION 1.1.1 Historical Perspective Some of the earliest useful polymeric materials, the Bakelite resins formed from

More information

Aldehydes and Ketones : Aldol Reactions

Aldehydes and Ketones : Aldol Reactions Aldehydes and Ketones : Aldol Reactions The Acidity of the a Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons a to carbonyls are unusually acidic The resulting anion is stabilized by

More information

Solutions 4a (Chapter 4 problems)

Solutions 4a (Chapter 4 problems) Solutions 4a (Chapter 4 problems) Chem151 [Kua] 4.10 A balanced chemical equation must have equal numbers of atoms of each element on each side of the arrow. Balance each element in turn, beginning with

More information

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION Paper # 164-8P Pittsburgh Conference 24 T. Wampler, C. Zawodny, L. Mancini CDS Analytical, Inc 465 Limestone Road, Oxford,

More information

What are radicals? H. Cl. Chapter 10 Radical Reactions. Production of radicals. Reactions of radicals. Electronic structure of methyl radical

What are radicals? H. Cl. Chapter 10 Radical Reactions. Production of radicals. Reactions of radicals. Electronic structure of methyl radical What are radicals? Radicals are intermediates with an unpaired electron Chapter 10 Radical Reactions H. Cl. Hydrogen radical Chlorine radical Methyl radical Often called free radicals Formed by homolytic

More information

NH 2. 8 (c) (ii) This diamine is then reacted with benzene-l,4-dicarboxylic acid to form Kevlar. Draw the repeating unit of Kevlar.

NH 2. 8 (c) (ii) This diamine is then reacted with benzene-l,4-dicarboxylic acid to form Kevlar. Draw the repeating unit of Kevlar. Polymers 8 (c) Isomer Y is used in the production of the polymer Kevlar. Y is first reduced to the diamine shown below. 20 Areas outside the will not be scanned for marking 2 N N 2 8 (c) (i) Identify a

More information

Organic Chemistry. Unit 10

Organic Chemistry. Unit 10 Organic Chemistry Unit 10 Halides Primary Carbons Secondary Carbons Tertiary Carbons IMPORTANCE?? REACTIONS!! Benzene C6H6 Aromatic functional group - C6H5 (IUPAC name - phenyl) Substitution Reactions

More information

Effect of Molecular Structure of Side Chain Polymers on "Click" Synthesis of Thermosensitive Molecular Brushes

Effect of Molecular Structure of Side Chain Polymers on Click Synthesis of Thermosensitive Molecular Brushes University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program 5-2017 Effect of Molecular Structure

More information

UNIVERSITY OF NATAL DURBAN EXAMINATIONS : NOVEMBER 2001 ORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS DSC 2OE2. Time : 2 Hours Total Marks : 100

UNIVERSITY OF NATAL DURBAN EXAMINATIONS : NOVEMBER 2001 ORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS DSC 2OE2. Time : 2 Hours Total Marks : 100 UNIVERSITY F NATAL DURBAN EXAMINATINS : NVEMBER 2001 RGANIC CHEMISTRY FR CHEMICAL ENGINEERS DSC 2E2 Time : 2 Hours Total Marks : 100 INTERNAL EXAMINERS : Professor H C Brookes Dr N Koorbanally EXTERNAL

More information

Improvement of Carbon Nanotubes Dispersivity in Poly(Styrene/Methacrylate) Composites by Chemical Functionalization

Improvement of Carbon Nanotubes Dispersivity in Poly(Styrene/Methacrylate) Composites by Chemical Functionalization OPEN ACCESS http://sciforum.net/conference/ecm-1 Proceedings Paper Improvement of Carbon Nanotubes Dispersivity in Poly(Styrene/Methacrylate) Composites by Chemical Functionalization Fabio Faraguna, Elvira

More information

Isomerism and Carbonyl Compounds

Isomerism and Carbonyl Compounds Isomerism and Carbonyl Compounds 18 Section B Answer all questions in the spaces provided. 7 Esters have many important commercial uses such as solvents and artificial flavourings in foods. Esters can

More information

Wood Chemistry. Cellulose: the Basics. Cellulose: More Basics. PSE 406/Chem E 470. Reducing End Groups. Lecture 5 Cellulose.

Wood Chemistry. Cellulose: the Basics. Cellulose: More Basics. PSE 406/Chem E 470. Reducing End Groups. Lecture 5 Cellulose. : the Basics PSE 406/Chem E 470 Lecture 5 PSE 406: Lecture 5 1 Linear polymer made up of -d glucopyranose units linked with 1 4 glycosidic bonds. Repeating unit glucose (cellobiose) Glucopyranose units

More information

pent-2-ene CH 3CH = CHCH 2CH 3 3-methylbut-1-ene (CH 3) 2CHCH = CH 2 2-methylbut-2-ene (CH 3) 2C = CHCH 3 2-methylbut-1-ene H 2C = C(CH 3)CH 2CH 3

pent-2-ene CH 3CH = CHCH 2CH 3 3-methylbut-1-ene (CH 3) 2CHCH = CH 2 2-methylbut-2-ene (CH 3) 2C = CHCH 3 2-methylbut-1-ene H 2C = C(CH 3)CH 2CH 3 Q1.The following table gives the names and structures of some structural isomers with the molecular formula C 5H 10. Name of isomer Structure 1 pent-2-ene CH 3CH = CHCH 2CH 3 2 cyclopentane 3 4 5 3-methylbut-1-ene

More information

Lecture 3: Aldehydes and ketones

Lecture 3: Aldehydes and ketones Lecture 3: Aldehydes and ketones I want to start by talking about the mechanism of hydroboration/ oxidation, which is a way to get alcohols from alkenes. This gives the anti-markovnikov product, primarily

More information