Ionization of acids and bases

Size: px
Start display at page:

Download "Ionization of acids and bases"

Transcription

1 ionization equation Ionization of acids and bases Acid Base AH + H 2 O H 3 O + + A B + H 2 O OH + BH + simpler eq. AH H + + A B + H + BH + ionization K A = [H 3 O + ][A - ]/[AH] K B = [OH - ][BH + ]/[B] constant (acidity* constant) (base ionization constant) *not to be confused with association (binding) constant Water self-ionization: 2H 2 O H 3 O + + OH K W = [H 3 O + ][OH - ] = [H + ][OH - ] = at 25 C For a base, K B = K W [BH + ]/[B][H 3 O + ] = K W /K A K A is the acidity constant of the conjugate acid

2 ph, poh, pk A and pk B Acid pk A = log 10 K A Base pk B = log 10 K B = log 10 K W + log 10 K A = log 10 K W + log 10 K A = 14 pk A of the conjugate acid ph = log 10 [H + ] poh = log 10 [OH ] ph = 14 poh

3 Exercise: find ionizable groups Amphetamine Menthol Salicylate Clodronate Aminohippurate Guanadrel

4 Exercise: find ionizable groups Amphetamine Menthol Salicylate Clodronate Aminohippurate Guanadrel

5 Henderson-Hasselbalch Eq. Derivation step Reason K A = [H 3 O + ][A ]/[AH] definition K A /[H 3 O + ]= [A ]/[AH] (rearranged) log 10 K A log 10 [H 3 O + ] = log 10 ([A ]/[AH]) (logs taken on both sides) ph - pk A = log 10 ([A ]/[AH]) (HH equation) 1 unit ph = 10-fold change in [A - ]/[AH] ratio Solute dissociation changes ph! Can only assume that ph = ph 0 when either concentration C=[A - ]+[AH] is very low: C < 10% of [H+] i.e. 1+log C < ph or the solution is buffered (resist ph changes)

6 Ratio vs Fraction of Species [A - ]/[AH] %[A - ] 10 3 = /( ) ~ 0.1% 10 2 = /(1+0.01) ~ 0. 99% 10 1 = /(1+0.1) ~ 9.09% 10 0 = 1 1/(1+1) = 50% 10 1 = 10 10/(10+1) ~ 90.91% 10 2 = /(100+1) ~ % 10 3 = /(1000+1) ~ 99.9%

7 Henderson-Hasselbalch Eq. Problem: An acidic drug with pk A of 3.5 is dissolved in stomach at ph=2. What fraction of the drug molecules are ionized? Solution: log([a-]/[ah]) = ph pk A = -1.5 [A-] = [AH] fraction ionized is /( ) ~ 3% Answer: Only about 3% is ionized. Bonus Q: How and where will this drug absorb?

8 ph of a solution Strong acids and bases dissociate completely when dissolved in water ph = -log c for acids; 0 for 1M solution ph ~ 14+log c for bases (though even strongest bases as not as strong as acids) But most proteins, drugs, and chemicals are weak acids and bases

9 ph of a solution A weakly acidic substance (pk A given) is dissolved in water (ph=7) at the concentration c What is happening? Acid dissociation: AH H + + A Water dissociation: H 2 O H + + OH AH A H + OH Start (no equilibrium) c Equilibration c a a x K w /x What are the rules? Acid mass-balance: [AH] + [A ] = c Water dissociation equilibrium: [H + ] [OH ] = K W Acid dissociation equilibrium: [H + ] [A ] = K A [AH] Charge balance: [H + ] = [OH ] + [A ] Finding ph requires solving for x Solving for x requires a CUBIC equation Applicable to bases (K A K B, ph poh)

10 ph of a solution - simpler A weakly acidic substance (pk A given) is dissolved in water at the concentration c Dissociation: AH + H 2 O H 3 O + + A This method neglects re-association of water: [OH ] and its changes are negligibly small e.g., will not work for an acidic drug in a basic solution AH A H 3 O + Start (no equilibrium) c Equilibration/dissociation c x x x (c x)k A = x(x+10 7 ) x 2 + x(k A ) ck A = 0 x = ( K A Sqrt((K A ) 2 + 4cK A ))/2 Convenient to multiply through by Applicable to bases (K A K B, ph poh)

11 ph of a drug solution Problem: calculate ph of 1 um solution of ibuprofen in water (ibuprofen is a weak acid with pk A of 4.91) Solution: K A = ; c = 10 6 M x 2 + x(k A ) ck A = 0 x 2 + x( ) = 0 Let y = 10 7 x; multiply the eq. by y y = 0 y = [H 3 O + ] = x = y ph = 7 log(y+1) = 5.99 Answer: ph = 5.99 Shortcut: Concentration is low, ph >> pk A, all ibuprofen dissociates, i.e. [H 3 O + ] ~ ~ ; ph ~ 6.

12 ph of a solution even simpler Weak acid (pk A > 2), high concentration, low fraction dissociated: 10 7 << x=[a ]=[H 3 O + ] << c [AH] = c x c (c x)k A = x(x+10 7 ) becomes ck A x 2 [H 3 O + ] 2 = ck A, take logs on both sides: ph = ½ pk A ½ log c Sanity check: [A ]<[AH] log 10 ([A ]/[AH])<0 ph < pk A (HH) If ph < pk A, linear approximation makes sense If ph pk A, approximation inaccurate, real ph is even higher

13 ph a of solution: simple vs simpler pk A = 2 quadratic ½ pk A ½ log c 100% Fraction dissociated 0% Ibuprofen problem: ½ pka ½ log c = 5.45 exact ph = 5.99 Approximation works when fraction dissociated < 20%: higher conc., weaker acids watch for ph < pk A 100% 100% pk A = 4 quadratic ½ pk A ½ log c Fraction dissociated 0% pk A = 6 quadratic ½ pk A ½ log c Fraction dissociated 0%

14 ph of solution, linear approximation: base Weak base (pk A < 12), high concentration, low fraction ionized: 10 7 << x=[bh + ]=[OH ] << c [B] = c x c (c x)k B = x(x+10 7 ) becomes ck B x 2 [OH ] 2 = ck B, take logs on both sides: poh = ½ pk B ½ log c OR ph = 7 + ½ pk A + ½ log c Sanity check: [BH + ]<[B] log 10 ([BH + ]/[B])<0 poh < pk B ph > pk A If ph > pk A, linear approximation makes sense If ph pk A, approximation inaccurate, real ph is even lower

15 ph of a drug solution: linear approximation Problem: calculate ph of 1 mm solution of ibuprofen in water (ibuprofen is a weak acid with pk A of 4.91) Solution: concentration is relatively high, acid is weak, try linear approximation ph = ½ pk A ½ log c = 4.91 / / 2 = this ph is less than pk A ; likely accurate Answer: ph = 3.955

16 Buffers Given a strong acid or base solution with a starting ph; a weak acid is dissolved in it at the given concentration c AH A H + OH Start (no equilibrium) c 0 10 ph 10 ph 14 Equilibration c a a x K w /x All components are appreciable: solving the cubic is required ph calculators exist There is a region where final ph does not depend on the starting ph Weakly ionizable substance in both ionized and nonionized forms system resists changes in ph: buffer acid with pk A = 4

17 Buffer capacity and range A single buffer pair [AH]/[A ] may only absorb X strong acid/base, and only does that around ph of Y Formalized by buffer capacity: [ ] [ ] + dn [ ] + ck A H β = = ln10 H + + OH ( ) ( [ ] + ) 2 d ph K A + H To increase β, increase c To increase range, use several buffer pairs and/or polyprotic substances pka = 4 pka = 5 pka = 6 pka = 7 c = 10 um c = 100 um c = 1 mm c = 10 mm β β ph ph

18 Physiological buffers Blood ph = 7.4 buffering capacity β = mol/l per ph unit Blood plasma buffering system: H 2 CO 3 (pk A =6.35) HCO 3 ; Na + salt Important: CO 2 H 2 CO 3 reaction is very slow k f = s 1, k r = 23 s 1 carbonic anhydrase (CAH) is an enzyme catalyst Erythrocytes buffering system: HPO 4 2 (pk A =7.20) H 2 PO 4 ; K + salts Any protein may create a buffer, pk A (His) = 6 Parenteral solutions: either not buffered or buffered at low capacity to allow blood buffers to bring them within tolerable ph range

19 Physiological non-buffer Urine is not buffered; its ph may be adjusted with NH 4 Cl, NaHCO 3, chlorothiazide diuretics, CAH inhibitors, K citrate: To ensure complete ionization and easy excretion of amphetamines, barbiturates, salicylates (in case of drug overdose) To prevent ionization and promote drug reabsorption for therapeutic reasons

20 Solubility at different ph: buffer In a saturated solution of an ionizable substance: Acid Base HH log[a ]/[AH] = ph pk A log[b]/[bh + ] = ph pk A S 0 : solubility of neutral form All ionized species are soluble [AH] = S 0 [B] = S 0 [A ] = S S 0 [BH + ] = S S 0 log(s S 0 )/S 0 = ph pk A (S S 0 )/S 0 = 10 ph pk A log(s S 0 )/S 0 = pk A ph (S S 0 )/S 0 = 10 pk A ph S = S 0 (1+10 ph pk A ) S = S0 (1+10 pk A ph ) ph is affected by a high concentration of acid/base Approximation is accurate for buffered solutions when S S 0 << β (buffer capacity)

21 Solubility at different ph Problem: The saturation solubilities of a drug at different ph and T=300K are shown in the table. What type of compound is it and what is pk A? ph Saturation solubility µm 9 10 µm µm 12 5 µm Solution: Solubility with ph it is a base. Solubility at ph = 12 is ~ S 0 pk A = ph + log (S S 0 )/S 0 When using S=205 µm at ph=7.4, pk A =7.4+log 200/5~9 When using S=10 µm at ph=9, pk A =9+log 5/5=9

22 Solubility at different ph: water A weakly acidic drug (pk A given) is dissolved in water at the saturating concentration Solubility of neutral form is S 0, total = S 0 + [A ] Dissociation: AH + H 2 O H 3 O + + A AH A H 3 O + Start (no equilibrium) S 0 + x 0 10 ph 0 Equilibration/dissociation S 0 x x + 10 ph S 0 K A = x(x+10 ph ) x ph x S 0 K A = 0 Convenient to multiply through by 10 2pH ; y = 10 ph x y 2 + y 10 2pH S 0 K A = 0 Applicable to bases (K A K B, ph poh)

23 Solubility at different ph: water and buffer In non-buffered solution at high ph (i.e. low [H 3 O + ]), solute dissociation dominates ph and thus limits solubility Buffer (within its range and capacity) cancels this effect S 0 = 1nM water buffer 100% S 0 = 1uM water buffer 100% S 0 = 1mM water buffer 100% pk A = 2 pk A = 4 pk A = 6 Fraction dissociated pk A = 2 pk A = 4 Fraction dissociated pk A = 2 Fraction dissociated pk A = 6 pk A = 4 0% 0% pk A = 6 0%

24 Ionizable drugs are often Commonly used salts: Weak acid / strong base Weak base / strong acid Weak acid / weak base formulated as salts Salt formulations affect solubility Salts deliver ionized components into the solution; the ph variations are favorable for dissolution Crystal state interactions vary between salts and free form Drug Acid pk A Base pk A Divalproex Sodium Valproate 4.8 Na + Penicillin G Potassium Penicillin G 2.7 K + Chlorpromazine HCl Cl Chlorpromazine H Codeine Phosphate PO 4 2.2,7.2,12.3 Codeine H Dramamine 8-Chlorotheophylline 4.6 Diphenhydramine H + 9.0

25 ph of a salt solution Crystal: both components are completely ionized Solution: strong component remains completely ionized weak component partially de-ionizes producing [OH ] (weak acid) or [H + ] (weak base) Linear approximations for ph: Weak A / strong B: ph > 7; ph = 7 + ½ pk A + ½ log c Weak B / strong A: ph < 7; ph = ½ pk A ½ log c 1:1 weak acid / weak base: ph = 7 + ½ pk A ½ pk B More accurate ph determination may require solving higher degree equations

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) What is a dominant equilibrium? How do we define major species? Reactions between acids and bases 1. Strong Acids + Strong Base The reaction

More information

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A)

Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Chapter 17 Additional Aspects of Aqueous Equilibria (Part A) Often, there are many equilibria going on in an aqueous solution. So, we must determine the dominant equilibrium (i.e. the equilibrium reaction

More information

BUFFERS. RAMESH REDDY.K M.Pharm.,(Ph.D) KRISHNA TEJA PHARMACY COLLEGE

BUFFERS. RAMESH REDDY.K M.Pharm.,(Ph.D) KRISHNA TEJA PHARMACY COLLEGE BUFFERS RAMESH REDDY.K M.Pharm.,(Ph.D) KRISHNA TEJA PHARMACY COLLEGE Definition Buffers are compounds or mixtures of compounds that by their presence in the solution resist changes in the ph upon the addition

More information

-log [H+][OH-] = - log [1 x ] Left hand side ( log H + ) + ( log OH - ) = ph + poh Right hand side = ( log 1) + ( log ) = 14 ph + poh = 14

-log [H+][OH-] = - log [1 x ] Left hand side ( log H + ) + ( log OH - ) = ph + poh Right hand side = ( log 1) + ( log ) = 14 ph + poh = 14 Autoionization of Water H 2 O H + + OH - K = [H + ][OH - ]/[H 2 O] = 1.802 x 10-16 Concentration of [H 2 O] is so HIGH autoionization is just a drop in the bucket, so [H 2 O] stays constant at 55.5 M,

More information

I. Acids & Bases. A. General ideas:

I. Acids & Bases. A. General ideas: Acid-Base Equilibria 1. Application of equilibrium concepts. 2. Not much else new in the way of theory is presented. 3. Specific focus on aqueous (H O is 2 solvent) systems. 4. Assume we are at equilibrium

More information

Dr. Diala Abu-Hassan, DDS, PhD Lecture 3 MD summer 2014

Dr. Diala Abu-Hassan, DDS, PhD Lecture 3 MD summer 2014 ph, DDS, PhD Dr.abuhassand@gmail.com Lecture 3 MD summer 2014 www.chem4kids.com 1 Outline ph Henderson-Hasselbalch Equation Monoprotic and polyprotic acids Titration 2 Measuring the acidity of solutions,

More information

Applications of Aqueous Equilibrium Chapter 15. Common Ion Effect & Buffers Sections 1-3

Applications of Aqueous Equilibrium Chapter 15. Common Ion Effect & Buffers Sections 1-3 Applications of Aqueous Equilibrium Chapter 15 Common Ion Effect & Buffers Sections 1-3 Solutions of Acids or Bases Containing a Common Ion NaF Na + + F - HF H + + F - What effect does the NaF have on

More information

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107 Chapter 15 Applications of Aqueous Equilibria (mainly acid/base & solubility)

More information

Chapter 10. Acids, Bases, and Salts

Chapter 10. Acids, Bases, and Salts Chapter 10 Acids, Bases, and Salts Topics we ll be looking at in this chapter Arrhenius theory of acids and bases Bronsted-Lowry acid-base theory Mono-, di- and tri-protic acids Strengths of acids and

More information

Equilibri acido-base ed equilibri di solubilità. Capitolo 16

Equilibri acido-base ed equilibri di solubilità. Capitolo 16 Equilibri acido-base ed equilibri di solubilità Capitolo 16 The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

More information

Chapter 16 Aqueous Ionic Equilibrium Buffer Solutions

Chapter 16 Aqueous Ionic Equilibrium Buffer Solutions Chapter 16 Aqueous Ionic Equilibrium 16.1-16.2 Buffer Solutions Why? While a weak acid will partially ionize to produce its conjugate base, it will not produce enough conjugate base to be considered a

More information

Acids, Bases and the Common Ion Effect. More quantitative. Continued [F - ] = M. Consider the following acid equilibrium of a weak acid:

Acids, Bases and the Common Ion Effect. More quantitative. Continued [F - ] = M. Consider the following acid equilibrium of a weak acid: Acids, Bases and the Common Ion Effect Consider the following acid equilibrium of a weak acid: HF + H O H 3 O + + F - K a = [H 3 O + ][F - ] [HF] By LeChatelier s principle, we predict the HF dissociation

More information

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation Chapter 17 Additional Aspects of James F. Kirby Quinnipiac University Hamden, CT Effect of Acetate on the Acetic Acid Equilibrium Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq)

More information

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2 Acids and bases, ph and buffers Dr. Mamoun Ahram Lecture 2 ACIDS AND BASES Acids versus bases Acid: a substance that produces H+ when dissolved in water (e.g., HCl, H2SO4) Base: a substance that produces

More information

Acid-Base Equilibria and Solubility Equilibria Chapter 17

Acid-Base Equilibria and Solubility Equilibria Chapter 17 PowerPoint Lecture Presentation by J. David Robertson University of Missouri Acid-Base Equilibria and Solubility Equilibria Chapter 17 The common ion effect is the shift in equilibrium caused by the addition

More information

Acid Base Equilibria

Acid Base Equilibria Acid Base Equilibria Acid Ionization, also known as acid dissociation, is the process in where an acid reacts with water to produce a hydrogen ion and the conjugate base ion. HC 2 H 3 O 2(aq) H + (aq)

More information

Buffered and Isotonic Solutions

Buffered and Isotonic Solutions Physical Pharmacy Lecture 8 Buffered and Isotonic Solutions Assistant Lecturer in Pharmaceutics Overview Buffered Solutions Definition Buffer Equation Buffer Capacity Buffer in Biological Systems Pharmaceutical

More information

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration Lecture 10 Professor Hicks Inorganic Chemistry II (CHE152) ph Scale of [H 3 O + ] (or you could say [H + ]) concentration More convenient than scientific notation ph = log [H 3 O + ] still not sure? take

More information

HW #10: 10.38, 10.40, 10.46, 10.52, 10.58, 10.66, 10.68, 10.74, 10.78, 10.84, 10.88, 10.90, ,

HW #10: 10.38, 10.40, 10.46, 10.52, 10.58, 10.66, 10.68, 10.74, 10.78, 10.84, 10.88, 10.90, , Chemistry 121 Lectures 20 & 21: Brønstead-Lowry Acid/Base Theory Revisited; Acid & Base Strength - Acids & Bases in Aqueous Solution; Acid Dissociation Constants and the Autoionization of Water; ph or

More information

SKKU Physical Pharmacy Laboratory 성균관대학교물리약학연구실

SKKU Physical Pharmacy Laboratory 성균관대학교물리약학연구실 The Buffer Equation Buffer Capacity Buffers in pharmaceutical and Biologic Systems Buffered Isotonic Solutions Methods of Adjusting Tonicity and ph - Solutions which resist changes in ph when small quantities

More information

ACIDS AND BASES. Note: For most of the acid-base reactions, we will be using the Bronsted-Lowry definitions.

ACIDS AND BASES. Note: For most of the acid-base reactions, we will be using the Bronsted-Lowry definitions. DEFINITIONS: ACIDS AND BASES Arrhenius Definition An acid in aqueous solution produces H + ions. A base in aqueous solution produces OH - ions. Bronsted Lowry Theory An acid is a proton donor A base is

More information

Last week, we discussed the Brønsted Lowry concept of acids and bases. According to this model:

Last week, we discussed the Brønsted Lowry concept of acids and bases. According to this model: Last week, we discussed the Brønsted Lowry concept of acids and bases This model is not limited to aqueous solutions; it can be extended to reactions in the gas phase! According to this model: Acids are

More information

Chapter 9 Aqueous Solutions and Chemical Equilibria

Chapter 9 Aqueous Solutions and Chemical Equilibria Chapter 9 Aqueous Solutions and Chemical Equilibria At equilibrium, the rate of a forward process or reaction and that of the reverse process are equal. 9A The chemical composition of aqueous solutions

More information

The ph of aqueous salt solutions

The ph of aqueous salt solutions The ph of aqueous salt solutions Sometimes (most times), the salt of an acid-base neutralization reaction can influence the acid/base properties of water. NaCl dissolved in water: ph = 7 NaC 2 H 3 O 2

More information

Chemical Equilibria Part 2

Chemical Equilibria Part 2 Unit 1 - Inorganic & Physical Chemistry 1.4 Chemical Equilibria Part 2 Acid / Base Equilibria Indicators ph Curves Buffer Solutions Pupil Notes Learning Outcomes Questions & Answers KHS ChemistrySept 2015

More information

Hashem Al-Dujaily. Hala Al Suqi. Mamoun + Diala. Tamer Barakat + Hashem Al-Dujaily

Hashem Al-Dujaily. Hala Al Suqi. Mamoun + Diala. Tamer Barakat + Hashem Al-Dujaily 3 Hashem Al-Dujaily Tamer Barakat + Hashem Al-Dujaily Hala Al Suqi Mamoun + Diala Last time we talked about the Ionization of water and then started talking about kw (ion product for water) which is a

More information

x x10. Hydromiun ion already in solution before acid added. NH 3 /NH4+ buffer solution

x x10. Hydromiun ion already in solution before acid added. NH 3 /NH4+ buffer solution 10/15/01 Commonion effect In the last chapter, we calculated the [H 3 O ] of a M O as 6.010 5 M. The percent dissociation for this solution would be: More Acid and Base Chemistry 6.010 5 100 0.089% [H

More information

Chapter 17: Additional Aspects of Aqueous equilibria. Common-ion effect

Chapter 17: Additional Aspects of Aqueous equilibria. Common-ion effect Chapter 17: Additional Aspects of Aqueous equilibria Learning goals and key skills: Describe the common ion effect. Explain how a buffer functions. Calculate the ph of a buffer solution. Calculate the

More information

Diprotic Acids Diprotic acids have two ionizable protons that undergo successive ionization.

Diprotic Acids Diprotic acids have two ionizable protons that undergo successive ionization. Diprotic Acids Diprotic acids have two ionizable protons that undergo successive ionization. + H2A + H2O º H3O + + HA [H3O [HA Ka [H2A + 2 HA + H2O º H3O + + A 2 [H3O [A Ka 2 [HA In general, Ka >> Ka 2.

More information

Volume NaOH Delivered (ml)

Volume NaOH Delivered (ml) Chemistry Spring 011 Exam 3: Chapters 8-10 Name 80 Points Complete five (5) of the following problems. Each problem is worth 16 points. CLEARLY mark the problems you do not want graded. You must show your

More information

Acid-Base Solutions - Applications

Acid-Base Solutions - Applications Acid-Base Solutions - Applications 1 The Common Ion Effect Consider the equilibrium established when acetic acid, HC 2 H 3 O 2, is added to water. CH 3 COOH(aq) + H 2 O(l) CH 3 COO - (aq) + H 3 O + (aq)

More information

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS THE COMMON ION EFFECT The common ion effect occurs when the addition of an ion already present in the system causes the equilibrium to shift away

More information

Chem 5 PAL Worksheet Acids and Bases Smith text Chapter 8

Chem 5 PAL Worksheet Acids and Bases Smith text Chapter 8 D.CHO3HE.KOHB.NHC.CHC3OHHCl3F.H.CHHCH3COG.H2HCHEM 5 PAL Worksheet Acids and Bases Fall 2017 Chem 5 PAL Worksheet Acids and Bases Smith text Chapter 8 Many substances in the body are acids and bases. Many

More information

5.111 Lecture Summary #22 Wednesday, October 31, 2014

5.111 Lecture Summary #22 Wednesday, October 31, 2014 5.111 Lecture Summary #22 Wednesday, October 31, 2014 Reading for Today: Sections 11.13, 11.18-11.19, 12.1-12.3 in 5 th ed. (10.13, 10.18-10.19, 11.1-11.3 in 4 th ed.) Reading for Lecture #23: Sections

More information

CHEM1902/ N-4 November 2004

CHEM1902/ N-4 November 2004 CHEM190/4 004-N-4 November 004 Teeth are made from hydroxyapatite, Ca 5 (PO 4 ) 3 OH. Why does an acidic medium promote tooth decay and how can the decay be stopped using fluoridation of drinking water?

More information

Acid-Base Equilibria and Solubility Equilibria

Acid-Base Equilibria and Solubility Equilibria ACIDS-BASES COMMON ION EFFECT SOLUBILITY OF SALTS Acid-Base Equilibria and Solubility Equilibria Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 2 The common

More information

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions.

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions. Lecture 12 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information

Water. Water participates in H-bonding with biomolecules.

Water. Water participates in H-bonding with biomolecules. Water Most biochemical reactions occur in an aqueous environment. Water is highly polar because of its bent geometry. Water is highly cohesive because of intermolecular hydrogen bonding. Water participates

More information

Chapter 15, Applications of Aqueous Equilibria

Chapter 15, Applications of Aqueous Equilibria Chapter 15, Applications of Aqueous Equilibria We will focus on 3 areas: 1) titrations 2) buffers (incl. the Henderson- Hasselbalch Transformation), 3) solubility equilibria. 1 I. Neutralization Reactions

More information

Ch 15, Applications of Aq Equilibria

Ch 15, Applications of Aq Equilibria Ch 15, Applications of Aq Equilibria We will focus on 3 areas: 1) buffers (incl. Henderson-Hasselbalch Transformation) 2) titrations 3) solubility equilibria 1 I. Neutralization Reactions A. Strong acid-strong

More information

BCH 4053 Spring 2001 Chapter 2 Lecture Notes

BCH 4053 Spring 2001 Chapter 2 Lecture Notes BCH 4053 Spring 001 Chapter Lecture Notes 1 Chapter Water, ph and Ionic Equilibria Physical Properties of Water High boiling point High melting point High heat of vaporization High heat of fusion 3 Physical

More information

CHAPTER 8 CHEMICAL EQUILIBRIUM SHORT QUESTION WITH ANSWERS Q.1 What is weak electrolyte? A compound which is only partially ionized in aqueous solution is called as weak electrolyte.e.g CH 3 COOH(Acetic

More information

LECTURE #25 Wed. April 9, 2008

LECTURE #25 Wed. April 9, 2008 CHEM 206 section 01 LECTURE #25 Wed. April 9, 2008 LECTURE TOPICS: TODAY S CLASS: 18.1-18.2 NEXT CLASS: finish Ch.18 (up to 18.5) (1) 18.1 The Common Ion Effect basis of all Ch.18 = shift in eqm position

More information

CHEM 142 Exam 3 Study Guide Chapter 15: Acid-Base Equilibria

CHEM 142 Exam 3 Study Guide Chapter 15: Acid-Base Equilibria CHEM 142 Exam 3 Study Guide Chapter 15: AcidBase Equilibria A. Terminologies and Concepts 1. BronstedLowry definitions acids vs. bases; give examples 2. Amphoteric substances define and give examples 3.

More information

ACID BASE EQUILIBRIUM

ACID BASE EQUILIBRIUM ACID BASE EQUILIBRIUM Part one: Acid/Base Theories Learning Goals: to identify acids and bases and their conjugates according to Arrhenius and Bronstead Lowry Theories. to be able to identify amphoteric

More information

ph and buffers Dr. Mamoun Ahram Summer, 2018

ph and buffers Dr. Mamoun Ahram Summer, 2018 ph and buffers Dr. Mamoun Ahram Summer, 2018 Kw Kw is called the ion product for water What is ph? Example: Find the K a of a 0.04 M weak acid HA whose [H + ] is 1 x 10-4? HA H + + A - K a = [A - ] [H

More information

Chapter 8 Acid-Base Equilibria

Chapter 8 Acid-Base Equilibria Chapter 8 Acid-Base Equilibria 8-1 Brønsted-Lowry Acids and Bases 8-2 Water and the ph Scale 8-3 The Strengths of Acids and Bases 8-4 Equilibria Involving Weak Acids and Bases 8-5 Buffer Solutions 8-6

More information

Kotz 7 th ed. Section 18.3, pp

Kotz 7 th ed. Section 18.3, pp Lecture 15 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

Acids, Bases and the Common Ion Effect

Acids, Bases and the Common Ion Effect cids, Bases and the Common Ion Effect Consider the following acid equilibrium of a weak acid: HF + H O H 3 O + + F By LeChatelier s principle, we predict the HF dissociation should be driven left, suppressing

More information

Chem 150, Spring Unit 4 - Acids & Bases. Introduction

Chem 150, Spring Unit 4 - Acids & Bases. Introduction Chem 150, Spring 2015 Unit 4 - Acids & Bases Introduction Patients with emphysema cannot expel CO2 from their lungs rapidly enough. This can lead to an increase of carbonic (H2CO3) levels in the blood

More information

Analytical Chemistry Lecture III by/ Dr. Ekhlas Q. J. BUFFER SOLUTIONS

Analytical Chemistry Lecture III by/ Dr. Ekhlas Q. J. BUFFER SOLUTIONS Analytical Chemistry Lecture III by/ Dr. Ekhlas Q. J. BUFFER SOLUTIONS Buffer solutions Definition Solutions which resist changes in ph when small quantities of acid or alkali are added. a solution that

More information

Acid-Base Equilibria. And the beat goes on Buffer solutions Titrations

Acid-Base Equilibria. And the beat goes on Buffer solutions Titrations Acid-Base Equilibria And the beat goes on Buffer solutions Titrations 1 Common Ion Effect The shift in equilibrium due to addition of a compound having an ion in common with the dissolved substance. 2

More information

CHEMISTRY 1AA3 Tutorial 2 Answers - WEEK E WEEK OF JANUARY 22, (i) What is the conjugate base of each of the following species?

CHEMISTRY 1AA3 Tutorial 2 Answers - WEEK E WEEK OF JANUARY 22, (i) What is the conjugate base of each of the following species? CHEMISTRY 1AA3 Tutorial 2 Answers - WEEK E WEEK OF JANUARY 22, 2001 M.A. Brook B.E. McCarry A. Perrott 1. (i) What is the conjugate base of each of the following species? (a) H 3 O + (b) NH 4 + (c) HCl

More information

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY Acids And Bases A. Characteristics of Acids and Bases 1. Acids and bases are both ionic compounds that are dissolved in water. Since acids and bases both form ionic solutions, their solutions conduct electricity

More information

Chem 1102 Semester 1, 2011 ACIDS AND BASES

Chem 1102 Semester 1, 2011 ACIDS AND BASES Chem 1102 Semester 1, 2011 ACIDS AND BASES Acids and Bases Lecture 23: Weak Acids and Bases Calculations involving pk a and pk b Strong Acids and Bases Lecture 24: Polyprotic Acids Salts of Acids and Bases

More information

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Sec 1 The Common-Ion Effect: The dissociation of a weak electrolyte decreases when a strong electrolyte that has an ion in common with

More information

ACID-BASE REACTIONS. Titrations Acid-Base Titrations

ACID-BASE REACTIONS. Titrations Acid-Base Titrations Page III-b-1 / Chapter Fourteen Part II Lecture Notes ACID-BASE REACTIONS Chapter (Part II A Weak Acid + Strong Base Titration Titrations In this technique a known concentration of base (or acid is slowly

More information

battery acid the most widely used industrial chemical Hydrochloric acid, HCl muriatic acid stomach acid Nitric acid, HNO 3

battery acid the most widely used industrial chemical Hydrochloric acid, HCl muriatic acid stomach acid Nitric acid, HNO 3 BRCC CHM 101 Chapter 9 Notes (Chapter 8 in older text versions) Page 1 of 9 Chapter 9: Acids and Bases Arrhenius Definitions more than 100 years old Acid a substance that produces H + in water (H + is

More information

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite.

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite. Chapter 17 Applying equilibrium 17.1 The Common Ion Effect When the salt with the anion of a is added to that acid, it reverses the dissociation of the acid. Lowers the of the acid. The same principle

More information

Make a mixture of a weak acid and its conjugate base (as the SALT) Make a mixture of a weak base and its conjugate acid (as the SALT)

Make a mixture of a weak acid and its conjugate base (as the SALT) Make a mixture of a weak base and its conjugate acid (as the SALT) 175 BUFFERS - resist ph change caused by either the addition of strong acid/base OR by dilution Made in one of two ways: Make a mixture of a weak acid and its conjugate base (as the SALT) Make a mixture

More information

Chapter 8 Acid-Base Equilibria

Chapter 8 Acid-Base Equilibria Chapter 8 Acid-Base Equilibria 8-1 Brønsted-Lowry Acids and Bases 8-2 Water and the ph Scale 8-3 The Strengths of Acids and Bases 8-4 Equilibria Involving Weak Acids and Bases 8-5 Buffer Solutions 8-6

More information

CHM 112 Dr. Kevin Moore

CHM 112 Dr. Kevin Moore CHM 112 Dr. Kevin Moore Reaction of an acid with a known concentration of base to determine the exact amount of the acid Requires that the equilibrium of the reaction be significantly to the right Determination

More information

Introduction to Acids & Bases. Packet #26

Introduction to Acids & Bases. Packet #26 Introduction to Acids & Bases Packet #26 Review I Svante Arrhenius was the first person to recognize the essential nature of acids and bases. Review II Arrhenius postulated that: Acids produce hydrogen

More information

10/16/17 ACIDS AND BASES, DEFINED WATER IS AMPHOTERIC OUTLINE. 9.1 Properties of Acids and Bases. 9.2 ph. 9.3 Buffers

10/16/17 ACIDS AND BASES, DEFINED WATER IS AMPHOTERIC OUTLINE. 9.1 Properties of Acids and Bases. 9.2 ph. 9.3 Buffers ACIDS AND BASES, DEFINED A hydrogen atom contains a proton and an electron, thus a hydrogen ion (H + ) is a proton: Acids: Proton (H + ) transfer between molecules is the basis of acid/base chemistry Ø

More information

Chapter 15. Titration Curves for Complex Acid/Base Systems

Chapter 15. Titration Curves for Complex Acid/Base Systems Chapter 15 Titration Curves for Complex Acid/Base Systems Polyfunctional acids and bases Carbonic acid/bicarbonate buffer system Buffers for human blood ph = 7.35-7.45 CO 2(g) + H 2 O H 2 CO 3(aq) H 2

More information

Chpt 16: Acids and Bases

Chpt 16: Acids and Bases Chpt 16 Acids and Bases Defining Acids Arrhenius: Acid: Substances when dissolved in water increase the concentration of H+. Base: Substances when dissolved in water increase the concentration of OH- Brønsted-Lowry:

More information

Equilibrium constant

Equilibrium constant Equilibrium constant Equilibrium constant Many reactions that occur in nature are reversible and do not proceed to completion. They come to an equilibrium where the net velocity = 0 The velocity of forward

More information

Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes i

Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes i 18.3 ph Curves Buffer solutions Strong acids and bases dissociate completely and change the ph of a solution drastically. Buffers are solutions that resist changes in ph even when acids and bases are added

More information

Proton Transfer Acids - Base. Dr. Fred Omega Garces Chemistry 201. Miramar College

Proton Transfer Acids - Base. Dr. Fred Omega Garces Chemistry 201. Miramar College 16.2 Acids Base Proton Transfer Dr. Fred Omega Garces Chemistry 201 Miramar College Important Notes: K a when H 3 O + is produced, K b when OH is produced 1 Acids Bases; Proton Transfer BrønstedLowry AcidsBases

More information

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin

Chap 17 Additional Aspects of Aqueous Equilibria. Hsu Fu Yin Chap 17 Additional Aspects of Aqueous Equilibria Hsu Fu Yin 1 17.1 The Common-Ion Effect Acetic acid is a weak acid: CH 3 COOH(aq) H + (aq) + CH 3 COO (aq) Sodium acetate is a strong electrolyte: NaCH

More information

Chapter 6 Acids and Bases

Chapter 6 Acids and Bases Chapter 6 Acids and Bases Introduction Brønsted acid-base reactions are proton transfer reactions. Acids donate protons to bases. In the process, the acid is converted into its conjugate base and the base

More information

General Phenomena: Law of mass action, dissociation of water, ph, buffers

General Phenomena: Law of mass action, dissociation of water, ph, buffers General Phenomena: Law of mass action, dissociation of water, ph, buffers Ionization of Water, Weak Acids and Weak Bases Many properties of water can be explained in terms of uncharged H 2 O molecule Small

More information

Buffer Calculations. The Standard Equilibrium Approach to Calculating a Buffer s ph

Buffer Calculations. The Standard Equilibrium Approach to Calculating a Buffer s ph Buffer Calculations A buffer is a solution that has the ability to resist a change in ph upon the addition of a strong acid or a strong base. For a buffer to exist it must satisfy two conditions: (1) the

More information

Ionic Equilibria. weak acids and bases. salts of weak acids and bases. buffer solutions. solubility of slightly soluble salts

Ionic Equilibria. weak acids and bases. salts of weak acids and bases. buffer solutions. solubility of slightly soluble salts Ionic Equilibria weak acids and bases salts of weak acids and bases buffer solutions solubility of slightly soluble salts Arrhenius Definitions produce H + ions in the solution strong acids ionize completely

More information

Ionic Equilibria. In the Brönsted Lowry classification, acids and bases may be anions such as HSO 4

Ionic Equilibria. In the Brönsted Lowry classification, acids and bases may be anions such as HSO 4 Ionic Equilibria Brönsted Lowry Theory According to the Brönsted Lowry theory, an acid is a substance, charged or uncharged, that is capable of donating a proton, and a base is a substance, charged or

More information

Homework #7 Chapter 8 Applications of Aqueous Equilibrium

Homework #7 Chapter 8 Applications of Aqueous Equilibrium Homework #7 Chapter 8 Applications of Aqueous Equilibrium 15. solution: A solution that resists change in ph when a small amount of acid or base is added. solutions contain a weak acid and its conjugate

More information

[H + ] OH - Base contains more OH - than H + [OH - ] Neutral solutions contain equal amounts of OH - and H + Self-ionization of Water

[H + ] OH - Base contains more OH - than H + [OH - ] Neutral solutions contain equal amounts of OH - and H + Self-ionization of Water 19.1 Acids & Bases 1. Compare and contrast the properties of acids & bases. 2. Describe the self-ionization of water & the concept of K w. 3. Differentiate between the Arhennius & Bronsted-Lowry models

More information

Chemical and Physical Properties of Organic Molecules

Chemical and Physical Properties of Organic Molecules Chemical and Physical Properties of Organic Molecules I.Elements A. Chemical symbols: C H O P S N C=carbon, H=hydrogen, O=oxygen, P=phosphorus, S=sulfur, N=nitrogen B. Top 3 Earth s surface = O, Si, Al

More information

The Common Ion Effect

The Common Ion Effect Chapter 17 ACID BASE EQUILIBRIA (Part I) Dr. Al Saadi 1 17.1 The Common Ion Effect A phenomenon known as the common ion effect states that: When a compound containing an ion in common with an already dissolved

More information

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA Acids- taste sour Bases(alkali)- taste bitter and feel slippery Arrhenius concept- acids produce hydrogen ions in aqueous solution while

More information

K w. Acids and bases 8/24/2009. Acids and Bases 9 / 03 / Ionization of water. Proton Jumping Large proton and hydroxide mobility

K w. Acids and bases 8/24/2009. Acids and Bases 9 / 03 / Ionization of water. Proton Jumping Large proton and hydroxide mobility Chapter 2 Water Acids and Bases 9 / 03 / 2009 1. How is the molecular structure of water related to physical and chemical behavior? 2. What is a Hydrogen Bond? 3Wh 3. What are Acids Aid and db Bases? 4.

More information

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 16 Aqueous Ionic Equilibrium Sherril Soman Grand Valley State University The Danger of Antifreeze Each year, thousands of pets and wildlife species die from consuming antifreeze.

More information

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 17. Additional Aspects of Aqueous Equilibria. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 17 Additional Aspects of John D. Bookstaver St. Charles Community College Cottleville, MO The Common-Ion Effect Consider a solution of acetic acid: CH 3 COOH(aq) + H 2 O(l)

More information

ACID - BASE EQUILIBRIA

ACID - BASE EQUILIBRIA ACID - BASE EQUILIBRIA Mgr. Monika Šrámková Department of medical chemistry and clinical biochemistry, 2 th Medical faculty of Charles Univerzity of Prague and Motol Univerzity Hospital CHEMICAL EQUILIBRIA-

More information

EXAM 2 CHEMISTRY 224 March 1, Use a #2 pencil to code all information on the answer sheet.

EXAM 2 CHEMISTRY 224 March 1, Use a #2 pencil to code all information on the answer sheet. 1. Read the following instructions carefully EXAM CHEMISTRY March 1, 01. Write your name and Purdue ID number on the answer sheet 3. Write your Graduate Instructor s name on the line for Instructor on

More information

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B

Chemical Equilibrium. Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B Chemical Equilibrium Many reactions are, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product formation,

More information

ACID-BASE EQUILIBRIA. Chapter 14 Big Idea Six

ACID-BASE EQUILIBRIA. Chapter 14 Big Idea Six ACID-BASE EQUILIBRIA Chapter 14 Big Idea Six Acid-Base Equilibria Common Ion Effect in Acids and Bases Buffer SoluDons for Controlling ph Buffer Capacity ph-titradon Curves Acid-Base TitraDon Indicators

More information

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Acid-Ionization Equilibria. Acid-Ionization Equilibria

Acid-Base Equilibria. 1.NH 4 Cl 2.NaCl 3.KC 2 H 3 O 2 4.NaNO 2. Acid-Ionization Equilibria. Acid-Ionization Equilibria Acid-Ionization Equilibria Acid-Base Equilibria Acid ionization (or acid dissociation) is the reaction of an acid with water to produce hydronium ion (hydrogen ion) and the conjugate base anion. (See Animation:

More information

Chapter 13 Acids and Bases

Chapter 13 Acids and Bases William L Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 13 Acids and Bases Edward J. Neth University of Connecticut Outline 1. Brønsted-Lowry acid-base model 2. The

More information

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3 Chapter 14 Acids and Bases I. Bronsted Lowry Acids and Bases a. According to Brønsted- Lowry, an acid is a proton donor and a base is a proton acceptor. Therefore, in an acid- base reaction, a proton (H

More information

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic Formation of a salt (ionic compound): Neutralization reaction molecular Full ionic Eliminate spect ions to yield net ionic Hydrolysis/ reaction with water Anions of Weak Acids Consider the weak acid HF

More information

Page 1 of 7 Chem 201 Lecture11 Summer 07. Admin: recall all Test #1 s Please turn in Test 1 for regrading. Last time:

Page 1 of 7 Chem 201 Lecture11 Summer 07. Admin: recall all Test #1 s Please turn in Test 1 for regrading. Last time: Page 1 of 7 Chem 201 Lecture11 Summer 07 Admin: recall all Test #1 s Please turn in Test 1 for regrading Last time: 1. calibration methods 2. mixtures 3. Acid Base reactions AcidBase Calculations: ACIDS

More information

Chapter 17. Additional Aspects of Aqueous Equilibria 蘇正寬 Pearson Education, Inc.

Chapter 17. Additional Aspects of Aqueous Equilibria 蘇正寬 Pearson Education, Inc. Chapter 17 Additional Aspects of Aqueous Equilibria 蘇正寬 chengkuan@mail.ntou.edu.tw Additional Aspects of Aqueous Equilibria 17.1 The Common-Ion Effect 17.2 Buffers 17.3 Acid Base Titrations 17.4 Solubility

More information

Lecture #11-Buffers and Titrations The Common Ion Effect

Lecture #11-Buffers and Titrations The Common Ion Effect Lecture #11-Buffers and Titrations The Common Ion Effect The Common Ion Effect Shift in position of an equilibrium caused by the addition of an ion taking part in the reaction HA(aq) + H2O(l) A - (aq)

More information

CHEM J-4 June 2014

CHEM J-4 June 2014 CHEM1102 2014-J-4 June 2014 The structures of the drugs aspirin and benzocaine are shown below. (a) Draw the conjugate base of aspirin and the conjugate acid of benzocaine. (b) Circle the form of each

More information

Chemical Equilibrium

Chemical Equilibrium Chemical Equilibrium Many reactions are reversible, i.e. they can occur in either direction. A + B AB or AB A + B The point reached in a reversible reaction where the rate of the forward reaction (product

More information

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute)

Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) CHAPTER 16: ACID-BASE EQUILIBRIA Part One: Pure Solutions of Weak Acids, Bases (water plus a single electrolyte solute) A. Weak Monoprotic Acids. (Section 16.1) 1. Solution of Acetic Acid: 2. See Table

More information

Responses of Chemical Equilibria

Responses of Chemical Equilibria Responses of Chemical Equilibria Chapter 9 of Atkins: Section 9.5 The Response of Chemical Equilibria to Conditions Acid-base equilibria in water The ph of acids and bases Acid-base titrations The ph curve

More information

Introduction to Acids & Bases II. Packet #26

Introduction to Acids & Bases II. Packet #26 Introduction to Acids & Bases II Packet #26 1 Review I Svante Arrhenius was the first person to recognize the essential nature of acids and bases. 2 Review II Arrhenius postulated that: Acids produce hydrogen

More information