Radical Initiation 2017/2/ ) Thermal Decomposition of Initiators

Size: px
Start display at page:

Download "Radical Initiation 2017/2/ ) Thermal Decomposition of Initiators"

Transcription

1 adical Initiation Production of radicals (from initiator) to initiate chain polymerization. A variety of initiator systems can be used to bring about the radical polymerization. 1) Thermal Decomposition of Initiators 2) edox Initiation 3) Photochemical Initiation 4) Initiation by Ionizing adiation 5) Pure Thermal Initiation 6) ther Methods of Initiation 2017/2/21 1 1) Thermal Decomposition of Initiators (Thermal initiated or thermal catalyzed polymerization) Thermal, homolytic dissociation of initiators with bond dissociation energy = 100 ~ 170 kj/mol (-, S-S, N-). * Type of Initiators (a) Peroxides Acyl peroxides: acetyl peroxide (70~70 o C) benzoyl peroxide (80~95 o C) Alkyl peroxides cumyl peroxide (140~160 o C) di-t-butyl peroxide (120~140 o C) Hydroperoxides Peresters Acyl peroxide: Alkyl peroxide: ' Hydroperoxide: H Perester: C C C ' ' 2017/2/21 2

2 Commonly used at o C o C o C 2017/2/21 3 (b) Azo Compounds 2,2 -azobisisobutyronitrile (AIBN) (50~70 o C) (c) Disulphides & Tetrazenes: S-S 2S. k I d 2. 2 N-N=N-N N. + N 2 Used at temp. where k d = 10-4 ~10-6 sec -1. -d[i]/dt = k d [I] [I] = [I o ]e -k d t or log([i o ]/[I]) = k d t Initiator half-life: t 1/2 = 0.693/k d 2017/2/21 4

3 The various initiators are used at different temperatures depending on their rates of decomposition. Temperature used: (with k d = 10-4 ~10-6 sec -1 ) AIBN: ; Acetyl peroxide: ; Benzoyl peroxide: Dicumyl or di-t-butyl peroxide: /2/21 5 * Kinetics of Initiation and Polym. d = 2fk d [I] = i f: initiator efficiency p = k p [M]( i /2k t ) 1/2 = k p [M](fk d [I]/k t ) 1/2. (3-32) initiator efficiency (f): the fraction of the radicals produced in the thermal homolysis that initiate polymer chains. Initiation: I M M 1. Deviation from [I] 1/2 due to: 1) Decreased f with increasing [I]. 2) Primary termination. M n. +. K tp M n If termination occurs exclusively by primary termination: p = k p k i [M] 2 /k tp p is independent of [I]. 2017/2/21 6

4 Deviation from [M] due to (higher than first-order): 1) i depends on [M]: f = f [M] 2) Monomer-induced homolysis: M + I M /2/21 7 2) edox Initiation (r redox catalyst, redox activation) adical production occurs at a reasonable rates over a very wide range of temperatures (0~50 o C). Some redox polymerization can be initiated photolytically as well as thermally. * Types of edox Initiators (1) Peroxides + educing agents (Fe 2+, Cr 2+, V 2+, Ti 3+, Co 2+, Cu +, ) H Fe 2+ H - + H. + Fe 3+ + Fe H + Fe 2+ H - +. C + Fe 2+ C - +. (2) Inorganic (reductants + oxidants) 2- S Fe 2+ Fe 3+ + S S S S 2 3 S S S 2-3. (3) rganic-inorganic edox Pairs -CH 2 -H + Ce 4+ Ce 3+ + H + + -C. H-H (4) Monomer as edox component N,N-dimethylaniline + MMA 2017/2/21 8

5 H Fe 2+ H - + H. + Fe 3+ + Fe Fe 3+ H + Fe 2+ H Fe 3+ C' + Fe 2+ 'C Fe 3+ Must be in aqueous or emulsion. C C + N BP Can be in organic solvent. + Ṅ + C. + C - For styrene polymerization: k d = 1.25 x 10-2 l/mol.sec at 60 o C k d = 2.29 x 10-3 l/mol.sec at 30 o C But BP: k d = 1.33 x 10-4 l/mol.sec at 90 o C 2017/2/21 9 * ate of edox Polymerization Bimolecular termination: i = k d [reductant][oxidant] p = k p [M]( i /2k t ) 1/2 = k p [M](k d [reductant][oxidant]/2k t ) 1/2 Monomolecular termination: M n. + Ce 4+ Ce 3+ + H + + dead polymer i = k d [Ce 4+ ][alcohol] t = k t [Ce 4+ ][M. ] p = k d k p [M] [alcohol] /k t 2017/2/21 10

6 3) Photochemical Initiation Photochemical or photoinitiated polymerization: radicals are produced by UV and visible light irradiation. (excitation) Photosensitizer( 光增感劑 ): increase rate or red-shift wavelength. Advantages: * Spatially directed. * Turn on-off by light. * Initiation rate can be controlled by light intensity and radical source. * Solvent-free. Drawbacks: * Limited to surface-type application. Applications: * Printing and coating (acrylates). * Photolithography: photo-resist ( 光阻劑 ) in IC & PC. 2017/2/21 11 contrast of a photoresist: the development rate as a function of the absorbed light dose. Contrast ( 對比 ) for positive resist: = [log(d p /D p o )] -1 negative resist: = [log(d x /D x o )] -1 contrast curve 2017/2/21 12

7 Bulk monomer (absorption > nm and low quantum yield) Irradiation of thermal and edox Initiators A useful photoinitiator should absorb strongly in the wavelength range of the light source and possess a high quantum yield for radical production. Aromatic ketones: benzophenone & acetophenone, and their derivatives. -Scission: 2) e-transfer: 3) Direct H-transfer from H to ketone. 2 N-CH 2 : tertiary amines with -hydrogen are the most effective. ther e-donors: alcohols, amides, amino acids, and ethers. 2017/2/21 13 Benzoin benzyl ketal aroylphosphine oxide -aminoalkylphenone ate of photoinitiation: i = 2 I a I a : intensity of absorbed light (moles of light quanta/l-sec) quantum yield of initiation: no of propagating chains initiated per light photon absorbed. p = k p [M]( i /2k t ) = k p [M] ( I a /k t ) 1/2 2017/2/21 14

8 4) Initiation by Ionizing adiations (10 kev~100 mev) Electrons ( -rays), neutrons, -particles (He 2+ ). Both radical and ionic polymerizations are possible depending on water content. For styrene monomer: [H 2 ] ~ M: radical polymerization only. < M: bimodal MWD (both radical and cationic) < M: unimodal MWD (cationic) High penetration power but dangerous. C + radiation C +. + e - e - B. A. + B + e- 5) Pure Thermal Initiation C - B. + A - 2 CH=CH 2 styrene. CHCH 3 +. A. + e - H H H Diels-Alder dimer Add inhibitor (hydroquinone, etc.) during storage to prevent thermal polymerization. 2017/2/21 15 Initiator Efficiency (f < 1) The fraction of radicals, formed in the primary step of initiator decomposition, which are successful in initiating polymerization. Wastage of initiator: (1)Induced decomposition of initiator (chain transfer to initiator). M n. + -C-C- M n -C- + -C. (2)Side reaction of the radicals formed in the primary step of initiator decomposition. (f) The initiator efficiency is considered exclusive of any initiator wastage by induced decomposition. When neglects the occurrence of induced decomposition: effective or practical initiator efficiency = net or overall initiation efficiency of the initial catalyst concentration. 2017/2/21 16

9 Mechanism: Cage Effect (f = 0.3~0.8) C-C [2 C. ] [ ]: solvent cage [2 C. ] [ C + C 2 ] [2 C. ] + M C. + CM. initiation [2 C. ] 2 C. C. + M CM. initiation C.. + C 2. + M M. initiation. + C. C 2. - [. ] ~ 10 M, k = 10 7 l/mol-sec, life-time = sec. f is constant at high monomer conc., but it decreases with decreasing monomer conc. and increasing initiation rate. (Fig. 3-5) Exception (non-paired radicals): Fe 2+ + H 2 2 Fe 3+ + H - + H. 2017/2/21 17 ut the solvent cage, the preference for initiation of polymerization arises from the much greater [M] (10-1 ~10 M) than [M n. ] (10-7 ~10-9 M). f decreases during the course of a polymerization: due to decreasing [M] and increasing viscosity. Experimental Determination of Initiator Efficiency (f): 1) Determination and comparison of both the initiator decomposition and production of polymer molecules (X n ). 2) Direct analysis of polymer end groups. 3) Use of radical scavengers, such as * stable radicals: DPPH, TEMP, 1,3,5-triphenylverdazyl,...etc. 2017/2/21 18

10 N 2 H N Ṅ N 2 +. N N N 2 N 2 N 2 N 2 DPPH radical Deep violet Light yellow or colorless * Fast hydrogen or halogen transfer: thiols, bromine, dihydroanthracene. * Molecules react with radicals (spin traps): ES spectroscopy. p-benzoquinone, duroquinone, nitroso & nitrone compounds (spin traps). 4) Dead-end polymerization (determine f and k d ) Very low [I] so that half-life of the propagating polymer chains approximates that of the initiator. - ln{1- [ln(1-p)/ln(1-p )]} = k d t/2 (Fig. 3-6) 2017/2/21 19 p = -d[m]/dt = k p [M](fk d [I]/k t ) 1/2 -d[m]/[m] = k p (fk d [I]/k t ) 1/2 dt [I] = [I o ]e -k d t -ln([m]/[m] o ) = -ln(1-p) = 2k p (f[i] o /k t k d ) 1/2 (1- e -k d t ) (3-92) At long reaction time (t ): Where p = ([M] o -[M])/[M] o : extent of conversion. -ln([m] /[M] o ) = -ln(1-p ) = 2k p (f[i] o /k t k d ) 1/ (3-93) Divide (3-92) by (3-93), rearrange, and then take logarithms of both sides: - ln{1- [ln(1-p)/ln(1-p )]} = k d t/2 The k d can be obtained from the slope (k d /2), then f can be obtained from equation 3-32 or 3-93 if the ratio k p /k t 1/2 is known. p = k p [M]( i /2k t ) 1/2 = k p [M](fk d [I]/k t ) 1/ (3-32) 2017/2/21 20

11 2017/2/21 21

Chain-growth polymerization

Chain-growth polymerization 3 Chain-growth polymerization 3.1 Introduction We indicated in Chapter 1 that the category of addition polymers is best characterized by the mechanism of the polymerization reaction, rather than by the

More information

Polymer Chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur

Polymer Chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur Polymer Chemistry Prof. Dibakar Dhara Department of Chemistry Indian Institute of Technology, Kharagpur Lecture - 10 Radical Chain Polymerization (Contd.) (Refer Slide Time: 00:28) Welcome back, and we

More information

5. Photochemistry of polymers

5. Photochemistry of polymers 5. Photochemistry of polymers 5.1 Photopolymerization and cross-linking Photopolymerization The fundamental principle of photopolymerization is based on the photoinduced production of a reactive species,

More information

Photoinitiation, Photopolymerization, and Photocuring

Photoinitiation, Photopolymerization, and Photocuring Jean-Pierre Fouassier Photoinitiation, Photopolymerization, and Photocuring Fundamentals and Applications Hanser Publishers, Munich Vienna New York Hanser/Gardner Publications, Inc., Cincinnati Contents

More information

Molecular Weight and Chain Transfer

Molecular Weight and Chain Transfer 1 Molecular Weight and Chain Transfer Kinetic Chain Length ( ): 動力學鏈長 Average number of monomer polymerized per radical, which initiates a polymer chain. = R p /R i = R p /R t = k p [M][M.]/2k t [M.] 2

More information

Chapter 10 Radical Reactions"

Chapter 10 Radical Reactions Chapter 10 Radical Reactions Radicals are intermediates with an unpaired electron H. Cl. Hydrogen radical t Often called free radicals What are radicals? Chlorine radical t Formed by homolytic bond cleavage

More information

Detailed Course Content

Detailed Course Content Detailed Course Content Chapter 1: Carbon Compounds and Chemical Bonds The Structural Theory of Organic Chemistry 4 Chemical Bonds: The Octet Rule 6 Lewis Structures 8 Formal Charge 11 Resonance 14 Quantum

More information

Quiz 5 Introduction to Polymers

Quiz 5 Introduction to Polymers 100506 Quiz 5 Introduction to Polymers 1) Polyurethane in the video shown in class is formed from two liquids that are mixed. After mixing the solution foams and expands fairly rapidly forming a solid

More information

4. Organic photosynthetic reactions

4. Organic photosynthetic reactions 4. rganic photosynthetic reactions 100 4.1 eactions of ethenes and aromatic compounds Photoreactivity of ethenes E Geometrical isomerization In π-π* excited states, there is effectively no π bond and so

More information

Lecture 4 Chapter 13 - Polymers. Functional Groups Condensation Rxns Free Radical Rxns

Lecture 4 Chapter 13 - Polymers. Functional Groups Condensation Rxns Free Radical Rxns Lecture 4 Chapter 13 - Polymers Functional Groups Condensation Rxns Free Radical Rxns Chemistry the whole year on one page Last semester Basic atomic theory Stoichiometry, balancing reactions Thermodynamics

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry Lecture 5 Step Growth Chain Growth Paul Flory Clears Things Up Polymer Structure is distinct from polymerization process Addition Polymerization H H Condensation Polymerization

More information

Ch 14 Conjugated Dienes and UV Spectroscopy

Ch 14 Conjugated Dienes and UV Spectroscopy Ch 14 Conjugated Dienes and UV Spectroscopy Conjugated Systems - Conjugated systems have alternating single and double bonds. For example: C=C C=C C=C and C=C C=O - This is not conjugated because the double

More information

Model 1 Homolysis Reactions are Highly Endothermic

Model 1 Homolysis Reactions are Highly Endothermic Chem 201 Activity 24: Radical chain mechanisms (What do radicals do? What does a radical chain mechanism look like) Model 1 Homolysis Reactions are Highly Endothermic Heterolysis Homolysis Y Z Y + Z Y

More information

CHEMICAL KINETICS C.H. BAMFORD C.F.H. TIPPER WSSSKUH EDITED BY

CHEMICAL KINETICS C.H. BAMFORD C.F.H. TIPPER WSSSKUH EDITED BY CHEMICAL KINETICS EDITED BY C.H. BAMFORD M.A., Ph.D., Sc.D. (Cantab.), F.R.I.C., F.R.S. Campbell-Brown Professor of Industrial Chemistry, Uniuersity of Liverpool AND C.F.H. TIPPER Ph.D. (Bristol), D.Sc.

More information

A. 24 B. 27 C. 30 D. 32 E. 33. A. It is impossible to tell from the information given. B. 294 mm C. 122 mm D. 10 mm E. 60 mm A. 1 H B. C. D. 19 F " E.

A. 24 B. 27 C. 30 D. 32 E. 33. A. It is impossible to tell from the information given. B. 294 mm C. 122 mm D. 10 mm E. 60 mm A. 1 H B. C. D. 19 F  E. CHEMISTRY 110 EXAM 1 Sept. 24, 2012 FORM A 1. A microwave oven uses 2.45! 10 9 Hz electromagnetic waves to heat food. What is the wavelength of this radiation in mm? A. It is impossible to tell from the

More information

Organic Chemistry. Radical Reactions

Organic Chemistry. Radical Reactions For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Radical Reactions by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my & iezwan@ump.edu.my

More information

Organic Chemistry SL IB CHEMISTRY SL

Organic Chemistry SL IB CHEMISTRY SL Organic Chemistry SL IB CHEMISTRY SL 10.1 Fundamentals of organic chemistry Understandings: A homologous series is a series of compounds of the same family, with the same general formula, which differ

More information

What are radicals? H. Cl. Chapter 10 Radical Reactions. Production of radicals. Reactions of radicals. Electronic structure of methyl radical

What are radicals? H. Cl. Chapter 10 Radical Reactions. Production of radicals. Reactions of radicals. Electronic structure of methyl radical What are radicals? Radicals are intermediates with an unpaired electron Chapter 10 Radical Reactions H. Cl. Hydrogen radical Chlorine radical Methyl radical Often called free radicals Formed by homolytic

More information

Chemistry of Benzene: Electrophilic Aromatic Substitution

Chemistry of Benzene: Electrophilic Aromatic Substitution Chemistry of Benzene: Electrophilic Aromatic Substitution Why this Chapter? Continuation of coverage of aromatic compounds in preceding chapter focus shift to understanding reactions Examine relationship

More information

ELEMENTARY RADIATION CHEMISTRY

ELEMENTARY RADIATION CHEMISTRY ELEMENTARY RADIATION CEMISTRY RADIOLYSIS The overall process of forming chemically stable products after the absorption and redistribution of the excess of energy of ionizing radiation The resulting compounds

More information

CHAPTER 24 Organic Chemistry

CHAPTER 24 Organic Chemistry CHAPTER 24 rganic Chemistry 1. The general formula for alkenes is A. C n H 2n+2 B. C 2n H 2n C. C n H n+2 D. C n H 2n E. C n H 2n 2 2. The general formula of an alkane is A. C n H 2n B. C n H 2n+2 C. C

More information

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group.

An alcohol is a compound obtained by substituting a hydoxyl group ( OH) for an H atom on a carbon atom of a hydrocarbon group. Derivatives of Hydrocarbons A functional group is a reactive portion of a molecule that undergoes predictable reactions. All other organic compounds can be considered as derivatives of hydrocarbons (i.e.,

More information

Introduction to the Basics of UV/EB Chemistry and Formulations

Introduction to the Basics of UV/EB Chemistry and Formulations Introduction to the Basics of UV/EB Chemistry and Formulations SUNY ESF Radiation Curing Program RadTech NA Dr. Mike J. Idacavage Colorado Photopolymer Solutions September 9, 2015 Agenda Introduction to

More information

Chapter 10 Radical Reactions

Chapter 10 Radical Reactions Chapter 10 Radical Reactions Introduction Homolytic bond cleavage leads to the formation of radicals (also called free radicals) Radicals are highly reactive, short-lived species Single-barbed arrows are

More information

Ch 16 Electrophilic Aromatic Substitution

Ch 16 Electrophilic Aromatic Substitution Ch 16 Electrophilic Aromatic Substitution Mechanism - Aromatic rings typically undergo substitution, where an H is replaced with an electrophile (E+). - The rings do not typically undergo addition across

More information

Fisika Polimer Ariadne L Juwono. Sem /2007

Fisika Polimer Ariadne L Juwono. Sem /2007 Chapter 4. Ionic and coordination (addition) polymerization 4.1. Similarities and contrast on ionic polymerization 4.2. Cationic polymerization 4.3. Anionic polymerization 4.4. Coordination polymerization

More information

Synthesis of Polymers Prof. Paula Hammond Lecture 19: Metallocene Chemistry, Intro to New Developments from Brookhart, Others H H

Synthesis of Polymers Prof. Paula Hammond Lecture 19: Metallocene Chemistry, Intro to New Developments from Brookhart, Others H H 10.569 Synthesis of Polymers Prof. Paula ammond Lecture 19: Metallocene Chemistry, Intro to ew Developments from Brookhart, thers Ionic Polymerization 1. Anionic 2. Cationic Anionic Polymerization - very

More information

5.2 Photodegradation and stabilization of polymers

5.2 Photodegradation and stabilization of polymers 5.2 Photodegradation and stabilization of polymers Photodegradation of polymers b) 2 2 2 2 2 2 2 2 2 2 2 2 3 Exposure to sunlight and some artificial lights can have adverse effects on the useful life

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry N N N Cu + BR - N Lecture 7 Decomposition of Thermal Initiator k d I 2 R Efficiency factor ( f ): CN N N CN di-tert-butylperoxide AIBN di-tert-butylperoxalate f = 0.65 f = 0.75

More information

ORGANIC - EGE 5E CH. 2 - COVALENT BONDING AND CHEMICAL REACTIVITY

ORGANIC - EGE 5E CH. 2 - COVALENT BONDING AND CHEMICAL REACTIVITY !! www.clutchprep.com CONCEPT: HYBRID ORBITAL THEORY The Aufbau Principle states that electrons fill orbitals in order of increasing energy. If carbon has only two unfilled orbitals, why does it like to

More information

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer.

1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. Page 1 QUESTION ONE 1.1 Is the following molecule aromatic or not aromatic? Give reasons for your answer. 1.2 List four criteria which compounds must meet in order to be considered aromatic. Page 2 QUESTION

More information

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS)

Lecture Topics: I. Electrophilic Aromatic Substitution (EAS) Reactions of Aromatic Compounds Reading: Wade chapter 17, sections 17-1- 17-15 Study Problems: 17-44, 17-46, 17-47, 17-48, 17-51, 17-52, 17-53, 17-59, 17-61 Key Concepts and Skills: Predict and propose

More information

PHOTOINITIATOR BASIC CHEMISTRY.

PHOTOINITIATOR BASIC CHEMISTRY. 1 PHOTOINITIATOR BASIC CHEMISTRY. INTRODUCTION TO FORMULATING AND PRODUCTS FOR LED CURE AND LOW MIGRATION. Youyuan Wu IGM Resins USA Inc 1.0 INTRODUCTION What is a photoinitiator? A substance (other than

More information

Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature)

Chapter 13. Conjugated Unsaturated Systems. +,., - Allyl. What is a conjugated system? AllylicChlorination (High Temperature) What is a conjugated system? Chapter 13 Conjugated Unsaturated Systems Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital may be empty (a carbocation The

More information

ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY

ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY ATOMIC THEORY, PERIODICITY, and NUCLEAR CHEMISTRY Note: For all questions referring to solutions, assume that the solvent is water unless otherwise stated. 1. The nuclide is radioactive and decays by the

More information

Macromolecular Chemistry

Macromolecular Chemistry Macromolecular Chemistry BHT Lecture 11 Light Scattering Experiment Measure I/I 0 = f(θ) Standard Approach Measure scattering of an analyte relative to a well characterized very pure liquid Toluene is

More information

Chapter 15. Free Radical Reactions

Chapter 15. Free Radical Reactions Grossman, CE 230 Chapter 15. Free Radical Reactions A free radical is a species containing one or more unpaired electrons. Free radicals are electrondeficient species, but they are usually uncharged, so

More information

NANYANG TECHNOLOGICAL UNIVERSITY ENTRANCE EXAMINATION SYLLABUS FOR INTERNATIONAL STUDENTS CHEMISTRY

NANYANG TECHNOLOGICAL UNIVERSITY ENTRANCE EXAMINATION SYLLABUS FOR INTERNATIONAL STUDENTS CHEMISTRY NANYANG TECHNOLOGICAL UNIVERSITY ENTRANCE EXAMINATION SYLLABUS FOR INTERNATIONAL STUDENTS OAFA/01/07 STRUCTURE OF EXAMINATION PAPER CHEMISTRY 1. There will be one 2-hour paper consisting of two sections.

More information

POLYMER CHEMISTRY Lecture/Lession Plan -2

POLYMER CHEMISTRY Lecture/Lession Plan -2 Chapter 6 POLYMER CHEMISTRY Lecture/Lession Plan -2 POLYMER CHEMISTRY 6.0.1 Classification on the basis of tactility On the basis of orientation of functional group or side groups throughout the long backbone

More information

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Introduction The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Spectroscopy and the Electromagnetic Spectrum Unlike mass spectrometry,

More information

Chapter 13 Conjugated Unsaturated Systems

Chapter 13 Conjugated Unsaturated Systems Chapter 13 Conjugated Unsaturated Systems Introduction Conjugated unsaturated systems have a p orbital on a carbon adjacent to a double bond The p orbital can come from another double or triple bond The

More information

Chemistry State Content Standards EXAM. from human beings! Explanations and Examples MUST be in Complete Sentences!

Chemistry State Content Standards EXAM. from human beings! Explanations and Examples MUST be in Complete Sentences! Chemistry State Content Standards EXAM You may use your Notes, PowerPoint, or Text on this exam but NO help from human beings! You MUST HAND WRITE THESE EXAMS in INK!! NO TYPED or PENCIL PAPERS WILL BE

More information

Introduction ENERGY. Heat Electricity Electromagnetic irradiation (light)

Introduction ENERGY. Heat Electricity Electromagnetic irradiation (light) Photochemistry Introduction ENERGY Heat Electricity Electromagnetic irradiation (light) Vision: Triggered by a photochemical reaction Is red in the dark? The answer must be NO - Since what we see as colour

More information

Chem 263 Oct. 12, 2010

Chem 263 Oct. 12, 2010 Chem 263 ct. 12, 2010 Alkyl Side Chain xidation Reaction If the carbon directly attached to the aromatic ring has > 1 hydrogen attached to it, it can be oxidized to the corresponding carboxylic acid with

More information

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons Chapter 1 Reactions of Organic Compounds Reactions Involving Hydrocarbons Reactions of Alkanes Single bonds (C-C) are strong and very hard to break, therefore these compounds are relatively unreactive

More information

Chemistry Instrumental Analysis Lecture 11. Chem 4631

Chemistry Instrumental Analysis Lecture 11. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 11 Molar Absorptivities Range 0 to 10 5 Magnitude of e depends on capture cross section of the species and probability of the energy-absorbing transition. e

More information

Polymer Matrix Effects on EUV Acid Generation

Polymer Matrix Effects on EUV Acid Generation Polymer Matrix Effects on EUV Acid Generation Theodore H. Fedynyshyn, Russell B. Goodman, and Jeanette Roberts # Lincoln Laboratory Massachusetts Institute of Technology # Intel Corporation The Lincoln

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

PAPER No. 5: REACTION MECHANISM MODULE No. 2: Types of Organic Reaction Mechanisms

PAPER No. 5: REACTION MECHANISM MODULE No. 2: Types of Organic Reaction Mechanisms Subject Chemistry Paper No and Title Module No and Title Module Tag Paper No. 5:Organic Chemistry-II Module No. 2: Overview of different types of Organic Reaction Mechanisms CHE_P5_M2 TABLE OF CONTENTS

More information

Present State and Main Trends of Research on Liquid-Phase Oxidation of Organic Compounds

Present State and Main Trends of Research on Liquid-Phase Oxidation of Organic Compounds 1 Downloaded via 148.251.232.83 on July 10, 2018 at 19:07:56 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. Present State and Main Trends

More information

KOT 222 Organic Chemistry II

KOT 222 Organic Chemistry II KOT 222 Organic Chemistry II Course Objectives: 1) To introduce the chemistry of alcohols and ethers. 2) To study the chemistry of functional groups. 3) To learn the chemistry of aromatic compounds and

More information

Chapter 10: Carboxylic Acids and Their Derivatives

Chapter 10: Carboxylic Acids and Their Derivatives Chapter 10: Carboxylic Acids and Their Derivatives The back of the white willow tree (Salix alba) is a source of salicylic acid which is used to make aspirin (acetylsalicylic acid) The functional group

More information

Students are required to bring these definitions HAND written on separate 3 in X 5 in index cards by chapters, the first week of school

Students are required to bring these definitions HAND written on separate 3 in X 5 in index cards by chapters, the first week of school Students are required to bring these definitions HAND written on separate 3 in X 5 in index cards by chapters, the first week of school 2015-2016 Have a Great Summer!!! Ms. Charles LAB SAFETY/Vocabulary

More information

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER c = c: speed of light 3.00 x 10 8 m/s (lamda): wavelength (m) (nu): frequency (Hz) Increasing E (J) Increasing (Hz) E = h h - Planck s constant

More information

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds.

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds. This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds. Mechanism for the addition of a hydrogen halide What happens

More information

Chapter 10 Free Radicals

Chapter 10 Free Radicals hapter 10 Free Radicals This is an example of a free radical reaction. A radical is a species that has a free unpaired electron. There are several examples of stable radicals, the most common of which

More information

Oxidationof polymers. Degradation taking place in the presence of oxygen and temperature

Oxidationof polymers. Degradation taking place in the presence of oxygen and temperature Oxidationof polymers Degradation taking place in the presence of oxygen and temperature It is auto catalytic in nature with a stabilizing effect at higher level of temperature Ie. The rate gradually accelaerate

More information

Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding.

Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding. Molecular Geometry: VSEPR model stand for valence-shell electron-pair repulsion and predicts the 3D shape of molecules that are formed in bonding. Sigma and Pi Bonds: All single bonds are sigma(σ), that

More information

TEMPERATURE EFFECT ON POLYMERIZATION KINETICS OF POLY METHYL METHACRYLATE (PMMA)

TEMPERATURE EFFECT ON POLYMERIZATION KINETICS OF POLY METHYL METHACRYLATE (PMMA) TEMPERATURE EFFECT ON POLYMERIZATION KINETICS OF POLY METHYL METHACRYLATE (PMMA) NOOR HARIAH BINTI WAHAB Thesis submitted in partial fulfilment of the requirements for the award of the degree of Bachelor

More information

Chapter 7 Radical Chain Polymerization

Chapter 7 Radical Chain Polymerization hapter 7 adical hain Polymerization The polymerization of unsaturated monomers typically involves a chain reaction. In a chain polymerization, one act of initiation may lead to the polymerization of thousands

More information

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition

16. Chemistry of Benzene: Electrophilic Aromatic Substitution. Based on McMurry s Organic Chemistry, 7 th edition 16. Chemistry of Benzene: Electrophilic Aromatic Substitution Based on McMurry s Organic Chemistry, 7 th edition Substitution Reactions of Benzene and Its Derivatives Benzene is aromatic: a cyclic conjugated

More information

Bio-elements. Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components.

Bio-elements. Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components. Bio-elements Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components. Most of the chemical components of living organisms

More information

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION

CHAPTER 16 - CHEMISTRY OF BENZENE: ELECTROPHILIC AROMATIC SUBSTITUTION CAPTR 16 - CMISTRY F BNZN: LCTRPILIC ARMATIC SUBSTITUTIN As stated in the previous chapter, benzene and other aromatic rings do not undergo electrophilic addition reactions of the simple alkenes but rather

More information

Chapter 21. Phenols and Aryl Halides. Nucleophilic Aromatic Substitution. Ch. 21-1

Chapter 21. Phenols and Aryl Halides. Nucleophilic Aromatic Substitution. Ch. 21-1 Chapter 21 Phenols and Aryl alides Nucleophilic Aromatic Substitution Ch. 21-1 1. Structure and Nomenclature of Phenols Phenol 1-Naphthol (α-naphthol) 9-Phenanthrol Ch. 21-2 1A. Nomenclature of Phenols

More information

Introduction to Polymerization Processes

Introduction to Polymerization Processes Introduction to Polymerization Processes Reference: Aspen Polymers: Unit Operations and Reaction Models, Aspen Technology, Inc., 2013. 1- Polymer Definition A polymer is a macromolecule made up of many

More information

Part C- section 1 p-bonds as nucleophiles

Part C- section 1 p-bonds as nucleophiles Part C- section 1 p-bonds as nucleophiles Chemistry of Alkenes (Ch 8, 9, 10) - the double bond prevents free rotation - isomerism cis and trans - nomenclature E and Z (3 or 4 different substituents around

More information

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Electrophilic aromatic substitution: E + E + + Some electrophilic aromatic substitution: X N 2 S 3 R C R alogenation Nitration Sulfonation

More information

Chemistry. Atomic and Molecular Structure

Chemistry. Atomic and Molecular Structure Chemistry Atomic and Molecular Structure 1. The periodic table displays the elements in increasing atomic number and shows how periodicity of the physical and chemical properties of the elements relates

More information

Core. Topic 10: Organic chemistry. Essential idea: Organic chemistry focuses on the chemistry of compounds containing carbon.

Core. Topic 10: Organic chemistry. Essential idea: Organic chemistry focuses on the chemistry of compounds containing carbon. Core Chemistry guide 67 Essential idea: Organic chemistry focuses on the chemistry of compounds containing carbon. 10.1 Fundamentals of organic chemistry Nature of science: Serendipity and scientific discoveries

More information

A Novel Approach of Using NBS as an Effective and Convenient Oxidizing Agent for Various Compounds a Survey

A Novel Approach of Using NBS as an Effective and Convenient Oxidizing Agent for Various Compounds a Survey Journal of Chemistry and Chemical Sciences, Vol.8(1), 59-65, January 2018 (An International Research Journal), www.chemistry-journal.org ISSN 2229-760X (Print) ISSN 2319-7625 (Online) A Novel Approach

More information

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce

JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II. 5 Credit Hours. Prepared by: Richard A. Pierce JEFFERSON COLLEGE COURSE SYLLABUS CHM201 ORGANIC CHEMISTRY II 5 Credit Hours Prepared by: Richard A. Pierce Revised Date: January 2008 by Ryan H. Groeneman Arts & Science Education Dr. Mindy Selsor, Dean

More information

Topic 1: Quantitative chemistry

Topic 1: Quantitative chemistry covered by A-Level Chemistry products Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant 1.1.1 Apply the mole concept to substances. Moles and Formulae 1.1.2 Determine the number

More information

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS APPLIED ORGANIC CHEMISTRY W/ LAB CHT 2210

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS APPLIED ORGANIC CHEMISTRY W/ LAB CHT 2210 PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS APPLIED ORGANIC CHEMISTRY W/ LAB CHT 2210 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Date Revised: Fall 2001 NOTE: This course

More information

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2. Preparation of Alkyl alides, R-X Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): UV R + X 2 R X or heat + X This mechanism involves a free radical chain reaction. A chain

More information

Chapter 5. Mass spectrometry

Chapter 5. Mass spectrometry ionization and fragmentation Chapter 5. Mass spectrometry which fragmentations? mass and frequency, m/z and count rate Reading: Pavia Chapters 3 and 4 Don t need 3.3 B-D, 3.4 B-D Use the text to clarify

More information

Module 6 : Reaction Kinetics and Dynamics Lecture 30 : Complex Reactions

Module 6 : Reaction Kinetics and Dynamics Lecture 30 : Complex Reactions Module 6 : Reaction Kinetics and Dynamics Lecture 30 : Complex Reactions Objectives After studying this Lecture you will learn to do the following. Analyze the kinetics of chain reactions Analyses the

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

(12) United States Patent (10) Patent No.: US 6,762,262 B1

(12) United States Patent (10) Patent No.: US 6,762,262 B1 USOO6762262B1 (12) United States Patent (10) Patent No.: US 6,762,262 B1 Wang et al. () Date of Patent: Jul. 13, 2004 (54) PREPARATION OF ACRYLIC POLYOLS 5,480,943 A 1/1996 Guo... 5/330.5 5,5,693 A 6/1996

More information

VOCABULARY. Set #2. Set #1

VOCABULARY. Set #2. Set #1 VOCABULARY Set #1 1. Absolute zero 2. Accepted value 3. Accuracy 4. Celsius scale 5. Conversion factor 6. Density 7. Dimensional analysis 8. Experimental value 9. Gram 10. International system of units

More information

Development of Photosensitive Polyimides for LCD with High Aperture Ratio. May 24, 2004

Development of Photosensitive Polyimides for LCD with High Aperture Ratio. May 24, 2004 Development of Photosensitive Polyimides for LCD with High Aperture Ratio May 24, 2004 utline Why is polymer dielectric required for TFT LCD? Requirements of the polymer dielectrics What is polyimide?

More information

Classifications and reactions involving carbon radicals. Key words: radicals, stability, addition, cyclization reactions, polymerization

Classifications and reactions involving carbon radicals. Key words: radicals, stability, addition, cyclization reactions, polymerization Classifications and reactions involving carbon radicals Key words: radicals, stability, addition, cyclization reactions, polymerization Introduction In this module an overview of carbon radicals are given.

More information

Anionic Polymerization - Initiation and Propagation

Anionic Polymerization - Initiation and Propagation Anionic Polymerization Initiation and Propagation As in free radical polymerization, there are initiation and propagation steps. NH 2 NaNH 2 Na + + NH 2 + H 2 N CH: Propagation proceeds in the usual manner,

More information

Carboxylic Acids and Nitriles

Carboxylic Acids and Nitriles Carboxylic Acids and Nitriles Why this Chapter? Carboxylic acids present in many industrial processes and most biological processes They are the starting materials from which other acyl derivatives are

More information

Chem. 1B Final Practice

Chem. 1B Final Practice Chem. 1B Final Practice Name Student Number All work must be shown on the exam for partial credit. Points will be taken off for incorrect or no units and for the incorrect number of significant figures.

More information

The calculation of kinetic parameters would be an integral part of the report.

The calculation of kinetic parameters would be an integral part of the report. Kinetic studies using UV-VIS spectroscopy Fenton reaction 2017 Abstract The goal of this exercise is to demonstrate the possibility of using a modern in-situ spectroscopic method (UV-VIS spectroscopy)

More information

Chapter 17. Reactions of Organic Functional Groups Part 2. Reactions of Organic Functional Groups Part 2- page 1

Chapter 17. Reactions of Organic Functional Groups Part 2. Reactions of Organic Functional Groups Part 2- page 1 Chapter 17 Reactions of rganic Functional Groups art 2 Reactions of rganic Functional Groups art 2- page 1 Rxns of rganic Functional Groups art 2: Redox A Closer Look xidation & Reduction Reactions of

More information

Tananyag fejlesztés idegen nyelven

Tananyag fejlesztés idegen nyelven Tananyag fejlesztés idegen nyelven Prevention of the atmosphere KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖKI MSC (MSc IN AGRO-ENVIRONMENTAL STUDIES) Fundamentals to atmospheric chemical reactions. The stratospheric

More information

Lecture- 08 Emission and absorption spectra

Lecture- 08 Emission and absorption spectra Atomic and Molecular Absorption Spectrometry for Pollution Monitoring Dr. J R Mudakavi Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture- 08 Emission and absorption spectra

More information

Investigating Nitroxide-Mediated Radical Polymerization of Styrene over a Range of Reaction Conditions

Investigating Nitroxide-Mediated Radical Polymerization of Styrene over a Range of Reaction Conditions Investigating Nitroxide-Mediated Radical Polymerization of Styrene over a Range of Reaction Conditions A. Nabifar N. T. McManus A. Penlidis Institute for Polymer Research (IPR) Department of Chemical Engineering

More information

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area

Module9. Nuclear Magnetic Resonance Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy - Chemical shift - Integration of signal area 1 CHEMISTRY 263 HOME WORK Lecture Topics: Module7. Hydrogenation of Alkenes The Function of the Catalyst - Syn and anti- addition Hydrogenation of Alkynes - Syn- addition of hydrogen: Synthesis of cis-alkenes

More information

CHAPTER IV HOFMANN REARRANGEMENT IN CROSSLINKED POLYMERIC MATRICES

CHAPTER IV HOFMANN REARRANGEMENT IN CROSSLINKED POLYMERIC MATRICES CHAPTER IV HOFMANN REARRANGEMENT IN CROSSLINKED POLYMERIC MATRICES The Hofmann degradation reaction has been used as a synthetic route for the preparation of amines 180-187 Tanaka and Senju reported the

More information

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION

ORGANIC - CLUTCH CH ALDEHYDES AND KETONES: NUCLEOPHILIC ADDITION !! www.clutchprep.com CONCEPT: ALDEHYDE NOMENCLATURE Replace the suffix of the alkane -e with the suffix On the parent chain, the carbonyl is always terminal, and receive a location As substituents, they

More information

CHE 232 Organic Chemistry II Exam 4 Name: KEY

CHE 232 Organic Chemistry II Exam 4 Name: KEY CE 232 rganic Chemistry II Exam 4 ame: KEY Student number: Before you begin this exam: First: You are allowed to have a simple model set at your seat. Please put away all other materials. Second: Place

More information

(2) Read each statement carefully and pick the one that is incorrect in its information.

(2) Read each statement carefully and pick the one that is incorrect in its information. Organic Chemistry - Problem Drill 17: IR and Mass Spectra No. 1 of 10 1. Which statement about infrared spectroscopy is incorrect? (A) IR spectroscopy is a method of structure determination based on the

More information

Naming Organic Halides. Properties of Organic Halides

Naming Organic Halides. Properties of Organic Halides Organic Compounds Organic Halides A hydrocarbon in which one or more hydrogen atoms have been replaced by halogen atoms Freons (chlorofluorocarbons) in refrigeration and air conditioning Teflon (polytetrafluoroethane)

More information

20.5 Preparation of Amines

20.5 Preparation of Amines RGANIC CHEMISTRY 20.5 Preparation of Amines RGANIC CHEMISTRY 20.5A Through Nucleophilic Substitution Reactions Alkylation of Ammonia or Amines NaH NH 3 + R X RNH 3 X RNH2 R + R X R 2 X NaH R 2 NH R 2 NH

More information

Write your name and date on the cover page Do not open exam until instructed to do so

Write your name and date on the cover page Do not open exam until instructed to do so Write your name and date on the cover page Do not open exam until instructed to do so Name: Date: Exam III hem. 210 Do not open exam until told to do so. Get out your pencil, eraser, and scientific nongraphing

More information

Conjugated Dienes and Ultraviolet Spectroscopy

Conjugated Dienes and Ultraviolet Spectroscopy Conjugated Dienes and Ultraviolet Spectroscopy Key Words Conjugated Diene Resonance Structures Dienophiles Concerted Reaction Pericyclic Reaction Cycloaddition Reaction Bridged Bicyclic Compound Cyclic

More information

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers

Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Chapter Organic Chemistry 112 A B C - Syllabus Addendum for Prospective Teachers Ch 1-Structure and bonding Ch 2-Polar covalent bonds: Acids and bases McMurry, J. (2004) Organic Chemistry 6 th Edition

More information

Chemistry Standard level Paper 1

Chemistry Standard level Paper 1 M15/4/CHEMI/SPM/ENG/TZ1/XX Chemistry Standard level Paper 1 Thursday 14 May 2015 (afternoon) 45 minutes Instructions to candidates Do not open this examination paper until instructed to do so. Answer all

More information