A systematic theoretical study on FeO x -supported single-atom catalysts: M 1 /FeO x for CO oxidation

Size: px
Start display at page:

Download "A systematic theoretical study on FeO x -supported single-atom catalysts: M 1 /FeO x for CO oxidation"

Transcription

1 Electronic Supplementary Material A systematic theoretical study on FeO x -supported single-atom catalysts: M 1 /FeO x for CO oxidation Jinxia Liang 1,2,3, Qi Yu 2, Xiaofeng Yang 4 ( ), Tao Zhang 4, and Jun Li 3 ( ) 1 Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Education University, Guiyang , China 2 Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong , China 3 Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing , China 4 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian , China Supporting information to Figure S1 Proposed reaction pathways for the formation of the first CO 2 on the surface of the M 1 /FeO x (M = Fe, Co; Ru, Rh; Os, Ir) catalysts via E-R mechanism. The schematic structures correspond to the structures of initial reactant (R), transition state (TS) and final product (P), respectively. Address correspondence to Xiaofeng Yang, yangxf2003@dicp.ac.cn; Jun Li, junli@tsinghua.edu.cn

2 Table S1 Optimized partial bond lengths of M 1 /FeO x (M = Fe, Co; Ru, Rh; Os, Ir) with the dissociated oxygen for formation of the first CO 2. Bond lengths/å I ii dis iii dis TS1 dis iv Fe-O A Fe-O A Fe-O B Fe-O C O B -O C (Fe)C-O B Co-O A Co-O A Co-O B Co-O C O B -O C (Co)C-O B Ru-O A Ru-O A Ru-O B Ru-O C O B -O C (Ru)C-O B Rh-O A Rh-O A Rh-O B Rh-O C O B -O C (Rh)C-O B Os-O A Os-O A Os-O B Os-O C O B -O C (Os)C-O B Ir-O A Ir-O A Ir-O B Ir-O C O B -O C (Ir)C-O B

3 Table S2 Calculated adsorption energies (E ad, ev) and dissociated adsorption energies (E dis, ev) of O 2 on oxygen-defective M 1 /FeO x (M = Fe, Co, Ni, Cu; Ru, Rh, Pd, Ag; Os, Ir, Au). Fe Co Ni Cu Ru Rh Pd Ag Os Ir Au E ad E dis Table S3 Optimized partial bond lengths of M 1 /FeO x (M = Fe, Co; Ru, Rh; Os, Ir) with the dissociated oxygen for the formation of the first CO 2 via E-R mechanism. Distance Fe Co 1 Ru 1 Rh 1 Os 1 Ir 1 C-O D (R) C-O B (R) M 1 -O B (R) C-O D (TS) C-O B (TS) M 1 -O B (TS) Table S4 Optimized partial bond lengths of M 1 /FeO x (M = Ni, Cu; Pd, Ag; Pt, Au) with molecular oxygen adsorption for the formation of the first CO 2. Bond lengths/å I ii ad iii ad TS1 ad Iv Ni-O A Ni-O A Ni-O B Ni-O C O B -O C (Ni)C-O B Cu-O A Cu-O A Cu-O B Cu-O C O B -O C (Cu)C-O B Pd-O A Pd-O A Pd-O B Pd-O C O B -O C (Pd)C-O B Ag-O A Ag-O A Ag-O B Ag-O C O B -O C Nano Research

4 (Continued) Bond lengths/å I ii ad iii ad TS1 ad Iv (Ag)C-O B Pt-O A Pt-O A Pt-O B Pt-O C O B -O C (Pt)C-O B Au-O A Au-O A Au-O B Au-O C O B -O C (Au)C-O B Table S5 Optimized partial bond lengths of M 1 /FeO x (M = Fe, Co; Rh, Pd; Ir, Au) for the formation of the second CO 2 in Pathway I and II Bond lengths/å v TS2 Vi TS3 Vii Fe-O A Fe-O A Fe-O C Fe-C Co-O A Co-O A Co-O C Co-C Rh-O A Rh-O A Rh-O C Rh-C Pd-O A Pd-O A Pd-O C Pd-C Ir-O A Ir-O A Ir-O C Ir-C Au-O A Au-O A Au-O C Au-C

5 Table S6 Optimized partial bond lengths of M 1 /FeO x (M = Ni, Cu; Ru, Ag; Os, Pt) for the formation of the second CO 2 in Pathway III Bond lengths/å v TS2 Vii Ni-O A Ni-O A Ni-O C Ni-C Cu-O A Cu-O A Cu-O C Cu-C Ru-O A Ru-O A Ru-O C Ru-C Ag-O A Ag-O A Ag-O C Ag-C Os-O A Os-O A Os-O C Os-C Pt-O A Pt-O A Pt-O C Pt-C Table S7 Calculated bond lengths of M 1 -O and Bader charges for M 1 single atoms in M 1 /FeO x (M = Fe, Co, Ni, Cu) with (i) and without oxygen vacancy (iv). Species M 1 -O bond length (Å) Valence electron (M) Bader charge of M (e) Fe 1 /FeO x -i 1.823, Fe 1 /FeO x -iv 1.805, 1.805, Fe-OH Fe-(OH) , Fe-(OH) , 1.816, Fe-(OH) , 1.800, 1.798, Co 1 /FeO x -i 1.739, Co 1 /FeO x -iv 1.771, 1.770, Co-OH Co-(OH) , Co-(OH) ,1.783, Co-(OH) , 1.788, 1.773, Ni 1 /FeO x -i 1.762, 1, Nano Research

6 (Continued) Species M 1 -O bond length (Å) Valence electron (M) Bader charge of M (e) Ni 1 /FeO x -iv 1.787, 1.787, Ni-OH Ni-(OH) , Ni-(OH) , 1.746, Ni-(OH) , 1.789, 1.783, Cu 1 /FeO x -i 1.816, Cu 1 /FeO x -iv 1.842, 1.842, Cu-OH Cu-(OH) , Cu-(OH) , 1.799, Cu-(OH) , 1.815, 1.818, * With core electrons represented by ECPs, the Fe(d 7 s 1 ), Co(d 8 s 1 ), Ni(d 8 s 2 ) and Cu(d 10 p 1 ) valance electrons configurations are used in the calculations. The M(OH) x (x = 1-4) molecules keep in a 20 Å 20 Å 20 Å cubic box. Table S8 Calculated bond lengths of M 1 -O, Bader charges for M 1 single atoms in M 1 /FeO x (M = Ru, Rh, Pd, Ag) with (i) and without oxygen vacancy (iv). Species M-O bond length (Å) Valence electron (M) Bader charge of M (e) Ru 1 /FeO x -i 1.870, Ru 1 /FeO x -iv 1.850, 1.850, Ru-OH Ru-(OH) , Ru-(OH) , 1.880, Ru-(OH) , 1.931, 1.931, Rh 1 /FeO x -i 1.908, Rh 1 /FeO x -iv 1.883, 1.883, Rh-OH Rh-(OH) , Rh-(OH) , 1.857, Rh-(OH) , 1.913, 1.913, Pd 1 /FeO x -i 2.049, Pd 1 /FeO x -iv 2.007, 2.008, Pd-OH Pd-(OH) , Pd-(OH) , 1.917, Pd-(OH) , 1.935, 1.941, Ag 1 /FeO x -i 2.299, Ag 1 /FeO x -iv 2.202, 2.202, Ag-OH Ag-(OH) , Ag-(OH) , 2.020, Ag-(OH) , 1.988, 1.988, * With core electrons represented by ECPs, the Ru(d 7 s 1 ), Rh(d 8 s 1 ), Pd(d 9 s 1 ) and Ag(d 10 s 1 ) valance electrons configurations are used in the calculations. The M(OH) x (x = 1-4) molecules keep in a 20 Å 20 Å 20 Å cubic box.

7 Table S9 Calculated bond lengths of M 1 -O, Bader charges for M 1 single atoms in M 1 /FeO x (M = Os, Ir, Pt, Au) with (i) and without oxygen vacancy (iv). Species M-O bond length (Å) Valence electron (M) Bader charge of M ( e ) Os 1 /FeO x -i 1.790, Os 1 /FeO x -iv 1.807, 1.797, Os-OH Os-(OH) , Os-(OH) , 1.858, Os-(OH) , 1.894, 1.902, Ir 1 /FeO x -i 1.851, Ir 1 /FeO x -iv 1.857, 1.857, Ir-OH Ir-(OH) , Ir-(OH) , 1.856, Ir-(OH) , 1.917, 1.910, Pt 1 /FeO x -i 1.930, Pt 1 /FeO x -iv 1.918, 1.919, Pt-OH Pt-(OH) , Pt-(OH) , 1.919, Pt-(OH) , 1.936, 1.944, Au 1 /FeO x -i 2.041, Au 1 /FeO x -iv 2.039, 2.040, Au-OH Au-(OH) , Au-(OH) , 2.023, * With core electrons represented by ECPs, the Os(d 6 s 2 ), Ir(d 8 s 1 ), Pt(d 9 s 1 ) and Au(d 10 s 1 ) valance electrons configurations are used in the calculations. The M(OH) x (x = 1-4) molecules keep in a 20 Å 20 Å 20 Å cubic box. Nano Research

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer

Design of Efficient Catalysts with Double Transition Metal. Atoms on C 2 N Layer Supporting Information Design of Efficient Catalysts with Double Transition Metal Atoms on C 2 N Layer Xiyu Li, 1, Wenhui Zhong, 2, Peng Cui, 1 Jun Li, 1 Jun Jiang 1, * 1 Hefei National Laboratory for

More information

Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction. Materials Science and Engineering, Jilin University, Changchun , China,

Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction. Materials Science and Engineering, Jilin University, Changchun , China, Supporting Information Layered SiC Sheets: A Potential Catalyst for Oxygen Reduction Reaction P. Zhang 1,2, B. B. Xiao 1, X. L. Hou 1,2, Y. F. Zhu 1,* Q. Jiang 1 1 Key Laboratory of Automobile Materials,

More information

Heterogeneous catalysis: the fundamentals Kinetics

Heterogeneous catalysis: the fundamentals Kinetics www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Kinetics Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis Catalysis is a cycle A B separation P catalyst P bonding catalyst

More information

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) for Energy & Environmental Science.

More information

Synthesis of jet fuel range cycloalkanes with diacetone alcohol. from lignocellulose

Synthesis of jet fuel range cycloalkanes with diacetone alcohol. from lignocellulose Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2016 Supporting Information Synthesis of jet fuel range cycloalkanes with diacetone alcohol from

More information

Heterogeneous catalysis: the fundamentals

Heterogeneous catalysis: the fundamentals www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Introduction Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis What is Catalysis? a phenomenon in which a small quantity

More information

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution

Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Electronic Supplementary Material Co-vacancy-rich Co 1 x S nanosheets anchored on rgo for high-efficiency oxygen evolution Jiaqing Zhu 1, Zhiyu Ren 1 ( ), Shichao Du 1, Ying Xie 1, Jun Wu 1,2, Huiyuan

More information

Supporting Information

Supporting Information Supporting Information Remarkable performance of Ir 1 /FeO x single-atom catalyst in water gas shift reaction Jian Lin, Aiqin Wang, Botao Qiao, Xiaoyan Liu, Xiaofeng Yang, Xiaodong Wang, Jinxia Liang,

More information

Scale Imaging of Cation Ordering

Scale Imaging of Cation Ordering Supporting information First 14-Layer Twinned Hexagonal Perovskite Ba 14 Mn 1.75 Ta 10.5 O 42 : Atomic- Scale Imaging of Cation Ordering Fengqiong Tao 1, Cécile Genevois 2, Fengqi Lu 1, Xiaojun Kuang 1,

More information

CHEM Chemical Kinetics

CHEM Chemical Kinetics Chemical Kinetics Catalysts A catalyst is a substance that increases the rate of the reaction but is neither created nor destroyed in the process. Catalysts can be divided into two broad categories. Homogeneous

More information

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes Bonding in Transition Metal Complexes 1) Crystal Field Theory (ligand field theory) Crystal Field Theory Treat igands as negative charges (they repel the e- in the d orbitals deals only with d orbitals

More information

Southeast University, Nanjing, China 2 Department of Applied Physics, Aalto University,

Southeast University, Nanjing, China 2 Department of Applied Physics, Aalto University, Supplementary Information to Solubility of Boron, Carbon and Nitrogen in Transition Metals: Getting Insight into Trends from First-Principles Calculations Xiaohui Hu, 1,2 Torbjörn Björkman 2,3, Harri Lipsanen

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 SUPPOING INFORMATION Unifying theoretical framework for deciphering the oxygen

More information

Supporting Information Towards N-doped graphene via solvothermal synthesis

Supporting Information Towards N-doped graphene via solvothermal synthesis Supporting Information Towards N-doped graphene via solvothermal synthesis Dehui Deng1, Xiulian Pan1*, Liang Yu1, Yi Cui1, Yeping Jiang2, Jing Qi3, Wei-Xue Li1, Qiang Fu1, Xucun Ma2, Qikun Xue2, Gongquan

More information

Integrated Electrocatalytic Processing of Levulinic Acid and Formic Acid to Biofuel Intermediate Valeric Acid. Support Information

Integrated Electrocatalytic Processing of Levulinic Acid and Formic Acid to Biofuel Intermediate Valeric Acid. Support Information Integrated Electrocatalytic Processing of Levulinic Acid and Formic Acid to Biofuel Intermediate Valeric Acid Yang Qiu a, Le Xin a, David J. Chadderdon a, Ji Qi a, Changhai Liang b, Wenzhen Li* a a Department

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Supplementary Information Insights into the Synergistic Role of Metal-Lattice

More information

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information High Wettable and Metallic NiFe-Phosphate/Phosphide

More information

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a)

Rh 3d. Co 2p. Binding Energy (ev) Binding Energy (ev) (b) (a) Co 2p Co(0) 778.3 Rh 3d Rh (0) 307.2 810 800 790 780 770 Binding Energy (ev) (a) 320 315 310 305 Binding Energy (ev) (b) Supplementary Figure 1 Photoemission features of a catalyst precursor which was

More information

Efficient Synthesis of Ethanol from CH 4 and Syngas on

Efficient Synthesis of Ethanol from CH 4 and Syngas on Efficient Synthesis of Ethanol from CH 4 and Syngas on a Cu-Co/TiO 2 Catalyst Using a Stepwise Reactor Zhi-Jun Zuo 1, Fen Peng 1,2, Wei Huang 1,* 1 Key Laboratory of Coal Science and Technology of Ministry

More information

Modern Alchemy : Catalysis by Gold Nano-particles: Part 1

Modern Alchemy : Catalysis by Gold Nano-particles: Part 1 Modern Alchemy : Catalysis by Gold Nano-particles: Part 1 PIRE-ECCI/ICMR Summer Conference SantaBarbara 17 August, 2006 Masatake Haruta Tokyo Metropolitan University 1. Overview on Gold 2. CO Oxidation

More information

Electronic Supplementary Material. Methods. Synthesis of reference samples in Figure 1(b) Nano Res.

Electronic Supplementary Material. Methods. Synthesis of reference samples in Figure 1(b) Nano Res. Electronic Supplementary Material Shaped Pt Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction Jun Gu 1,, Guangxu

More information

Supplementary Material

Supplementary Material Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supplementary Material Spin crossover and reversible single-crystal to single-crystal

More information

Molecular-Level Insight into Selective Catalytic Reduction of NO x with NH 3 to N 2

Molecular-Level Insight into Selective Catalytic Reduction of NO x with NH 3 to N 2 Supporting Information Molecular-Level Insight into Selective Catalytic Reduction of NO x with to N 2 over Highly Efficient Bifunctional V a Catalyst at Low Temperature Ying Xin, Hao Li, Nana Zhang, Qian

More information

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China Electronic Supplementary Material A Co-N/C hollow-sphere electrocatalyst derived from a metanilic CoAl layered double hydroxide for the oxygen reduction reaction, and its active sites in various ph media

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Supporting Information Single-atom dispersed Co--C catalyst: structure identification and

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2019 Supporting Information Atomically dispersed Ni as the active site towards selective hydrogenation

More information

Schedule. June 15. Time

Schedule. June 15. Time Schedule Plenary Lecture (50 min, including 10 min Q&A) Keynote Lecture (35 min, including 10 min Q&A) Invited Lectures(20 min, including 5 min Q&A) June 15 Time 8:00-8:30 Opening Ceremony( Yadong Li/Jun

More information

Supporting Information for Active Pt 3 Ni (111) Surface of Pt 3 Ni Icosahedron for Oxygen Reduction

Supporting Information for Active Pt 3 Ni (111) Surface of Pt 3 Ni Icosahedron for Oxygen Reduction Supporting Information for Active Pt 3 Ni (111) Surface of Pt 3 Ni Icosahedron for Oxygen Reduction Jianbing Zhu,, Meiling Xiao,, Kui Li,, Changpeng Liu, Xiao Zhao*,& and Wei Xing*,, State Key Laboratory

More information

High-throughput screening of small-molecule adsorption in MOF. Supplementary Materials

High-throughput screening of small-molecule adsorption in MOF. Supplementary Materials High-throughput screening of small-molecule adsorption in MF Supplementary Materials Pieremanuele Canepa, Calvin A. Arter, Eliot M. Conwill, Daniel H. Johnson, Brian A. Shoemaker, Karim Z. Soliman, and

More information

Au-C Au-Au. g(r) r/a. Supplementary Figures

Au-C Au-Au. g(r) r/a. Supplementary Figures g(r) Supplementary Figures 60 50 40 30 20 10 0 Au-C Au-Au 2 4 r/a 6 8 Supplementary Figure 1 Radial bond distributions for Au-C and Au-Au bond. The zero density regime between the first two peaks in g

More information

hs( T T ) Q I max surr 0 A808

hs( T T ) Q I max surr 0 A808 Electronic Supplementary Material One-pot synthesis of MoSe 2 hetero-dimensional hybrid self-assembled by nanodots and nanosheets for electrocatalytic hydrogen evolution and photothermal therapy Baoguang

More information

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions

Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions Electronic Supplementary Material Carbon-encapsulated heazlewoodite nanoparticles as highly efficient and durable electrocatalysts for oxygen evolution reactions Mohammad Al-Mamun 1, Huajie Yin 1, Porun

More information

Guide to the Extended Step-Pyramid Periodic Table

Guide to the Extended Step-Pyramid Periodic Table Guide to the Extended Step-Pyramid Periodic Table William B. Jensen Department of Chemistry University of Cincinnati Cincinnati, OH 452201-0172 The extended step-pyramid table recognizes that elements

More information

Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on the flat Co(0001) surface Revisited

Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on the flat Co(0001) surface Revisited Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2016 Mechanisms of H- and OH-assisted CO activation as well as C-C coupling on

More information

Shaping Single-crystalline Trimetallic Pt Pd Rh Nanocrystals toward. High-efficiency C C Splitting of Ethanol in Conversion to CO 2

Shaping Single-crystalline Trimetallic Pt Pd Rh Nanocrystals toward. High-efficiency C C Splitting of Ethanol in Conversion to CO 2 Supporting Information Shaping Single-crystalline Trimetallic Pt Pd Rh Nanocrystals toward High-efficiency C C Splitting of Ethanol in Conversion to CO 2 Wei Zhu,, Jun Ke,, Si-Bo Wang, Jie Ren, Hong-Hui

More information

Supporting Information for

Supporting Information for Supporting Information for Iridium-tungsten Alloy Nanodendrites as ph-universal Water Splitting Electrocatalysts Fan Lv, Jianrui Feng, Kai Wang, Zhipeng Dou, Weiyu Zhang, Jinhui Zhou, Chao Yang, Mingchuan

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Supporting Information Bismuth Nanodendrites as High Performance Electrocatalysts

More information

Supplementary Information for:

Supplementary Information for: Supplementary Information for: Towards Active and Stable Oxygen Reduction Cathode: A Density Functional Theory Survey on Pt 2 M skin alloys Guang-Feng Wei and Zhi-Pan Liu* Shanghai Key Laboratory of lecular

More information

Os/Pt Core-Shell Catalysts Validated by

Os/Pt Core-Shell Catalysts Validated by Supporting Information DFT Study of Oxygen Reduction Reaction on Os/Pt Core-Shell Catalysts Validated by Electrochemical Experiment Ho-Cheng Tsai, Yu-Chi Hsie,,, Ted H. Yu,, Yi-Juei Lee, Yue-Han Wu, Boris

More information

Supporting Information. Silylated Organometals: A Family of Recyclable. Homogeneous Catalysts

Supporting Information. Silylated Organometals: A Family of Recyclable. Homogeneous Catalysts Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 14 Supporting Information lylated rganometals: A Family of Recyclable Homogeneous Catalysts Jian-Lin

More information

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts

Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Electronic Supplementary Material Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-ph hydrogen evolution electrocatalysts Hengyi Lu 1, Wei Fan 2 ( ), Yunpeng Huang 1, and

More information

Versatile inorganic organic hybrid WO x ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis

Versatile inorganic organic hybrid WO x ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis Electronic Supplementary Material Versatile inorganic organic hybrid WO x ethylenediamine nanowires: Synthesis, mechanism and application in heavy metal ion adsorption and catalysis Wei Li 1,2, Fang Xia

More information

Theodore E. Madey. Department of Physics and Astronomy, and Laboratory for Surface Modification

Theodore E. Madey. Department of Physics and Astronomy, and Laboratory for Surface Modification The Science of Catalysis at the Nanometer Scale Theodore E. Madey Department of Physics and Astronomy, and Laboratory for Surface Modification http://www.physics.rutgers.edu/lsm/ Rutgers, The State University

More information

Trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables

Trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2019 Supporting Information Trifunctional Ni-N/P-O-codoped graphene electrocatalyst

More information

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*,

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, Supported Single Pt 1 /Au 1 Atoms for Methanol Steam Reforming Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, State Key

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Reaction Controlled Assemblies and Structural Diversities

More information

Intracrystalline Aurophilic Interactions with Novel Electronic and Optical. School of Physics, Southeast University, Nanjing , P. R.

Intracrystalline Aurophilic Interactions with Novel Electronic and Optical. School of Physics, Southeast University, Nanjing , P. R. Supporting Information: Two-Dimensional AuMX 2 (M=Al, Ga, In; X=S, Se) Monolayers Featuring Intracrystalline Aurophilic Interactions with Novel Electronic and Optical Properties Qisheng Wu,,, Wen Wu Xu,,,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1095 Single-atom catalysis of CO oxidation using Pt 1 /FeO x Botao Qiao, 1 Aiqin Wang, 1 Xiaofeng Yang, 2 Lawrence F. Allard, 3 Zheng Jiang, 4 Yitao Cui, 5 Jingyue Liu, 6, 1* Jun Li

More information

Supplementary Figure S1: Particle size distributions of the Pt ML /Pd 9 Au 1 /C

Supplementary Figure S1: Particle size distributions of the Pt ML /Pd 9 Au 1 /C a 2 15 before cycle test mean particle size: 3.8 ± 1.2 nm b 2 15 after.6v - 1.V 1k cycle test mean particle size: 4.1 ± 1.5 nm Number 1 total number: 558 Number 1 total number: 554 5 5 1 2 3 4 5 6 7 8

More information

M09/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M09/4/CHEMI/SPM/ENG/TZ1/XX+ CHEMISTRY. Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M09/4/CHEMI/SPM/ENG/TZ1/XX+ 22096110 CHEMISTRY standard level Paper 1 Monday 18 May 2009 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so.

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Adding refractory 5d transition metal W into PtCo

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures, Supplementary Tables and Supplementary References Title of file for HTML: Supplementary Movie 1 Description: This movie

More information

Supporting Information

Supporting Information Supporting Information Ultrafine Pt Nanoparticles and Amorphous Nickel Supported on 3D Mesoporous Carbon Derived from Cu-MOF for Efficient Methanol Oxidation and Nitrophenol Reduction Xue-Qian Wu, 1,2

More information

Supporting Information

Supporting Information Supporting Information Enhanced Activity and Stability of Carbon-Decorated Cuprous Oxide Mesoporous Nanorods for CO 2 Reduction in Artificial Photosynthesis Luo Yu a, Guojian Li a, Xiaoshu Zhang a, Xin

More information

Supporting Information. Modulating the photocatalytic redox preferences between

Supporting Information. Modulating the photocatalytic redox preferences between Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Supporting Information Modulating the photocatalytic redox preferences between anatase TiO 2 {001}

More information

Marks for each question are as indicated in [] brackets.

Marks for each question are as indicated in [] brackets. Name Student Number CHEMISTRY 140 FINAL EXAM December 10, 2002 Numerical answers must be given with appropriate units and significant figures. Please place all answers in the space provided for the question.

More information

Give the number of protons, neutrons and electrons in this atom of aluminium. Why is aluminium positioned in Group 3 of the periodic table? ...

Give the number of protons, neutrons and electrons in this atom of aluminium. Why is aluminium positioned in Group 3 of the periodic table? ... Q1.An atom of aluminium has the symbol (a) Give the number of protons, neutrons and electrons in this atom of aluminium. Number of protons... Number of neutrons... Number of electrons... (3) (b) Why is

More information

Nanosized Cu-MOF induced by graphene oxide and enhanced gas storage capacity

Nanosized Cu-MOF induced by graphene oxide and enhanced gas storage capacity Supporting information Nanosized Cu-MOF induced by graphene oxide and enhanced gas storage capacity Shuang Liu a,c, Lixian Sun a, b*, Fen Xu b,d*, Jian Zhang a, Chengli Jiao a, Fen Li a, Zhibao Li a,c,

More information

Thickness-tunable Core-shell Nanoparticles Encapsulated in Sandwich-like Carbon

Thickness-tunable Core-shell Nanoparticles Encapsulated in Sandwich-like Carbon Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information: Thickness-tunable Core-shell Co@Pt Nanoparticles

More information

Supplementary Information. Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts

Supplementary Information. Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts Supplementary Information Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts Wei Wei 1, 4,, Ying Tao 1, 4,, Wei Lv 2,, Fang-Yuan Su 2, Lei Ke 2, Jia Li 2, Da-Wei Wang 3, *, Baohua

More information

Catalytic Activity of IrO 2 (110) Surface: A DFT study

Catalytic Activity of IrO 2 (110) Surface: A DFT study Catalytic Activity of IrO 2 (110) Surface: A DFT study Jyh-Chiang Jiang Department of Chemical Engineering, National Taiwan University of Science and Technology (NTUST) NCTS-NCKU 9/7, 2010 Computational

More information

Guangfu Li, PhD. Room 230H, Science and Engineering Building 2

Guangfu Li, PhD. Room 230H, Science and Engineering Building 2 Curriculum Vitae Education Room 230H, Science and Engineering Building 2 Thermal and Electrochemical Energy Laboratory University of California, Merced, CA, 95343 Phone: 209-7772351 Email: gli27@ucmerced.edu

More information

unique electronic structure for efficient hydrogen evolution

unique electronic structure for efficient hydrogen evolution Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Atom-scale dispersed palladium in conductive

More information

1 Electrons and Chemical Bonding

1 Electrons and Chemical Bonding CHAPTER 13 1 Electrons and Chemical Bonding SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is chemical bonding? What are valence

More information

Earth Materials I Crystal Structures

Earth Materials I Crystal Structures Earth Materials I Crystal Structures Isotopes same atomic number, different numbers of neutrons, different atomic mass. Ta ble 1-1. Su mmar y of quantu m num bers Name Symbol Values Principal n 1, 2,

More information

30 Zn(s) 45 Rh. Pd(s) Ag(s) Cd(s) In(s) Sn(s) white. 77 Ir. Pt(s) Au. Hg(l) Tl. 109 Mt. 111 Uuu. 112 Uub. 110 Uun. 65 Tb. 62 Sm. 64 Gd. 63 Eu.

30 Zn(s) 45 Rh. Pd(s) Ag(s) Cd(s) In(s) Sn(s) white. 77 Ir. Pt(s) Au. Hg(l) Tl. 109 Mt. 111 Uuu. 112 Uub. 110 Uun. 65 Tb. 62 Sm. 64 Gd. 63 Eu. Enthalpy changes: experimentally it is much easier to measure heat flow at const pressure - this is enthalpy q p = )H : also nearly all chemical reactions are done at constant pressure. Enthalpy (heat)

More information

... but using electron configurations to describe how aluminum bromide forms is a bit cumbersome! Can we simplify the picture a bit?

... but using electron configurations to describe how aluminum bromide forms is a bit cumbersome! Can we simplify the picture a bit? 193... but using electron configurations to describe how aluminum bromide forms is a bit cumbersome! Can we simplify the picture a bit? LEWIS NOTATION / ELECTRON-DOT NOTATION - Lewis notation represents

More information

M14/4/CHEMI/SPM/ENG/TZ1/XX CHEMISTRY. Monday 19 May 2014 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES

M14/4/CHEMI/SPM/ENG/TZ1/XX CHEMISTRY. Monday 19 May 2014 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES M14/4/CEMI/SPM/ENG/TZ1/XX 22146110 CEMISTRY standard level Paper 1 Monday 19 May 2014 (afternoon) 45 minutes INSTRUCTIONS TO CANDIDATES Do not open this examination paper until instructed to do so. Answer

More information

4.1 Atomic structure and the periodic table. GCSE Chemistry

4.1 Atomic structure and the periodic table. GCSE Chemistry 4.1 Atomic structure and the periodic table GCSE Chemistry All substances are made of atoms this is cannot be chemically broken down it is the smallest part of an element. Elements are made of only one

More information

Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction

Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction Electronic Supplementary Material Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction Li Qin 1,2,5, Ruimin Ding 1,2, Huixiang

More information

REPORT DOCUMENTATION PAGE. Theoretical Study on Nano-Catalyst Burn Rate. Yoshiyuki Kawazoe (Tohoku Univ) N/A AOARD UNIT APO AP

REPORT DOCUMENTATION PAGE. Theoretical Study on Nano-Catalyst Burn Rate. Yoshiyuki Kawazoe (Tohoku Univ) N/A AOARD UNIT APO AP REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

Explanation: They do this by providing an alternative route or mechanism with a lower activation energy

Explanation: They do this by providing an alternative route or mechanism with a lower activation energy Catalysts Definition: Catalysts increase reaction rates without getting used up. Explanation: They do this by providing an alternative route or mechanism with a lower Comparison of the activation energies

More information

E5 Lewis Acids and Bases. Acids. Acids. Session one. Session two Lab: Parts 2B, 3 and 4

E5 Lewis Acids and Bases. Acids. Acids. Session one. Session two Lab: Parts 2B, 3 and 4 E5 Lewis Acids and Bases Session one Pre-lab (p.141) due at start of lab. First hour: Discussion of E4 Lab: Parts 1and 2A Session two Lab: Parts 2B, 3 and 4 Acids Bronsted: Acids are proton donors and

More information

Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer s disease

Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer s disease Electronic Supplementary Material Electrically pulsatile responsive drug delivery platform for treatment of Alzheimer s disease Li Wu 1,2, Jiasi Wang 1,2, Nan Gao 1, Jinsong Ren 1, Andong Zhao 1,2, and

More information

Supporting Information. Oxidation Catalyst. Jingqi Guan, Chunmei Ding, Ruotian Chen, Baokun Huang, Xianwen Zhang, Fengtao

Supporting Information. Oxidation Catalyst. Jingqi Guan, Chunmei Ding, Ruotian Chen, Baokun Huang, Xianwen Zhang, Fengtao Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2017 Supporting Information CoO x Nanoparticle Anchored on Sulfonated-graphite as Efficient

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for CrystEngComm. This journal is The Royal Society of Chemistry 217 Supporting Information Catalyst preparation A certain of aqueous NiCl 2 6H 2 O (2 mm), H 2 PtCl

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond Covalent Bonding Section 9.1 The Covalent Bond In your textbook, read about the nature of covalent bonds. Use each of the terms below just once to complete the passage. covalent bond molecule sigma bond

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

Electronic supplementary information. Amorphous carbon supported MoS 2 nanosheets as effective catalyst for electrocatalytic hydrogen evolution

Electronic supplementary information. Amorphous carbon supported MoS 2 nanosheets as effective catalyst for electrocatalytic hydrogen evolution Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information Amorphous carbon supported MoS 2 nanosheets as effective

More information

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table

All chemical bonding is based on the following relationships of electrostatics: 2. Each period on the periodic table UNIT VIII ATOMS AND THE PERIODIC TABLE 25 E. Chemical Bonding 1. An ELECTROSTATIC FORCE is All chemical bonding is based on the following relationships of electrostatics: The greater the distance between

More information

Boosting the hydrogen evolution performance of ruthenium clusters. through synergistic coupling with cobalt phosphide

Boosting the hydrogen evolution performance of ruthenium clusters. through synergistic coupling with cobalt phosphide Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information for Boosting the hydrogen evolution

More information

Part III: Theoretical Surface Science Adsorption at Surfaces

Part III: Theoretical Surface Science Adsorption at Surfaces Technische Universität München Part III: Theoretical Surface Science Adsorption at Surfaces Karsten Reuter Lecture course: Solid State Theory Adsorption at surfaces (T,p) Phase II Phase I Corrosion Growth

More information

Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation

Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation Electronic Supplementary Information Nanosheet-Constructed Porous BiOCl with Dominant {001} Facets for Superior Photosensitized Degradation Dong-Hong Wang, ab Gui-Qi Gao, b Yue-Wei Zhang, a Li-Sha Zhou,

More information

The mechanism of ammonium bisulfate formation and

The mechanism of ammonium bisulfate formation and Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Supporting Information The mechanism of ammonium bisulfate formation and decomposition

More information

Rational One-Step Synthesis of Porous PtPdRu Nanodendrites for Ethanol Oxidation Reaction with a Superior Tolerance for COpoisoning

Rational One-Step Synthesis of Porous PtPdRu Nanodendrites for Ethanol Oxidation Reaction with a Superior Tolerance for COpoisoning Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2017 Supporting information for Rational One-Step Synthesis of PtPdRu Nanodendrites for Ethanol Oxidation

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip ofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VC Berlin. www.philiphofmann.net 1 Bonds between

More information

Etching-limited branching growth of cuprous oxide during ethanol-assisted. solution synthesis

Etching-limited branching growth of cuprous oxide during ethanol-assisted. solution synthesis Electronic supplementary information Etching-limited branching growth of cuprous oxide during ethanol-assisted solution synthesis Shaodong Sun, Hongjun You, Chuncai Kong, Xiaoping Song, Bingjun Ding, and

More information

Lewis dot structures for molecules

Lewis dot structures for molecules 1 Lewis dot structures for molecules In the dot structure of a molecule, - SHARED valence electrons are shown with dashes - one per pair. - UNSHARED valence electrons ("lone pairs") are represented by

More information

materials and their properties

materials and their properties materials and their properties macroscopic properties phase state strength / stiffness electrical conductivity chemical properties color / transparence spectroscopical properties surface properties density

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 M15/4/CHEMI/SPM/ENG/TZ1/XX Chemistry Standard level Paper 1 Thursday 14 May 2015 (afternoon) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all

More information

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling Bonding/Lewis Dots Lecture Page 1 of 12 Date Bonding What is Coulomb's Law? Energy Profile: Covalent Bonds Electronegativity and Linus Pauling 2.1 H 1.0 Li 0.9 Na 0.8 K 0.8 Rb 0.7 Cs 0.7 Fr 1.5 Be 1.2

More information

Chemistry Higher level Paper 1

Chemistry Higher level Paper 1 M15/4/EMI/PM/ENG/TZ1/XX hemistry igher level Paper 1 Thursday 14 May 2015 (afternoon) 1 hour Instructions to candidates Do not open this examination paper until instructed to do so. Answer all the questions.

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information A direct Fe-O coordination at FePc/MoO x interface investigated

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1 CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You

More information

Experimental and Theoretical Calculation Investigation on

Experimental and Theoretical Calculation Investigation on Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is The Royal Society of Chemistry 2018 Experimental and Theoretical Calculation Investigation on Efficient Pb(II) Adsorption

More information

Oxygen Reduction Reaction

Oxygen Reduction Reaction Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Oxygen Reduction Reaction Oxygen is the most common oxidant for most fuel cell cathodes simply

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters X. Lin 1,, J. C. Lu 1,, Y. Shao 1,, Y. Y. Zhang

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.1488 Submolecular control, spectroscopy and imaging of bond-selective chemistry in single functionalized molecules Ying Jiang 1,2*, Qing Huan 1,3*, Laura Fabris 4, Guillermo C. Bazan

More information

Supporting Information

Supporting Information Supporting Information Dynamic Interaction between Methylammonium Lead Iodide and TiO 2 Nanocrystals Leads to Enhanced Photocatalytic H 2 Evolution from HI Splitting Xiaomei Wang,, Hong Wang,, Hefeng Zhang,,

More information

First-Principles Study of Structure Sensitivity of Chain Growth and. Selectivity in Fischer-Tropsch Synthesis on HCP Cobalt Catalysts

First-Principles Study of Structure Sensitivity of Chain Growth and. Selectivity in Fischer-Tropsch Synthesis on HCP Cobalt Catalysts Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2017 Supporting Information First-Principles Study of Structure Sensitivity of

More information