Principles of Organic Chemistry lecture 5, page 1

Size: px
Start display at page:

Download "Principles of Organic Chemistry lecture 5, page 1"

Transcription

1 Principles f Organic Chemistry lecture 5, page 1 Bnding Mdels Fact: electrns hld mlecules tgether. Theries: mre than ne way t cnceptualize bnding. Let s fllw Carrll in the cnsideratin f tw theries f bnding. Befre we try t wrap ur minds arund the mlecular rbitals f methane let s play with sme ther mlecular rbitals. The authr spends sme time discussing the difference between MO thery and Valence Bnd thery. In ne case MO thery we are taking abut electrn energies and ppulatins arund mlecules. Put the nuclei and thrw the electrns at them. In the ther case VB thery, we are talking abut the energetic and ppulatin changes that ccur when atms with their cre and valence electrns arund them frm bnds with between themselves. Let s discuss electrns in terms f mlecular rbitals (MOs) and atmic rbitals (AOs). In yur chemical educatin yu have mre than likely been expsed t valence shell electrn pair repulsin (VSEPR) thery. N P Predictin f the bnd angles f ammnia and phsphine are prblematic fr VSEPR. That f ammnia is The structure is dynamic at rm temperature underging fast inversin. The bnd angle f phsphine is 93.7 (Cttn, Wilkinsn, Murill, and Bchmann in Advanced Inrganic Chemistry 6 th ed. p 388) What makes the lne pair n the phsphrus atm any bigger (mre repulsive) than thse n the nitrgen atm? It might have made just as much sense t argue that P 3 shuld flatter than N 3 because the lne pair is further away frm the nucleus and shuld thus affect the bnded atms t a lesser extent than in N 3. wever we can talk very sensibly abut the gemetry f the hydrides f N and P n the basis f hybridizatin and bnd strength. The bnds are strnger when bth species (N and P) are flat. But electrn repulsin is als greatest in the planar gemetry.* The flat structures are sp 2 hybrids. There is a p-rbital with a lne pair in it. Ammnia has a wider bnd angle and is clser in energy t its flat transitin state because its bnds are ptimized by better verlap. Overlap between principle quantum number 1 and 2 ccurs in N 3 whereas in P 3, verlap ccurs between principle quantum number 1 and 3. * Frm S.F.A. Kettle, Symmetry and Structure, Readable Grup Thery fr

2 Principles f Organic Chemistry lecture 5, page 2 Chemists p 6-7. The ptential energy barrier fr the inversin is equal t the difference in ttal energy between the ammnia mlecule in its nrmal, pyramidal, shape and the planar cnfiguratin. In rder t btain a theretical value fr this barrier, Clementi carried ut rather detailed calculatins fr each gemetry. The results were very surprising. They shwed that the N- bnding is greater in the planar mlecule there is a lss f bnding f N- bnding energy f apprximately 7.0 x 10 2 kj mle -1 (167 kcal mle -1 ) in ging frm the planar t the pyramidal gemetry; this lss is accmpanied by a slight lengthening f the N- bnd. Bnding favurs a planar ammnia mlecule. A cmparisn f the mst stable pyramidal and mst stable planar gemetries shws that the electrn-electrn and nuclear-nuclear repulsin energies favur the pyramidal mlecule ver the planar by abut 7.2 x 10 2 kj mle -1 (172 kcal mle -1 ). Repulsive frces favur a pyramidal mlecule. Nte the way that the bnding and repulsive energy changes between the tw shapes almst exactly cancel each ther. It is the slight dminance f the repulsive frces by 20 kj mle -1 (5 kcal mle -1 ) which leads t the equilibrium gemetry f the ammnia mlecule in its electrnic grund state being pyramidal. We are left with a mst disturbing situatin. There is n dubt that the strngest N- bnding in the ammnia mlecule is t be fund when it is planar yet tw f the simple mdels cnsidered earlier in this chapter explained its gemetry by the assumptin that this bnding is a maximum in the pyramidal mlecule! Similarly, the mdels based n electrn-electrn repulsin ignred bth the fact that nuclear-nuclear repulsin is f cmparable imprtance and the fact that their sum is almst exactly cancelled by changes in the bnding energy. This wuld nt matter s much if there were sme assurance that repulsive energies wuld utweigh the bnding in all mlecules (mlecular gemetries culd then reliably be explained using a repulsin-based argument). Unfrtunately, n such general assurance can be given. This can be seen if the discussin f the ammnia mlecule is extended t include sme related species. The mlecules N 3, P 3, N 2 F, P 2 F, NF 2 PF 2 NF 3, and PF 3 all have similar, pyramidal, structures and wuld be treated similarly in all simple mdels. But calculatins by Schmiedekamp and c-wrkers6 have shwn that the first fur we their pyramidal gemetry t the dminance f repulsive frces (bnding is strnger when they are planar) but the last fur are pyramidal because the bnding is greatest in this cnfiguratin and dminates the repulsive frces. The take hme message is that the sweeping generalizatins that yu learned in Chem I and Organic I d nt reflect reality that well. The universe is nt that simple. Nature challenges us when ever we examine it with intentins t explain it. With the caveat that yur last learned paradigm was flawed let s lk at MO thery as a paradigm t explain the behavir f electrns in mlecules. Let s start ff by being a bit hnest. An MO is a mathematical equatin that des its best t describe the behavir f electrns in mlecules. It is nt reality; it is a mdel f reality. If an electrn wuld behave like a particle at all velcities we culd treat cllectins f electrns, prtns and neutrns with classical Newtnian mechanics. They dn t; they behave like waves mst f the time. A few principles f MO thery, the LCAO methd.

3 Principles f Organic Chemistry lecture 5, page 3 AOs cmbine t make an MO via linear cmbinatins. The number f these rbitals is cnserved. #AOs = #MOs MOs are space arund the mlecule in which electrns have a high prbability f ccupatin. This space // is cnserved. example C C C pi MOs f Allyl anin C C O pi MOs f an enlate The diagram abve was adapted frm Ian Fleming, Frntier Orbitals and Organic Chemical Reactins J. Wiley, The all carbn structure is electrnically symmetric The O in the enlate hgs rbital space in MO1. C-C bnd rder decreases and C-O bnding increases. In the hm C-C bnd rder increases. Let s mess with hydrgen t keep things as simple as pssible. We will als ignre the cefficients (the relative sizes f the rbitals) als t keep things simple. a hydrgen s rbital. An electrn in this rbital has a certain energy and this can be represented by an rbital energy diagram. Electrns behave like waves and waves have phase. When there is nly ne rbital in the picture the phase des nt matter. Only when the rbital interacts with anther rbital can we have tw pssible cmbinatins.

4 Principles f Organic Chemistry lecture 5, page 4 The lwer cmbinatin is the bnding cmbinatin (mlecular rbital). The upper cmbinatin is the antibnding cmbinatin (mlecular rbital). The same-phase cmbinatin makes it advantageus fr electrns t ccupy it because it has less energy than the upper cmbinatin. We say that the upper rbital cntains a nde, a plane r a vlume that electrns d nt ccupy. The rbital with the nde is high-energy when ccupied by electrns. These are the nly pssible phase cmbinatins f tw rbitals. Shall we d three? + A C B D These are all pssible cmbinatins f three rbitals. Yu will ntice that B has n ndes. Thus, by analgy t what was said abve, it is lwest in energy. wever A has tw ndes. That is the phase changes tw times as we g frm ne end f the mlecule t the ther. If symmetry is beautiful rbitals C and D are ugly little things. A and B have tw axes f symmetry but C and D nly have ne. Furthermre C and D shuld be degenerate (pssessing the same energy). Let s take a clser lk at C and D. C and D are different frm A and B by anther characteristic. Where as there is n way t cnvert A t B by an peratr that changes the phase. Multiplicatin by -1 C and D can be cnverted t ne anther by multiplicatin by -1. C and D are called reducible representatins. We can get t an irreducible representatin by cmbining C and D.

5 Principles f Organic Chemistry lecture 5, page 5 C + D = The last mlecular rbital that we generated in the list is called a nn-bnding MO. A mlecular rbital energy diagram will shw yu why it is nt beneficial fr 3 t frm. anti-bnding nn-bnding bnding energy 0 Ψ 3 = c 31 φ 31 - c 32 φ 32 + c 33 φ 33 Ψ 2 = c 21 φ 21 - c 23 φ 23 Ψ 1 = c 11 φ 11 + c 12 φ 12 + c 13 φ 13 We will take a clser lk at hw t calculate these cefficients and what the nature f the φs is. Take a lk at the bnding descriptin f XeF 2 in yur reading assignment (J. Chem. Ed. 1977, 54, ) Nte hw the atmic rbitals in the diagram that transfrm t becme mlecular rbitals are remarkably similar t the 3 and the allyl example abve. All examples have bnding, nn-bnding and antibnding rbitals. A bnding Mdel f C 4. It certainly is lgical t cnsider the simplest alkane. If yu can t understand methane what can yu understand? The Organic I explanatin ges as fllws. Methane is cmpsed f atmic s and p rbitals f principle quantum number 2. There are three p rbitals and ne s rbital. t explre space equally these rbitals are mixed t prduce fur identical sp 3 rbitals. The atms are held by electrns that brrw spatial character frm all three Cartesian crdinates. z x y bnd vectrs: <1,1,1>, < 1, 1, 1>, < 1, 1, 1>, <1, 1, 1> cs(a) = u v/( u v ) cs(a) = ( 1 1+1)/[( )( )] = 1/3 a =

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical).

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical). Principles f Organic Chemistry lecture 5, page LCAO APPROIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (catin, anin r radical).. Draw mlecule and set up determinant. 2 3 0 3 C C 2 = 0 C 2 3 0 = -

More information

Chapter 8 Predicting Molecular Geometries

Chapter 8 Predicting Molecular Geometries Chapter 8 Predicting Mlecular Gemetries 8-1 Mlecular shape The Lewis diagram we learned t make in the last chapter are a way t find bnds between atms and lne pais f electrns n atms, but are nt intended

More information

Name Honors Chemistry / /

Name Honors Chemistry / / Name Hnrs Chemistry / / Beynd Lewis Structures Exceptins t the Octet Rule Mdel Hydrgen is an exceptin t the ctet rule because it fills its uter energy level with nly 2 electrns. The secnd rw elements B

More information

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes Chemistry 20 Lessn 11 Electrnegativity, Plarity and Shapes In ur previus wrk we learned why atms frm cvalent bnds and hw t draw the resulting rganizatin f atms. In this lessn we will learn (a) hw the cmbinatin

More information

ATOMIC ORBITAL MODEL OF THE ATOM Be able to draw rough sketches of s, p and d orbitals with different principal quantum numbers

ATOMIC ORBITAL MODEL OF THE ATOM Be able to draw rough sketches of s, p and d orbitals with different principal quantum numbers Chapter 7 Atmic Structure and Peridicity ATOMIC ORBITAL MODEL OF THE ATOM Be able t draw rugh sketches f s, p and d rbitals with different principal quantum numbers ELECTRONIC CONFIGURATIONS Knw the difference

More information

Chem 115 POGIL Worksheet - Week 12 Molecular Shapes

Chem 115 POGIL Worksheet - Week 12 Molecular Shapes Chem 115 POGIL Wrksheet - Week 12 Mlecular Shapes Why? Cntrary t the impressin that Lewis structures may give, many mlecules have threedimensinal gemetries. These mlecular shapes are very imprtant t understanding

More information

4 electron domains: 3 bonding and 1 non-bonding. 2 electron domains: 2 bonding and 0 non-bonding. 3 electron domains: 2 bonding and 1 non-bonding

4 electron domains: 3 bonding and 1 non-bonding. 2 electron domains: 2 bonding and 0 non-bonding. 3 electron domains: 2 bonding and 1 non-bonding [4.3D VSEPR] pg. 1 f 7 Curriculum The use f VSEPR thery t predict the electrn dmain gemetry and the mlecular gemetry fr species with tw, three and fur electrn dmains. Shapes f species are determined by

More information

SCIENCE 10: CHEMISTRY,

SCIENCE 10: CHEMISTRY, , 1 Atmic Thery and Bnding The Nucleus - The particles that make up an atm are called subatmic particles - The three subatmic particles are prtns, neutrns and electrns. - Prtns, which have a +1 (psitive)

More information

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY Name: Perid: Date: BONDING NOTES HONORS CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant terms

More information

Midterm Review Notes - Unit 1 Intro

Midterm Review Notes - Unit 1 Intro Midterm Review Ntes - Unit 1 Intr 3 States f Matter Slid definite shape, definite vlume, very little mlecular mvement Liquid definite vlume, takes shape f cntainer, mlecules mve faster Gas des nt have

More information

1 The limitations of Hartree Fock approximation

1 The limitations of Hartree Fock approximation Chapter: Pst-Hartree Fck Methds - I The limitatins f Hartree Fck apprximatin The n electrn single determinant Hartree Fck wave functin is the variatinal best amng all pssible n electrn single determinants

More information

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Name: Perid: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information

Unit 9: The Mole- Guided Notes What is a Mole?

Unit 9: The Mole- Guided Notes What is a Mole? Unit 9: The Mle- Guided Ntes What is a Mle? A mle is a name fr a specific f things Similar t a r a One mle is equal t 602 602,000,000,000,000,000,000,000 That s 602 with zers A mle is NOT an abbreviatin

More information

Chem 111 Summer 2013 Key III Whelan

Chem 111 Summer 2013 Key III Whelan Chem 111 Summer 2013 Key III Whelan Questin 1 6 Pints Classify each f the fllwing mlecules as plar r nnplar? a) NO + : c) CH 2 Cl 2 : b) XeF 4 : Questin 2 The hypthetical mlecule PY 3 Z 2 has the general

More information

Name: Period: Date: PERIODIC TABLE NOTES ADVANCED CHEMISTRY

Name: Period: Date: PERIODIC TABLE NOTES ADVANCED CHEMISTRY Name: Perid: Date: PERIODIC TABLE NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information

Name: Period: Date: PERIODIC TABLE NOTES HONORS CHEMISTRY

Name: Period: Date: PERIODIC TABLE NOTES HONORS CHEMISTRY Name: Perid: Date: PERIODIC TABLE NOTES HONORS CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information

Trimester 2 Exam 3 Study Guide Honors Chemistry. Honors Chemistry Exam 3 Review

Trimester 2 Exam 3 Study Guide Honors Chemistry. Honors Chemistry Exam 3 Review Trimester 2 Exam 3 Study Guide Hnrs Chemistry BOND POLARITY Hnrs Chemistry Exam 3 Review Identify whether a bnd is plar r nnplar based ff difference in electrnegativity btwn 2 atms (electrnegativity values

More information

Name: Period: Date: BONDING NOTES ADVANCED CHEMISTRY

Name: Period: Date: BONDING NOTES ADVANCED CHEMISTRY Name: Perid: Date: BONDING NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant terms

More information

Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts

Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts Name AP CHEM / / Chapter 8 Outline Bnding: General Cncepts Types f Chemical Bnds Infrmatin abut the strength f a bnding interactin is btained by measuring the bnd energy, which is the energy required t

More information

Dispersion Ref Feynman Vol-I, Ch-31

Dispersion Ref Feynman Vol-I, Ch-31 Dispersin Ref Feynman Vl-I, Ch-31 n () = 1 + q N q /m 2 2 2 0 i ( b/m) We have learned that the index f refractin is nt just a simple number, but a quantity that varies with the frequency f the light.

More information

Therefore the atomic diameter is 5 orders of magnitude ( times) greater than the m

Therefore the atomic diameter is 5 orders of magnitude ( times) greater than the m Orders f Magnitude Pwers f 10 are referred t as rders f magnitude e.g. smething a thusand times larger (10 3 ) is three rders f magnitude bigger. A prtn has a diameter f the rder ~10-15 m The diameter

More information

A Mechanistic Approach to Bond Formation in H 2

A Mechanistic Approach to Bond Formation in H 2 A Mechanistic Apprach t Bnd Frmatin in H Frank Riux Department f Chemistry Cllege f Saint Benedict Saint Jhnʹs University St. Jseph, MN 5674 Intrductin Ruedenbergʹs innvative analysis f the cvalent bnd

More information

Matter Content from State Frameworks and Other State Documents

Matter Content from State Frameworks and Other State Documents Atms and Mlecules Mlecules are made f smaller entities (atms) which are bnded tgether. Therefre mlecules are divisible. Miscnceptin: Element and atm are synnyms. Prper cnceptin: Elements are atms with

More information

lecture 5: Nucleophilic Substitution Reactions

lecture 5: Nucleophilic Substitution Reactions lecture 5: Nuclephilic Substitutin Reactins Substitutin unimlecular (SN1): substitutin nuclephilic, unimlecular. It is first rder. The rate is dependent upn ne mlecule, that is the substrate, t frm the

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Lecture 23: Lattice Models of Materials; Modeling Polymer Solutions

Lecture 23: Lattice Models of Materials; Modeling Polymer Solutions Lecture 23: 12.05.05 Lattice Mdels f Materials; Mdeling Plymer Slutins Tday: LAST TIME...2 The Bltzmann Factr and Partitin Functin: systems at cnstant temperature...2 A better mdel: The Debye slid...3

More information

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments Lectures 5-6: Magnetic diple mments Sdium D-line dublet Orbital diple mments. Orbital precessin. Grtrian diagram fr dublet states f neutral sdium shwing permitted transitins, including Na D-line transitin

More information

15.0 g Cr = 21.9 g Cr O g Cr 4 mol Cr mol Cr O

15.0 g Cr = 21.9 g Cr O g Cr 4 mol Cr mol Cr O WYSE Academic Challenge Sectinal Chemistry Exam 2008 SOLUTION SET 1. Crrect answer: B. Use PV = nrt t get: PV = nrt 2. Crrect answer: A. (2.18 atm)(25.0 L) = n(0.08206 L atm/ml K)(23+273) n = 2.24 ml Assume

More information

In the spaces provided, explain the meanings of the following terms. You may use an equation or diagram where appropriate.

In the spaces provided, explain the meanings of the following terms. You may use an equation or diagram where appropriate. CEM1405 2007-J-2 June 2007 In the spaces prvided, explain the meanings f the fllwing terms. Yu may use an equatin r diagram where apprpriate. 5 (a) hydrgen bnding An unusually strng diple-diple interactin

More information

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25 CHAPTER 17 1. Read Chapter 17, sectins 1,2,3. End f Chapter prblems: 25 2. Suppse yu are playing a game that uses tw dice. If yu cunt the dts n the dice, yu culd have anywhere frm 2 t 12. The ways f prducing

More information

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity:

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity: [15.1B Energy Cycles Lattice Enthalpy] pg. 1 f 5 CURRICULUM Representative equatins (eg M+(g) M+(aq)) can be used fr enthalpy/energy f hydratin, inizatin, atmizatin, electrn affinity, lattice, cvalent

More information

Physical Nature of the Covalent Bond Appendix H + H > H 2 ( ) ( )

Physical Nature of the Covalent Bond Appendix H + H > H 2 ( ) ( ) Physical Nature f the Cvalent Bn Appeni his stuy f the nature f the H cvalent bn frms a mlecular rbital as a linear cmbinatin f scale hyrgenic rbitals, LCAO-MO. he quantum mechanical integrals necessary

More information

HW #2: 2.42, 2.44, 2.48, 2.50, 2.52, 2.58, 2.60, 2.62, 2.66, 2.68, 2.72, 2.82, 2.90, 2.96, 2.98

HW #2: 2.42, 2.44, 2.48, 2.50, 2.52, 2.58, 2.60, 2.62, 2.66, 2.68, 2.72, 2.82, 2.90, 2.96, 2.98 Chemistry 121 Lectures 6 & 7: The Mdern View f the Atm and Its Relatin t the Peridic Table Chapter 2 in McMurry, Ballantine, et. al. 7 th editin HW #2: 2.42, 2.44, 2.48, 2.50, 2.52, 2.58, 2.60, 2.62, 2.66,

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions Chem 116 POGIL Wrksheet - Week 3 - Slutins Intermlecular Frces, Liquids, Slids, and Slutins Key Questins 1. Is the average kinetic energy f mlecules greater r lesser than the energy f intermlecular frces

More information

Group Theory Problems

Group Theory Problems Grup Thery Prblems The fllwing table shws the vibratinal frequencies f CH. Assuming CH belngs t the T d pint grup, fill in the gaps in the table. Use fr and fr t designate type f vibratin. tretchorend

More information

Phys. 344 Ch 7 Lecture 8 Fri., April. 10 th,

Phys. 344 Ch 7 Lecture 8 Fri., April. 10 th, Phys. 344 Ch 7 Lecture 8 Fri., April. 0 th, 009 Fri. 4/0 8. Ising Mdel f Ferrmagnets HW30 66, 74 Mn. 4/3 Review Sat. 4/8 3pm Exam 3 HW Mnday: Review fr est 3. See n-line practice test lecture-prep is t

More information

Regents Chemistry Period Unit 3: Atomic Structure. Unit 3 Vocabulary..Due: Test Day

Regents Chemistry Period Unit 3: Atomic Structure. Unit 3 Vocabulary..Due: Test Day Name Skills: 1. Interpreting Mdels f the Atm 2. Determining the number f subatmic particles 3. Determine P, e-, n fr ins 4. Distinguish istpes frm ther atms/ins Regents Chemistry Perid Unit 3: Atmic Structure

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

QCE Chemistry. Year 2015 Mark 0.00 Pages 20 Published Jan 31, Chemistry: Revision Notes. By Sophie (1 ATAR)

QCE Chemistry. Year 2015 Mark 0.00 Pages 20 Published Jan 31, Chemistry: Revision Notes. By Sophie (1 ATAR) QCE Chemistry Year 2015 Mark 0.00 Pages 20 Published Jan 31, 2017 11 Chemistry: Revisin Ntes By Sphie (1 ATAR) Pwered by TCPDF (www.tcpdf.rg) Yur ntes authr, Sphie. Sphie achieved an ATAR f 1 in 2016 while

More information

UNIT 5: ATOMIC THEORY & THE PERIODIC TABLE CHEMISTRY 215, DUFFEY, CHAPTER 4 & SECTION 6.1

UNIT 5: ATOMIC THEORY & THE PERIODIC TABLE CHEMISTRY 215, DUFFEY, CHAPTER 4 & SECTION 6.1 UNIT 5: ATOMIC THEORY & THE PERIODIC TABLE CHEMISTRY 215, DUFFEY, CHAPTER 4 & SECTION 6.1 BIG IDEAS (we will tuch n small parts f Chp.5 as well) 4.1 Early Ideas Abut Matter 4.2 Defining the Atm 4.3 Hw

More information

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes.

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes. Edexcel IGCSE Chemistry Tpic 1: Principles f chemistry Chemical frmulae, equatins and calculatins Ntes 1.25 write wrd equatins and balanced chemical equatins (including state symbls): fr reactins studied

More information

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s .9 Kinetic Mlecular Thery Calculate the effective (rms) speeds f the He and Ne atms in the He-Ne gas laser tube at rm temperature (300 K). Slutin T find the rt mean square velcity (v rms ) f He atms at

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition) Name Chem 163 Sectin: Team Number: ALE 24. Vltaic Cells and Standard Cell Ptentials (Reference: 21.2 and 21.3 Silberberg 5 th editin) What des a vltmeter reading tell us? The Mdel: Standard Reductin and

More information

Lecture 13: Electrochemical Equilibria

Lecture 13: Electrochemical Equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 13: 10.21.05 Electrchemical Equilibria Tday: LAST TIME...2 An example calculatin...3 THE ELECTROCHEMICAL POTENTIAL...4 Electrstatic energy cntributins

More information

Unit 14 Thermochemistry Notes

Unit 14 Thermochemistry Notes Name KEY Perid CRHS Academic Chemistry Unit 14 Thermchemistry Ntes Quiz Date Exam Date Lab Dates Ntes, Hmewrk, Exam Reviews and Their KEYS lcated n CRHS Academic Chemistry Website: https://cincchem.pbwrks.cm

More information

A Chemical Reaction occurs when the of a substance changes.

A Chemical Reaction occurs when the of a substance changes. Perid: Unit 8 Chemical Reactin- Guided Ntes Chemical Reactins A Chemical Reactin ccurs when the f a substance changes. Chemical Reactin: ne r mre substances are changed int ne r mre new substances by the

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation)

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation) Wave Optics Wave prperties f light The clrs in a rainbw are ROY G. BIV (Red, range, yellw, green, blue, indig, vilet). White light is a cmbinatin f all clrs Black is the absence f light Wavelength determines

More information

EASTERN ARIZONA COLLEGE Fundamental Chemistry

EASTERN ARIZONA COLLEGE Fundamental Chemistry EASTERN ARIZONA COLLEGE Fundamental Chemistry Curse Design 2013-2014 Curse Infrmatin Divisin Science Curse Number CHM 130 (SUN# CHM 1130) Title Fundamental Chemistry Credits 4 Develped by Jel Sheltn Lecture/Lab

More information

s of the two electrons are strongly coupled together to give a l couple together to give a resultant APPENDIX I

s of the two electrons are strongly coupled together to give a l couple together to give a resultant APPENDIX I APPENDIX I Cupling Schemes and Ntatin An extensive treatment f cupling schemes and ntatin is given by White r Kuhn. A brief review is given here t allw ne t read this manual with sme insight. The mtins

More information

General Chemistry II, Unit II: Study Guide (part 1)

General Chemistry II, Unit II: Study Guide (part 1) General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reactin Equilibrium in the Gas Phase General Chemistry II Unit II Part 1 1 Intrductin Sme chemical reactins have a significant amunt

More information

N 2 (g) + 3H 2 (g) 2NH 3 (g) o Three mole ratios can be derived from the balanced equation above: Example: Li(s) + O 2 (g) Li 2 O(s)

N 2 (g) + 3H 2 (g) 2NH 3 (g) o Three mole ratios can be derived from the balanced equation above: Example: Li(s) + O 2 (g) Li 2 O(s) Chapter 9 - Stichimetry Sectin 9.1 Intrductin t Stichimetry Types f Stichimetry Prblems Given is in mles and unknwn is in mles. Given is in mles and unknwn is in mass (grams). Given is in mass and unknwn

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

Lecture 12: Chemical reaction equilibria

Lecture 12: Chemical reaction equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 12: 10.19.05 Chemical reactin equilibria Tday: LAST TIME...2 EQUATING CHEMICAL POTENTIALS DURING REACTIONS...3 The extent f reactin...3 The simplest

More information

GASES. PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2. Pressure & Boyle s Law Temperature & Charles s Law Avogadro s Law IDEAL GAS LAW

GASES. PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2. Pressure & Boyle s Law Temperature & Charles s Law Avogadro s Law IDEAL GAS LAW GASES Pressure & Byle s Law Temperature & Charles s Law Avgadr s Law IDEAL GAS LAW PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2 Earth s atmsphere: 78% N 2 21% O 2 sme Ar, CO 2 Sme Cmmn Gasses Frmula Name

More information

CHEM 1001 Problem Set #3: Entropy and Free Energy

CHEM 1001 Problem Set #3: Entropy and Free Energy CHEM 1001 Prblem Set #3: Entry and Free Energy 19.7 (a) Negative; A liquid (mderate entry) cmbines with a slid t frm anther slid. (b)psitive; One mle f high entry gas frms where n gas was resent befre.

More information

READING STATECHART DIAGRAMS

READING STATECHART DIAGRAMS READING STATECHART DIAGRAMS Figure 4.48 A Statechart diagram with events The diagram in Figure 4.48 shws all states that the bject plane can be in during the curse f its life. Furthermre, it shws the pssible

More information

We can see from the graph above that the intersection is, i.e., [ ).

We can see from the graph above that the intersection is, i.e., [ ). MTH 111 Cllege Algebra Lecture Ntes July 2, 2014 Functin Arithmetic: With nt t much difficulty, we ntice that inputs f functins are numbers, and utputs f functins are numbers. S whatever we can d with

More information

Nuggets of Knowledge for Chapter 8 Chemical Reactions II Chem 2310

Nuggets of Knowledge for Chapter 8 Chemical Reactions II Chem 2310 Nuggets f Knwledge fr Chapter 8 Chemical Reactins II Chem 2310 I. Substitutin, Additin, and Eliminatin Reactins The terms dissciatin, assciatin, and displacement are useful fr describing what happens t

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

To get you thinking...

To get you thinking... T get yu thinking... 1.) What is an element? Give at least 4 examples f elements. 2.) What is the atmic number f hydrgen? What des a neutral hydrgen atm cnsist f? Describe its "mtin". 3.) Hw des an atm

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

CONSTRUCTING STATECHART DIAGRAMS

CONSTRUCTING STATECHART DIAGRAMS CONSTRUCTING STATECHART DIAGRAMS The fllwing checklist shws the necessary steps fr cnstructing the statechart diagrams f a class. Subsequently, we will explain the individual steps further. Checklist 4.6

More information

AP Chemistry Assessment 2

AP Chemistry Assessment 2 AP Chemistry Assessment 2 DATE OF ADMINISTRATION: January 8 January 12 TOPICS COVERED: Fundatinal Tpics, Reactins, Gases, Thermchemistry, Atmic Structure, Peridicity, and Bnding. MULTIPLE CHOICE KEY AND

More information

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS

2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 2004 AP CHEMISTRY FREE-RESPONSE QUESTIONS 6. An electrchemical cell is cnstructed with an pen switch, as shwn in the diagram abve. A strip f Sn and a strip f an unknwn metal, X, are used as electrdes.

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

Study Group Report: Plate-fin Heat Exchangers: AEA Technology

Study Group Report: Plate-fin Heat Exchangers: AEA Technology Study Grup Reprt: Plate-fin Heat Exchangers: AEA Technlgy The prblem under study cncerned the apparent discrepancy between a series f experiments using a plate fin heat exchanger and the classical thery

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

Lecture 24: Flory-Huggins Theory

Lecture 24: Flory-Huggins Theory Lecture 24: 12.07.05 Flry-Huggins Thery Tday: LAST TIME...2 Lattice Mdels f Slutins...2 ENTROPY OF MIXING IN THE FLORY-HUGGINS MODEL...3 CONFIGURATIONS OF A SINGLE CHAIN...3 COUNTING CONFIGURATIONS FOR

More information

State of matter characteristics solid Retains shape and volume

State of matter characteristics solid Retains shape and volume **See attachment fr graphs States f matter The fundamental difference between states f matter is the distance between particles Gas Ttal disrder Much empty space Particles have cmpletely freedm f mtin

More information

CHAPTER 9 MODELS OF CHEMICAL BONDING

CHAPTER 9 MODELS OF CHEMICAL BONDING CAPTER 9 MODELS OF CEMICAL BONDING 9.1 a) Larger inizatin energy decreases metallic character. b) Larger atmic radius increases metallic character. c) Larger number f uter electrns decreases metallic character.

More information

Einstein's special relativity the essentials

Einstein's special relativity the essentials VCE Physics Unit 3: Detailed study Einstein's special relativity the essentials Key knwledge and skills (frm Study Design) describe the predictin frm Maxwell equatins that the speed f light depends nly

More information

NOTES. Name: Date: Topic: Periodic Table & Atoms Notes. Period: Matter

NOTES. Name: Date: Topic: Periodic Table & Atoms Notes. Period: Matter NOTES Unit: Tpic: Peridic Table & Atms Ntes Name: Date: Perid: Matter Atmic Structure The term matter describes all f the physical substances arund us. Matter is anything that has mass and takes up space.

More information

SCH4U: End of Year Review

SCH4U: End of Year Review SCH4U: End f Year Review Unit 1: Energy and Rates 2 1) When 13.4 g f ammnium chlride disslve int 2.00x10 g f water the temperature changes frm 20.0 C t 15.3 C. Determine the mlar enthalpy f slutin f ammnium

More information

RECENT studies undertaken in this Institute on the crystal structure

RECENT studies undertaken in this Institute on the crystal structure 522 Structural similarities f sme secndary lead minerals By L. FANFANI and P. F. ZANAZZI Istitut di Mineralgia dell 'Universita di Perugia, Perugia (Italy) [Taken as read 2 Nvember 1967] Summary. Sme structural

More information

Prof. Dr. I. Nasser Phys530, T142 3-Oct-17 Fermi_gases. 0 f e. and fall off exponentially like Maxwell-Boltzmaan distribution.

Prof. Dr. I. Nasser Phys530, T142 3-Oct-17 Fermi_gases. 0 f e. and fall off exponentially like Maxwell-Boltzmaan distribution. Pr. Dr. I. Nasser Phys, -Oct-7 FERMI_DIRAC GASSES Fermins: Are particles hal-integer spin that bey Fermi-Dirac statistics. Fermins bey the Pauli exclusin principle, which prhibits the ccupancy an available

More information

Chapter 15 Conjugated Systems

Chapter 15 Conjugated Systems Chapter 15 Cnjugated Systems What makes a cnjugated system? When yu have alternating duble bnds, the electrns f the pi system can flw ver a lnger length. This is cnjugatin. Stabilities f Dienes Cnjugated

More information

Chem 75 February 16, 2017 Exam 2 Solutions

Chem 75 February 16, 2017 Exam 2 Solutions 1. (6 + 6 pints) Tw quick questins: (a) The Handbk f Chemistry and Physics tells us, crrectly, that CCl 4 bils nrmally at 76.7 C, but its mlar enthalpy f vaprizatin is listed in ne place as 34.6 kj ml

More information

Vibrations. Matti Hotokka Department of Physical Chemistry Åbo Akademi University

Vibrations. Matti Hotokka Department of Physical Chemistry Åbo Akademi University Vibratins Matti Htkka Department f Physical Chemistry Åb Akademi University Harmnic scillatr V(r) Schrödinger s equatin Define q = r - r e V ( q) = 1 2 fq 2 α = f hν r e r 2 2 h d + V ( q) Ψ( q) = EΨ(

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

Acids and Bases Lesson 3

Acids and Bases Lesson 3 Acids and Bases Lessn 3 The ph f a slutin is defined as the negative lgarithm, t the base ten, f the hydrnium in cncentratin. In a neutral slutin at 25 C, the hydrnium in and the hydrxide in cncentratins

More information

Nuggets of Knowledge for Chapter 10 Alkenes (I) Chem alkenes hydrocarbons containing a C=C (not in a benzene ring)

Nuggets of Knowledge for Chapter 10 Alkenes (I) Chem alkenes hydrocarbons containing a C=C (not in a benzene ring) I. Intrductin t Alkenes Classifying Alkenes Nuggets f Knwledge fr Chapter 10 Alkenes (I) Chem 2310 There are several categries that can be used t describe cmpunds cntaining carbn-carbn duble bnds. alkenes

More information

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command NUPOC SUDY GUIDE ANSWER KEY Navy Recruiting Cmmand CHEMISRY. ph represents the cncentratin f H ins in a slutin, [H ]. ph is a lg scale base and equal t lg[h ]. A ph f 7 is a neutral slutin. PH < 7 is acidic

More information

Lecture 18 Title : Fine Structure : multi-electron atoms

Lecture 18 Title : Fine Structure : multi-electron atoms Lecture 8 Title : Fine Structure : multi-electrn atms Page-0 In this lecture we will cncentrate n the fine structure f the multielectrn atms. As discussed in the previus lecture that the fine structure

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

Measurement of Radial Loss and Lifetime. of Microwave Plasma in the Octupo1e. J. C. Sprott PLP 165. Plasma Studies. University of Wisconsin DEC 1967

Measurement of Radial Loss and Lifetime. of Microwave Plasma in the Octupo1e. J. C. Sprott PLP 165. Plasma Studies. University of Wisconsin DEC 1967 Measurement f Radial Lss and Lifetime f Micrwave Plasma in the Octup1e J. C. Sprtt PLP 165 Plasma Studies University f Wiscnsin DEC 1967 1 The number f particles in the tridal ctuple was measured as a

More information

(2) Even if such a value of k was possible, the neutrons multiply

(2) Even if such a value of k was possible, the neutrons multiply CHANGE OF REACTOR Nuclear Thery - Curse 227 POWER WTH REACTVTY CHANGE n this lessn, we will cnsider hw neutrn density, neutrn flux and reactr pwer change when the multiplicatin factr, k, r the reactivity,

More information

Lesson Plan. Recode: They will do a graphic organizer to sequence the steps of scientific method.

Lesson Plan. Recode: They will do a graphic organizer to sequence the steps of scientific method. Lessn Plan Reach: Ask the students if they ever ppped a bag f micrwave ppcrn and nticed hw many kernels were unppped at the bttm f the bag which made yu wnder if ther brands pp better than the ne yu are

More information

Dr M. BROUARD. 5. Thermodynamic formulation of Transition State Theory Entropy of activation. Thermochemical kinetics. CHEMICAL REACTION RATES

Dr M. BROUARD. 5. Thermodynamic formulation of Transition State Theory Entropy of activation. Thermochemical kinetics. CHEMICAL REACTION RATES CHEMICAL REACTION RATES Dr M. BROUARD Trinity Term 2003 A. Bimlecular Reactins 5 Lectures 1. Intrductin Simple cllisin thery. Ptential energy curves and surfaces. The reactin crdinate and barriers t reactin.

More information

AQA GCSE Physics. Topic 4: Atomic Structure. Notes. (Content in bold is for Higher Tier only)

AQA GCSE Physics. Topic 4: Atomic Structure. Notes. (Content in bold is for Higher Tier only) AQA GCSE Physics Tpic 4: Atmic Structure Ntes (Cntent in bld is fr Higher Tier nly) Atmic Structure Psitively charged nucleus (which cntains neutrns and prtns) surrunded by negatively charged electrns.

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

20 Faraday s Law and Maxwell s Extension to Ampere s Law

20 Faraday s Law and Maxwell s Extension to Ampere s Law Chapter 20 Faraday s Law and Maxwell s Extensin t Ampere s Law 20 Faraday s Law and Maxwell s Extensin t Ampere s Law Cnsider the case f a charged particle that is ming in the icinity f a ming bar magnet

More information

How do scientists measure trees? What is DBH?

How do scientists measure trees? What is DBH? Hw d scientists measure trees? What is DBH? Purpse Students develp an understanding f tree size and hw scientists measure trees. Students bserve and measure tree ckies and explre the relatinship between

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY 013 SUBJECT: ENGINEERING PHYSICS (PHY101/10) Time: 3 Hrs. Max. Marks: 50 Nte: Answer any

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information