Biology Unit 2, Structure of Life, Lab Activity 2-2

Size: px
Start display at page:

Download "Biology Unit 2, Structure of Life, Lab Activity 2-2"

Transcription

1 Biology Unit 2, Structure of Life, Lab Activity 2-2 Photosynthesis is the process by which energy used by living systems is converted from electromagnetic radiation from the sun to chemical energy. This chemical energy is stored in organic molecules. The entire process takes place in the chloroplasts found in plants. There are a variety of photoactive pigments contained in the chloroplasts. Each pigment is reactive to different wavelengths of light energy. Those wavelengths not utilized by the pigment are reflected and account for the color we see. We see green leaves because chlorophyll a and b do are not active in that portion of the visible spectrum. While chlorophyll is the primary pigment active during photosynthesis, there are other 'accessory' pigments found throughout the plant. These 'accessory' pigments have a wide variety of uses. Carotenoids, accessory pigments produced in chromoplasts, are associated with many colors observed in vegetation. There are hundreds of different types of carotenoids. Carrots get their color, which is often orange but is not restricted to orange, from carotene. And carotene is not so much a specific compound as a family name for several compounds that also go by the name terpene. Another type of carotenoid phyto-pigment is called anthocyanin. The purplish color of a red cabbage and the rusty red of the flesh of a blood orange are a result of the presence of anthocynanins, which also have the curious property of changing color with changes in ph. Anthocyanins absorb UV light, which is used by plants to perform two important functions: to attract insects, which augment pollination, and as a sunscreen to protect the other parts of the plant cells such as DNA from harmful UV radiation. In this experiment you will extract pigments from spinach and carrots and measure their visible absorbance spectra with a spectrophotometer. The spectrophotometer measures both the amount and wavelength of a light passed through a sample. While you wait for the extracts to develop, you will measure the absorbance of blue and yellow food-colored water samples, which will provide an analogy to the absorbance of the plant pigment extracts. Research Questions 1) What wavelengths of light are captured by plants for photosynthesis? 2) Why have plants evolved to utilize those frequencies of light? Write your answers to the research questions AFTER you have completed all other parts of the Lab. 1) 2)

2 Protocol Materials computer carrot slices or shavings Logger Pro 70% isopropanol (IPA) spectrophotometer petroleum ether cuvettes yellow and blue food colored solutions 10 ml graduated cylinder distilled water funnel plastic Beral pipets filter paper balance, ± 0.1 g accuracy three small flasks mortar and pestle mm glass test tube, or paper cups glass cuvette fresh spinach Procedure Data collection for this lab is to be completed as a lab table group. Data reporting and questions are to be completed individually. 1.Obtain and wear goggles. 2. Connect a spectrophotometer to the USB port of your computer. 3. Start Logger Pro. If it is already running, choose New from the File menu. 4. Calibrate the Spectrometer. The calibration sets the spectrophotometer to baseline 0 for the solvent being used. In Part 2 water is the solvent. In Part 3 the solvents are alcohol and ether. a. Prepare a blank by filling an empty cuvette 3/4 full with distilled water. b. Choose Calibrate Spectrometer from the Experiment menu. c. When the warmup period is complete, place the blank in the spectrophotometer. Make sure to align the cuvette so that the clear sides are facing the light source of the spectrophotometer. d. Click Finish Calibration, and then click. Answer Stop question #1-2 before continuing Part I Prepare the Plant Pigment Extracts 5. Measure out 0.5 g of fresh spinach. Add 20 ml of 70% isopropanol (IPA) to a clean mortar. Tear the spinach into tiny pieces and grind them with the pestle. We are just extracting the pigments so killing the plant cells doesn t affect the experiment. Continue to grind until solvent turns color. Transfer the mixture to a small beaker. Allow the mixture to sit. 6. Measure out 0.5 g of carrot slices (or shavings). Add 20 ml of petroleum ether to a clean mortar. Grind the carrot with the pestle. Continue to grind until solvent turns color. CAUTION: Handle the petroleum ether, with care. The fumes may irritate your nasal passages. Set the two beakers of extracted pigment aside for Part 3. Answer Stop question #3-4 before continuing Part II The Absorbance of Food Coloring Portions adapted from Advanced Biology with Vernier by permission Page 2 of 9

3 7. Conduct a full spectrum analysis of the blue food coloring. a. Empty the blank cuvette and rinse it twice with small amounts of the blue food coloring mixture. Fill the cuvette 3/4 full with the blue liquid and place it in the spectrophotometer. Align the cuvette so the clear sides are facing the light source of the spectrophotometer. b. Click. A full spectrum graph of the blue food coloring sample will be displayed. c. Click. Examine the graph, noting the peak or peaks of very high absorbance or other distinguishing features. 8. Choose Store Latest Run from the Experiment menu to store your data. 9. Repeat Steps 7 and 8 with the yellow food coloring sample. Remember to store the data. 10. Mix equal amounts of the blue and yellow solutions in a paper cup or small beaker. Repeat Steps 7 and 8 with the mixture. 11. Display a graph of all three plots. a. Choose Graph Options from the Options menu. b. In the Graph Options dialog box, select the Axes Options tab. c. Select Absorbance for all of the successful runs so that all three color analysis are displayed on the same graph. Cick. 12. Save your experiment file. Print your graph (it will show all three pigments on the same graph). Make a copy for each lab member. Paste printed graph in Data Graph 1.Write down your observations of the graph in Table 4. Answer Stop question #5-6 before continuing Part III Measure the Absorbance of the Plant Pigment Samples 13. Prepare a purified sample of your spinach extract. Use a funnel and filter to slowly pour the alcohol/spinach extract into a clean flask. 14. Calibrate the spectrophotometer. You will calibrate the spectrophotometer with isopropanol because your solvent in the spinach extract is isopropanol, not water. a. Choose New from the File menu. b. Prepare a blank by filling an empty cuvette 3/4 full with clear isopropanol. c. Choose Calibrate Spectrometer from the Experiment menu. d. When the warm-up period is complete, place the blank in the spectrophotometer. Make sure to align the cuvette so that the clear sides are facing the light source of the spectrophotometer. e. Click Finish Calibration, and then click. 15. Measure the absorbance spectrum of the spinach extract. a. Pour out the isopropanol from the cuvette, rinse, and fill it 3/4 full with the spinach filtrate. b. Place the cuvette in the spectrophotometer. c. Click to see a plot of the absorbance spectrum for the spinach extract. d. Click. 16. Examine the graph, noting the absorbance peak ranges for chlorophyll described in the introductory remarks. If any of the peak absorbance values are greater than 1.5 or off the top of your graph, dilute your sample to bring the peaks down to a more reasonable level. Repeat data collection. 17. Save your experiment file. Print out the graph and paste in Data Graph 2.Write down Portions adapted from Advanced Biology with Vernier by permission Page 3 of 9

4 your observations of the graph in Table Calibrate the spectrophotometer with a different solvent for testing the carrot extract. a. Choose New from the File menu. b. Choose Calibrate Spectrometer from the Experiment menu. c. Filter your carrot extract in the same way you filtered the spinach extract. d. Obtain a mm glass test tube(these solvents will melt plastic. The spectrophotometer would be permanently damaged). Mark the test tube so that you can align it in the spectrophotometer the same way each time you use it. Fill the test tube ~1/2 full with the clear petroleum ether that you used with the carrot slices. This test tube of solvent will serve as your blank. e. When the warm-up period is complete, place the test tube in the spectrophotometer, being careful to line it up with the mark on the tube so the same sides are always facing the light source of the spectrometer. f. Click Finish Calibration, and then click. Answer Stop question #7 before continuing 19. Measure the absorbance spectrum of the carrot extract. a. Pour out the solvent from the test tube, rinse, and fill it ~1/2 full with the carrot extract. b. Place the test tube in the spectrophotometer, being careful to line it up with the mark. c. Click to see a plot of the absorbance spectrum for the carrot extract. d. Click. 20. Examine the graph. If any of the peak absorbance values do not show on the graph use Autoscale to show the range of the data on your graph. Repeat data collection. Answer Stop question #8 before continuing 21. Save your experiment file. Print a copy of the graph for each lab member and paste in Data Graph 3.Write down your observations of the graph in Table 4. EXTRA CREDIT OPTION Extract red cabbage or blood orange pigments using steps Extract red bell pepper pigments using steps (remember to use glass with acetone). Prepare graphs for extra credit as you did for the other parts of this lab. Now that you have read these procedures construct a flow chart on the following page. Portions adapted from Advanced Biology with Vernier by permission Page 4 of 9

5 Flow Chart Lab 2-2 Photosynthesis Portions adapted from Advanced Biology with Vernier by permission Page 5 of 9

6 Data Graph 1 Food Color Spectrum Prediction Graph 2 Chlorophyll Spectrum Prediction Portions adapted from Advanced Biology with Vernier by permission Page 6 of 9

7 Graph 3 Carotene Spectrum Prediction Table 4 Graph Observations Trial Sample Wavelengths of peaks and other unique features of the spectrum graph (multiple peaks etc.) 1 Blue 2 Yellow 3 Mixture 4 Spinach Extract 5 Carrot Extract Portions adapted from Advanced Biology with Vernier by permission Page 7 of 9

8 Stop Questions 1) What does a spectrophotometer measure? 2) Why is it important to calibrate all measuring devices? 3) What are the solvents in this step used for? 4) Why aren't we concerned that the grinding and solvents will kill the plants? 5) Why do the food coloring samples peak where they do? 6) Why do the mixed food colors look the way they do? (use the term absorbance and/or reflectance in your answer) 7) Why is it important to use a glass test tube in this step? 8) What pigment accounts for the orange color of carrots? Analysis Questions 1.Describe, in detail, the absorbance spectrum of each food coloring sample. With the mixture of blue and yellow food coloring, can you clearly distinguish the characteristics of each coloring? Blue Yellow Mixture Explain in terms of wavelengths of light 2. Consult a reliable resource (Wikipedia is good) to identify the major absorbance peaks (give wavelength) of chlorophyll a nm and chlorophyll b nm Examine the absorbance vs. wavelength graph for your spinach extract. You will see peaks for both Chlorophyll a and b. Are there other peaks on your graph that are not characteristic of chlorophyll? Speculate why there might be even if you did not see extra peaks. 3. Have carrots always been orange? What are some other colors carrots have? (try the carrot museum) 4. Why are leaves green in the spring and summer, then orange or yellow in the fall? Refer to what you have learned in this unit to answer. Portions adapted from Advanced Biology with Vernier by permission Page 8 of 9

9 Conclusion. Write a one paragraph (three sentence minimum) answer to the following question. You may use internet sources as reference (not copied) but they must be cited. You may share sources with classmates. Why have different pigments evolved in the plant kingdom? Plants and animals have co-evolved. You have probably heard that carrots are good for your vision. Write a one paragraph (three sentence minimum) answer to the following question. You may use internet sources as reference (not copied) but they must be cited. You may share sources with classmates. How does the pigment beta carotene from carrots work in helping your vision? Portions adapted from Advanced Biology with Vernier by permission Page 9 of 9

Determining the Concentration of a Solution: Beer s Law

Determining the Concentration of a Solution: Beer s Law Determining the Concentration of a Solution: Beer s Law Vernier Spectrometer 1 The primary objective of this experiment is to determine the concentration of an unknown copper (II) sulfate solution. You

More information

Determining the Concentration of a Solution: Beer s Law

Determining the Concentration of a Solution: Beer s Law Determining the Concentration of a Solution: Beer s Law The primary objective of this experiment is to determine the concentration of an unknown cobalt (II) chloride solution. You will use a Vernier SpectroVis

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Dr. White 11 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To prepare a Beer s

More information

AP Biology Lab 4 PLANT PIGMENTS AND PHOTOSYNTHESIS

AP Biology Lab 4 PLANT PIGMENTS AND PHOTOSYNTHESIS AP Biology Laboratory Date: Name and Period: AP Biology Lab 4 PLANT PIGMENTS AND PHOTOSYNTHESIS OVERVIEW In this lab you will: 1. separate plant pigments using chromatography, and 2. measure the rate of

More information

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III)

Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Chem 1B Saddleback College Dr. White 1 Experiment 2: The Beer-Lambert Law for Thiocyanatoiron (III) Objectives To use spectroscopy to relate the absorbance of a colored solution to its concentration. To

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Experiment 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN -

More information

Rate Law Determination of the Crystal Violet Reaction. Evaluation copy

Rate Law Determination of the Crystal Violet Reaction. Evaluation copy Rate Law Determination of the Crystal Violet Reaction Computer 30 In this experiment, you will observe the reaction between crystal violet and sodium hydroxide. One objective is to study the relationship

More information

LAB #6 Chromatography Techniques

LAB #6 Chromatography Techniques LAB #6 Chromatography Techniques Objectives: To learn how to story board a procedure Explain how a chromatograph of pigments is formed from both paper and thin layer chromatography. Isolate and identify

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Chemistry 102 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Computer 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

MEASUREMENT: PART II

MEASUREMENT: PART II 1 MEASUREMENT: PART II Copyright: Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, 2013. INTRODUCTION Read and/or review Section 1.7 and Figure 7.5 in your textbook. The first part

More information

PLANT PIGMENTS AND PHOTOSYNTHESIS LAB

PLANT PIGMENTS AND PHOTOSYNTHESIS LAB AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #6 NAME DATE HOUR PLANT PIGMENTS AND PHOTOSYNTHESIS LAB OBJECTIVES: After completing this lab you should be able to: 1. separate pigments and calculate their R f

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Experiment 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq)

More information

The Synthesis and Analysis of Aspirin

The Synthesis and Analysis of Aspirin The Synthesis and Analysis of Aspirin Computer 22 Aspirin, the ubiquitous pain reliever, goes by the chemical name acetylsalicylic acid. One of the compounds used in the synthesis of aspirin is salicylic

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant LabQuest 10 The equilibrium state of a chemical reaction can be characterized by quantitatively defining its equilibrium constant, Keq. In this experiment, you will determine the value of Keq for the reaction

More information

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15 Abstract: This lab was performed to synthesize acetyl salicylic acid or aspirin from a carboxylic acid and an alcohol. We had learned in class

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Lab12 Chemical Equilibrium: Finding a Constant, Kc The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq) FeSCN

More information

Chemical Equilibrium: Finding a Constant, Kc

Chemical Equilibrium: Finding a Constant, Kc Chemical Equilibrium: Finding a Constant, Kc Computer 20 The purpose of this lab is to experimentally determine the equilibrium constant, K c, for the following chemical reaction: Fe 3+ (aq) + SCN (aq)

More information

Photosynthesis. Introduction

Photosynthesis. Introduction Photosynthesis Learning Objectives: Explain the importance of photosynthetic pigments for transformation of light energy into chemical bond and the advantage of having more than one pigment in the same

More information

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Rate Law Determination of Crystal Violet Hydroxylation Revised 5/22/12 RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997

More information

BIOL 221 Concepts of Botany

BIOL 221 Concepts of Botany BIOL 221 Concepts of Botany Topic 13: Photosynthesis A. Introduction Through photosynthesis, the abundant energy from the sun is collected and converted into chemical forms by photosynthetic organisms

More information

#22 Visible Spectrum of Chlorophyll from Spinach

#22 Visible Spectrum of Chlorophyll from Spinach #22 Visible Spectrum of Chlorophyll from Spinach Purpose: Chlorophyll is extracted from spinach. From a spectrum of the solution produced, the ratio of chlorophyll a and b present is estimated. Introduction:

More information

Photosynthesis. LabQuest OBJECTIVES

Photosynthesis. LabQuest OBJECTIVES Photosynthesis LabQuest 4B The process of photosynthesis involves the use of energy to convert carbon dioxide and water into sugar, oxygen, and other organic compounds. This process is often summarized

More information

Determining the Concentration of a Solution: Beer s Law

Determining the Concentration of a Solution: Beer s Law Determining the Concentration of a Solution: Beer s Law LabQuest 11 The primary objective of this experiment is to determine the concentration of an unknown nickel (II) sulfate solution. You will be using

More information

The Determination of an Equilibrium Constant

The Determination of an Equilibrium Constant The Determination of an Equilibrium Constant Calculator 10 Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium

More information

Virtual Lab 5 Photosynthesis

Virtual Lab 5 Photosynthesis Name Period Assignment # Virtual Lab 5 Photosynthesis http://www.phschool.com/science/biology_place/labbench/lab4/intro.html 1) Define photosynthesis 2) Define chlorophyll Click 4-I Chromatography on the

More information

1iI1E. The Determination of 0 an Equilibrium Constant [LU. Computer

1iI1E. The Determination of 0 an Equilibrium Constant [LU. Computer Computer The Determination of 0 an Equilibrium Constant Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium constant,

More information

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1

Determining the Concentration of a Solution: Beer s Law. Evaluation copy. Figure 1 Determining the Concentration of a Solution: Beer s Law Computer 17 The primary objective of this experiment is to determine the concentration of an unknown copper (II) sulfate solution. You will use a

More information

Investigating Food Dyes in Sports Beverages. Sample

Investigating Food Dyes in Sports Beverages. Sample Investigating Food Dyes in Sports Beverages Investigation 1 There are many different brands of beverages that fall under the general category of sports drinks. Most of these beverages contain an FD&C food

More information

Physical Separations and Chromatography

Physical Separations and Chromatography Lab #5A & B: Physical Separations and Chromatography Individual Objectives: At the end of these experiments you should be able to: Ø Distinguish between Rf and tr; chromatograph and chromatogram; adsorption

More information

Spectroscopy II Introduction: Spectrophotometry and Fluorometry

Spectroscopy II Introduction: Spectrophotometry and Fluorometry Introduction: Spectrophotometry and Fluorometry In this experiment you will use the SpectroVis Plus (a small computer controlled Spectrophotometer + Fluorometer) to: Measure the Transmission and Absorbance

More information

Introduction to Chemistry Techniques Prelab (Week 1) 2. Determine the number of significant figures in each of the following numbers.

Introduction to Chemistry Techniques Prelab (Week 1) 2. Determine the number of significant figures in each of the following numbers. Introduction to Chemistry Techniques Prelab (Week 1) Name Total /10 SHOW ALL WORK NO WORK = NO CREDIT 1. What is the purpose of this experiment? 2. Determine the number of significant figures in each of

More information

The Effect of Alcohol on Biological Membranes

The Effect of Alcohol on Biological Membranes TEACHER INFORMATION The Effect of Alcohol on Biological Membranes Experiment 1. The student pages with complete instructions for using a Colorimeter or Spectrometer with LabQuest App and Logger Pro (computers)

More information

2 (aq) [FeSCN [Fe 3JSCN] Figure 1

2 (aq) [FeSCN [Fe 3JSCN] Figure 1 The Determination of an Equilibrium Constant Computer Chemical reactions occur to reach a state of equilibrium. The equilibrium state can be characterized by quantitatively defining its equilibrium constant,

More information

A Study of Beer s Law Prelab

A Study of Beer s Law Prelab 1. What is the purpose of this experiment? A Study of Beer s Law Prelab 2. Using the absorbance versus wavelength curve given in Figure I, determine the approximate value of max of the dye used to construct

More information

Determining the K sp of Calcium Hydroxide

Determining the K sp of Calcium Hydroxide Determining the K sp of Calcium Hydroxide (Titration Method) Computer 23 Calcium hydroxide is an ionic solid that is sparingly soluble in water. A saturated, aqueous, solution of Ca(OH) 2 is represented

More information

Determination of an Equilibrium Constant

Determination of an Equilibrium Constant Last updated 1/29/2014 - GES Learning Objectives Students will be able to: Determine the numerical value of an equilibrium constant from measured concentrations of all reaction species. Use an absorption

More information

Spectrophotometric Determination of pka of Phenol Red

Spectrophotometric Determination of pka of Phenol Red Spectrophotometric Determination of pka of Phenol Red This experiment uses instrumentation to accomplish quantitative analysis. You will get far more experience in this during CH427 if you are a Chemistry

More information

Spectrometer User s Guide

Spectrometer User s Guide Spectrometer User s Guide (Order Codes: V-SPEC, SPRT-VIS, SP-VIS, SP-UV-VIS, ESRT-VIS) The spectrometer is a portable light spectrophotometer, combining a spectrometer and a light source/cuvette holder.

More information

Chromatography Extraction and purification of Chlorophyll CHM 220

Chromatography Extraction and purification of Chlorophyll CHM 220 INTRODUCTION Extraction and purification of naturally occurring molecules is of the most common methods of obtaining organic molecules. Locating and identifying molecules found in flora and fauna can provide

More information

Experiment 13. Dilutions and Data Handling in a Spreadsheet rev 1/2013

Experiment 13. Dilutions and Data Handling in a Spreadsheet rev 1/2013 Absorbance Experiment 13 Dilutions and Data Handling in a Spreadsheet rev 1/2013 GOAL: This lab experiment will provide practice in making dilutions using pipets and introduce basic spreadsheet skills

More information

Experiment 11 Beer s Law

Experiment 11 Beer s Law Experiment 11 Beer s Law OUTCOMES After completing this experiment, the student should be able to: determine the wavelength (color) of maximum absorbance for a solution. examine the relationship between

More information

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method Rate law Determination of the Crystal Violet Reaction Using the Isolation Method Introduction A common challenge in chemical kinetics is to determine the rate law for a reaction with multiple reactants.

More information

EXPERIMENT 23. Determination of the Formula of a Complex Ion INTRODUCTION

EXPERIMENT 23. Determination of the Formula of a Complex Ion INTRODUCTION EXPERIMENT 23 Determination of the Formula of a Complex Ion INTRODUCTION Metal ions, especially transition metal ions, possess the ability to form complexes (as shown below) with ions, organic and inorganic

More information

Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert. Abstract:

Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert. Abstract: Finding the Constant K c 4/21/15 Maya Parks Partners: Ben Seufert, Caleb Shumpert Abstract: This lab was performed to find the chemical equilibrium constant K c for the reaction Fe 3+ + SCN FeSCN 2+ using

More information

2014 NJIT RET Program. MODULE TOPIC: Two Methods of Determining the Concentration of Soluble Compounds or Analytes..

2014 NJIT RET Program. MODULE TOPIC: Two Methods of Determining the Concentration of Soluble Compounds or Analytes.. NJIT RET Summer program 2014 Lesson Module 2014 NJIT RET Program MODULE TOPIC: Two Methods of Determining the Concentration of Soluble Compounds or Analytes.. LESSON ONE TOPIC: Colorimetric Analysis of

More information

NOVEMBER DAILY PERFORMANCE RUBRIC Name Period: Each Item is worth 2 points for a total of 10 points possible per day - This will be a TEST grade!

NOVEMBER DAILY PERFORMANCE RUBRIC Name Period: Each Item is worth 2 points for a total of 10 points possible per day - This will be a TEST grade! NOVEMBER DAILY PERFORMANCE RUBRIC Name Period: 1 Each Item is worth 2 points for a total of 10 points possible per day - This will be a TEST grade! Date On Time to Class Have Biology Notebook Start Do

More information

Experiment 11 Beer s Law

Experiment 11 Beer s Law Experiment 11 Beer s Law OUTCOMES After completing this experiment, the student should be able to: determine the wavelength (color) of maximum absorbance for a solution. examine the relationship between

More information

SPINACH LEAF CHROMATOGRAPHY. Photosynthesis and Respiration Unit

SPINACH LEAF CHROMATOGRAPHY. Photosynthesis and Respiration Unit SPINACH LEAF CHROMATOGRAPHY Photosynthesis and Respiration Unit OBJECTIVE Identify the pigment chlorophyll and other colored pigments, and explain how the color that is seen is the color of light reflected

More information

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Many substances absorb light. When light is absorbed, electrons in the ground state are excited to higher energy levels. Colored

More information

Spectrophotometry and the Absorption Spectrum of Chlorophyll. Kathryn Dockins Plant Physiology and Lab Spring Prof. J.

Spectrophotometry and the Absorption Spectrum of Chlorophyll. Kathryn Dockins Plant Physiology and Lab Spring Prof. J. Spectrophotometry and the Absorption Spectrum of Chlorophyll Kathryn Dockins 2-1-17 Plant Physiology and Lab Spring 2017 Prof. J. Bidlack 1 Lab #2 Spectrophotometry and the Absorption Spectrum of Chlorophyll

More information

Acid Rain. Computer OBJECTIVES

Acid Rain. Computer OBJECTIVES Acid Rain Computer 18 Acid rain is a topic of much concern in today s world. As carbon dioxide gas, CO 2, dissolves in water droplets of unpolluted air, the following reaction occurs: CO 2 + H 2 O H 2

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Using a Buret and Volumetric Flask: 2.06 ml of solution delivered 2.47 ml of solution delivered 50.00 ml Volumetric Flask Reading a buret: Burets are

More information

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Rate Law Determination of Crystal Violet Hydroxylation Revised 10/21/14 RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997

More information

Lab 5: Calculating an equilibrium constant

Lab 5: Calculating an equilibrium constant Chemistry 162 The following write-up is inaccurate for the particular chemicals we are using. Please have all sections up through and including the data tables ready before class on Wednesday, February

More information

Conductometric Titration & Gravimetric Determination of a Precipitate

Conductometric Titration & Gravimetric Determination of a Precipitate Conductometric Titration & Gravimetric Determination of a Precipitate Experiment 9 In this experiment, you will monitor conductivity during the reaction between sulfuric acid, H2SO4, and barium hydroxide,

More information

Biology 3A Laboratory Photosynthesis

Biology 3A Laboratory Photosynthesis Biology 3A Laboratory Photosynthesis Objectives To observe the spectral absorbance of a mixed chlorophyll sample To separate and identify several common plant pigments using paper chromatography To investigate

More information

17 Isolation and Epoxidation of a Natural Product: R-(+)-Limonene

17 Isolation and Epoxidation of a Natural Product: R-(+)-Limonene Experiment 17 Isolation and Epoxidation of a Natural Product: R-(+)-Limonene Natural products are compounds produced by living organisms. Recently a great deal of exploration has been done involving the

More information

Determination of the Rate of a Reaction, Its Order, and Its Activation Energy

Determination of the Rate of a Reaction, Its Order, and Its Activation Energy Determination of the Rate of a Reaction, Its Order, and Its Activation Energy Reaction kinetics is defined as the study of the rates of chemical reactions and their mechanisms. Reaction rate is simply

More information

Standardizing a Solution of Sodium Hydroxide. Evaluation copy

Standardizing a Solution of Sodium Hydroxide. Evaluation copy Standardizing a Solution of Sodium Hydroxide Computer 6 It is often necessary to test a solution of unknown concentration with a solution of a known, precise concentration. The process of determining the

More information

Name Date Period. 1. If drops of ACID are added to a ph buffer, then the ph of the buffer will [increase / decrease / stay the same].

Name Date Period. 1. If drops of ACID are added to a ph buffer, then the ph of the buffer will [increase / decrease / stay the same]. Name Date Period ACIDS AND BASES Organisms are often very sensitive to the effect of s and s in their environment. They need to maintain a stable internal ph in order to survive even in the event of environmental

More information

Spectrophotometric Determination of the Copper (II) Sulfate Pentahydrate Content in a Mixture

Spectrophotometric Determination of the Copper (II) Sulfate Pentahydrate Content in a Mixture EXPERIMENT 7B Spectrophotometric Determination of the Copper (II) Sulfate Pentahydrate Content in a Mixture QUANTITATIVE ANALYSIS Quantitative analysis is a branch of analytical chemistry concerned with

More information

Acid-Base Titration. Computer OBJECTIVES

Acid-Base Titration. Computer OBJECTIVES Acid-Base Titration Computer 7 A titration is a process used to determine the volume of a solution that is needed to react with a given amount of another substance. In this experiment, your goal is to

More information

K sp = [Pb 2+ ][I ] 2 (1)

K sp = [Pb 2+ ][I ] 2 (1) Chem 1B Saddleback College Dr. White 1 Experiment 11: Determination of K sp Objectives To determine the concentration of an unknown using a Beer- Lambert Plot. To determine the K sp for a relatively insoluble

More information

Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Crystal Violet with Hydroxide Ion

Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Crystal Violet with Hydroxide Ion Experiment 7. Determining the Rate Law and Activation Energy for the Reaction of Introduction In this experiment, you will observe the reaction between crystal violet and sodium hydroxide. Crystal violet

More information

LAB FOUR PLANT PIGMENTS AND

LAB FOUR PLANT PIGMENTS AND LAB FOUR PLANT PIGMENTS AND PHOTOSYNTHESIS OVERVIEW In this lab you will: 1. separate plant pigments using chromatography, and 2. measure the rate of photosynthesis in isolated chloroplasts using the dye

More information

Chemical Reactions: The Copper Cycle

Chemical Reactions: The Copper Cycle 1 Chemical Reactions: The Copper Cycle ORGANIZATION Mode: pairs assigned by instructor Grading: lab notes, lab performance and post-lab report Safety: Goggles, closed-toe shoes, lab coat, long pants/skirts

More information

Lab 5 Enthalpy of Solution Formation

Lab 5 Enthalpy of Solution Formation Chemistry 3202 Lab 5 Enthalpy of Solution Formation Page 1 of 9 Lab 5 Enthalpy of Solution Formation Introduction This lab activity will introduce you to the measurement of energy change associated with

More information

Introduction to Spectroscopy: Analysis of Copper Ore

Introduction to Spectroscopy: Analysis of Copper Ore Introduction to Spectroscopy: Analysis of Copper Ore Using a Buret and Volumetric Flask: 2.06 ml of solution 2.47 ml of solution 50.00 ml delivered delivered Volumetric Flask Reading a buret: Burets are

More information

The Decomposition of Hydrogen Peroxide. Evaluation copy

The Decomposition of Hydrogen Peroxide. Evaluation copy The Decomposition of Hydrogen Peroxide Computer 12 The decomposition of hydrogen peroxide in aqueous solution proceeds very slowly. A bottle of 3% hydrogen peroxide sitting on a grocery store shelf is

More information

Experiment 17 It s A Gas and More!

Experiment 17 It s A Gas and More! Energy Energy Experiment 17 It s A Gas and More! OUTCOMES After completing this lab activity, the student should be able to: explain a simple method for distinguishing carbon dioxide gas from oxygen gas.

More information

PRELIMINARY ACTIVITY FOR

PRELIMINARY ACTIVITY FOR PRELIMINARY ACTIVITY FOR Beer s Law Investigations Guided Inquiry Version Experiment 11 The primary objective of this Preliminary Activity is to determine the concentration of an unknown copper (II) sulfate

More information

Experiment 7A ANALYSIS OF BRASS

Experiment 7A ANALYSIS OF BRASS Experiment 7A ANALYSIS OF BRASS FV 10/21/10 MATERIALS: Spectronic 20 spectrophotometers, 2 cuvettes, brass sample, 7 M HNO 3, 0.100 M CuSO 4, 2 M NH 3, two 50 ml beakers, 100 ml beaker, two 25 ml volumetric

More information

Experiment C-15 Distillation - part 1

Experiment C-15 Distillation - part 1 1 Experiment C-15 Distillation - part 1 Objectives To learn about the three classical phases of matter, phase changes, and heating and cooling curves. To investigate the technique of distillation and to

More information

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant CHEMISTRY 135 General Chemistry II Determination of an Equilibrium Constant Show above is a laboratory sample from chemistry, not phlebotomy. [1] Is the bloody-looking product the main component of this

More information

Evaluation copy. Acids and Bases. computer OBJECTIVES MATERIALS

Evaluation copy. Acids and Bases. computer OBJECTIVES MATERIALS Acids and Bases Computer 2 Organisms are often very sensitive to the effect of s and s in their environment. They need to maintain a stable internal ph in order to survive even in the event of environmental

More information

The Phase Change Lab: Freezing and Melting of Water

The Phase Change Lab: Freezing and Melting of Water The Phase Change Lab: Freezing and Melting of Water Experiment 3 Freezing temperature is the temperature at which a substance turns from a liquid to a solid. Melting temperature is the temperature at which

More information

Ocean Optics Red Tide UV-VIS Spectrometer (Order Code: SPRT-UV-VIS)

Ocean Optics Red Tide UV-VIS Spectrometer (Order Code: SPRT-UV-VIS) Ocean Optics Red Tide UV-VIS Spectrometer (Order Code: SPRT-UV-VIS) The UV-VIS spectrometer is a portable ultraviolet light and visible light spectrophotometer, combining a spectrometer and a light source/cuvette

More information

Kinetics of Crystal Violet Bleaching

Kinetics of Crystal Violet Bleaching Kinetics of Crystal Violet Bleaching Authors: V. C. Dew and J. M. McCormick* From Update March 12, 2013 with revisions Nov. 29, 2016 Introduction Chemists are always interested in whether a chemical reaction

More information

Endothermic and Exothermic Reactions

Endothermic and Exothermic Reactions Endothermic and Exothermic Reactions Experiment 1 Many chemical reactions give off energy. Chemical reactions that release energy are called exothermic reactions. Some chemical reactions absorb energy

More information

LAB 7 Photosynthesis

LAB 7 Photosynthesis LAB 7 Photosynthesis Introduction In order to survive, organisms require a source of energy and molecular building blocks to construct all of their biological molecules. The ultimate source of energy for

More information

Acid-Base Titration. Evaluation copy

Acid-Base Titration. Evaluation copy Acid-Base Titration Computer 7 A titration is a process used to determine the volume of a solution that is needed to react with a given amount of another substance. In this experiment, your goal is to

More information

Acid-Base Titration. Sample

Acid-Base Titration. Sample Acid-Base Titration Computer 7 A titration is a process used to determine the volume of a solution that is needed to react with a given amount of another substance. In this experiment, your goal is to

More information

Evaporation and Intermolecular Forces

Evaporation and Intermolecular Forces Evaporation and Intermolecular Forces In this experiment, temperature probes are placed in various liquids. Evaporation occurs when the probe is removed from the liquid's container. This evaporation is

More information

Acids and Bases. Figure 1

Acids and Bases. Figure 1 DataQuest 9 Organisms are often very sensitive to the effect of s and s in their environment. They need to maintain a stable internal ph in order to survive even in the event of environmental changes.

More information

Experiment 7 Can You Slow It Down?

Experiment 7 Can You Slow It Down? Experiment 7 Can You Slow It Down? OUTCOMES After completing this experiment, the student should be able to: tell which factors influence the reaction rate and how they influence the rate. change the temperature

More information

IDENTIFICATION TESTS FOR DURACOR TABLETS

IDENTIFICATION TESTS FOR DURACOR TABLETS PAGE 1 OF 8 IDENTIFICATION TESTS FOR DURACOR TABLETS PAGE 2 OF 8 PROTOCOL APPROVALS Norvin Pharma Inc. Signature and Date Author Analytical Laboratory Approver Analytical Laboratory Group Leader Approver

More information

Acids and Bases. Figure 1. Logger Pro or graph paper

Acids and Bases. Figure 1. Logger Pro or graph paper Acids and Bases LabQuest 3 Organisms are often very sensitive to the effect of s and s in their environment. They need to maintain a stable internal ph in order to survive even in the event of environmental

More information

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2)

AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2) www.pedersenscience.com AP Chemistry Lab #5- Synthesis and Analysis of Alum (Big Idea 1 & 2) 1.A.1: Molecules are composed of specific combinations of atoms; different molecules are composed of combinations

More information

Plant Pigments Chromatography

Plant Pigments Chromatography Plant Pigments Chromatography Gary Stacey Lab Teacher workshop, March 8, 2014 University of Missouri Division of Plant Sciences Plant pigments Pigments - chemical compounds which reflect only certain

More information

So, What Does it Indicate?

So, What Does it Indicate? So, What Does it Indicate? Introduction Phenolphthalein is a common indicator you may have used in a previous science course, such as Chemistry 130 or Chemistry 170. In solutions with a ph of less then

More information

Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College

Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College PURPOSE In this experiment, the photosynthetic pigments common to all flowering plants will be extracted by liquidliquid extraction.

More information

REVIEW OF LAB TECHNIQUES

REVIEW OF LAB TECHNIQUES Experiment 1 REVIEW OF LAB TECHNIQUES Prepared by Masanobu M. Yamauchi and Ross S. Nord, Eastern Michigan University PURPOSE To review density calculations, Beer s Law and the use of electronic balances,

More information

Lab 13.3 Determining K c via Colorimetry

Lab 13.3 Determining K c via Colorimetry BACKGROUND Most chemical reactions are reversible. They will proceed forward to a point where the products they have formed begin to collide with one another and reform the original reactants. When the

More information

Lab Investigation 4 - How could you make more of this dye?

Lab Investigation 4 - How could you make more of this dye? Lab Investigation 4 - How could you make more of this dye? USING SPECTROSCOPY TO DETERMINE SOLUTION CON- CENTRATION Guiding Question How could you make more of this dye? INTRODUCTION A solution is a homogeneous

More information

Density of Aqueous Sodium Chloride Solutions

Density of Aqueous Sodium Chloride Solutions Experiment 3 Density of Aqueous Sodium Chloride Solutions Prepared by Ross S. Nord and Stephen E. Schullery, Eastern Michigan University PURPOSE Determine the concentration of an unknown sodium chloride

More information

CH 112 Special Assignment #4 Chemistry to Dye for: Part C

CH 112 Special Assignment #4 Chemistry to Dye for: Part C CH 112 Special Assignment #4 Chemistry to Dye for: Part C PRE-LAB ASSIGNMENT: Make sure that you read this handout and bring the essentials to lab with you. Review Light, energy and color (pp 17-18), Measuring

More information

KINETICS OF THE PERMANGANATE- ISOPROPYL ALCOHOL REACTION

KINETICS OF THE PERMANGANATE- ISOPROPYL ALCOHOL REACTION Experiment 6A KINETICS OF THE PERMANGANATE- ISOPROPYL ALCOHOL REACTION Prepared by Stephen E. Schullery, Masanobu M. Yamauchi, and Ross S. Nord, Eastern Michigan University PURPOSE Determine the reaction

More information

Measuring ph with Smart Cuvettes

Measuring ph with Smart Cuvettes 1 Measuring ph with Smart Cuvettes Hardware Setup for ph Measurements ph is measured in Absorbance mode. Configure your spectroscopy components for Absorbance measurements. Sample Absorbance setups for

More information

Bio 6 Photosynthesis Lab

Bio 6 Photosynthesis Lab Bio 6 Photosynthesis Lab Introduction In order to survive, organisms require a source of energy and molecular building blocks to construct all of their biological molecules. The ultimate source of energy

More information