Lesson Plan Unit Plan: Topic: Grade and Content: Do Now: Aim: Performance Objectives: Vocabulary: Material Lists: Safety and Disposal:

Size: px
Start display at page:

Download "Lesson Plan Unit Plan: Topic: Grade and Content: Do Now: Aim: Performance Objectives: Vocabulary: Material Lists: Safety and Disposal:"

Transcription

1 Lesson Plan Unit Plan: Chemical Bonding Topic: Hydrogen Bonding Grade and Content: 10th Grade Chemistry (Second Period 8:52 9:45) Do Now: Read the hydrogen bonding activity and be ready to explain the procedure. Aim: How can use surface tension to explain hydrogen bonding? Performance Objectives: Students will be able to (SWBAT): 1. Investigate hydrogen bonding and surface tension by seeing how many drops of a liquid they can place on a penny before it runs over. 2. Compare the physical properties of substances based upon chemical bonds and intermolecular forces Vocabulary: Hydrogen Bonding: special type of dipole dipole attraction which occurs when a hydrogen atom bonded to a strongly electronegative atom exists in the vicinity of another electronegative atom with a lone pair of electrons. Not a real bond Surface tension: The tension on the surface of water occurs when water molecules on the outside of the system align and are held together by hydrogen bonding to create an effect similar to a net made of atoms Intra molecular bonds: are those which occur within one single molecule Fro Previous Lesson: Molecular Polarity:A polar molecule results when a molecule contains polar bonds in an unsymmetrical arrangement. Material Lists: Cyclohexane Isopropanol Water Pennies Safety and Disposal: All materials are diluted and safe to handle. In the event a students gets contact with skin, the student need to rinse the area affected thoroughly with water for minutes Anticipatory Opening: Video: What's the shape of a molecule?

2 Development of the lesson: What the teacher does What the student does 1 Put up DO NOW, AIM, and HW; setup materials. 2 Go over Do Now; ask students to explain the activity 3 Anticipatory Opening What does the molecular geometry of water tells us about polarity? The unequal distribution of the charges, makes asymmetrical and therefore polar molecule What is the main idea of the video? The shape of a molecule is arranged in away that it maximizes the attraction of opposite charges and minimize repulsion of unlike. Go over Vocabulary 4 Ask a student to read the Aim 5 Explain the activity to the students and assign groups. Ask each group to designate a person to get the materials. 6 Ask for volunteers to post their data on the board 7 Analysis of the data 8 Go over summative assessment activity 9 Answer the Aim. 10 Have a student to read the homework from the board. Students start Do Now. Students pay attention to the video Students write definitions and answer to the aim in their notebooks Students work on the activity One student from each group is chosen to write their results on the board Differentiated instruction: organizer worksheets, PowerPoint slides, Smart Notebook, questioning techniques, guided practice, independent work, team/pair/share whole class discussions, visuals, Internet sites, translations, color codes, student aided teacher demonstrations Summative Assessment Questions: 1. Compare the average number of drops placed on your penny for each liquid. What might account for any differences? The difference vary depend on the method for counting the drops or how many drops were added at once. 2. What steps did you include in your procedure to increase the reliability or reproducibility of your results? adding the drops all at the same height and same rate 3. Compare the average number of drops placed on your penny with the results obtained by some of the other lab groups. What might account for differences?

3 Mos of the results were very close. Differences might range from moving the tables to miscounting drops or misuse of the droppers 4. What were your predictions for the effect of each solute on the surface tension of the water? Answers may vary 5. What steps did you include in your procedure to increase the reliability or reproducibility of your results? Answers may vary 6. What are some practical applications of what you tested and learned? Answers may vary omework: e Learning Notes for revision: Standards: New York City High School Science Standards 1. The electronegative difference between two bonded atoms is used to assess the degree of polarity in the bond.(5.2k) 2. Molecular polarity can be determined by the shape of the molecule and distribution of charge. Symmetrical (nonpolar) molecules include CO2, H4, and diatomic elements. Asymmetrical (polar) molecules include HCl, NH3, and H2O. (5.2l) 3. Intermolecular forces created by the unequal distribution of charge result in varying degrees of attraction between molecules. Hydrogen bonding is an example of a strong intermolecular force. (5.2m) Common Core State Standards Connections Mathematical Practices: 5. Use appropriate tools strategically. 6. Attend to precision. 8. Look for and express regularity in repeated reasoning. CCR Reading Writing Speaking Listening Language 4. Comprehend as well as critique. 5. Value evidence.

4 Hydrogen Bonding Activity Hydrogen bonding in water is responsible for some of water s interesting properties. One of these properties is surface tension. Hydrogen bonding is due to the polarity of the oxygen-hydrogen, nitrogen-hydrogen, or fluorine-nitrogen bonds in molecules. Hydrogen bonding is an intra-molecular bond. That means it occurs between molecules, not within a molecule. Hydrogen bonding in water is responsible for some of water s interesting properties. In this activity, you will investigate hydrogen bonding and surface tension by seeing how many drops of a liquid you can place on a penny before it runs over. Using a dropper pipette, count the number of drops of each liquid you can place on the surface of a clean, dry penny. Organize your data clearly in this table: Liquid Trial # 1, drops Trial #2, drops Average # drops water cyclohexane alcohol Questions 1. Compare the average number of drops placed on your penny for each liquid. What might account for any differences? 2. What steps did you include in your procedure to increase the reliability or reproducibility of your results? 3. Compare the average number of drops placed on your penny with the results obtained by some of the other lab groups. What might account for differences? 4. What were your predictions for the effect of each solute on the surface tension of the water? 5. What steps did you include in your procedure to increase the reliability or reproducibility of your results? 6. What are some practical applications of what you tested and learned?

5 Properties of Water Lesson Plan Learning Objective: The purpose of this activity is to let the students experiment with water so that they may understand the concepts of Polarity Hydrogen Bonding Surface tension Scientific method Idaho State Science Standards Met: Kindergarten (Goals 1.2, 1.3, 1.6, 1.7, 1.8, 2.1), Grade 1 (Goals 1.2, 1.3, 1.6, 1.7, 1.8, 2.1), Grade 2 (Goals 1.2, 1.3, 1.6, 1.7, 1.8, 2.1) Grade 3 (Goals 1.2, 1.3, 1.6, 1.7, 1.8, 2.1), Grade 4 (Goals 1.2, 1.3, 1.6, 1.7, 1.8, 2.1), Grade 5 (Goals 1.2, 1.3, 1.6, 1.8, 2.1) Grade 6 (Goals 1.2, 1.3, 1.6, 1.8, 2.1), Grade 7 (Goals 1.2, 1.3, 1.6, 1.8, 2.1), Grades 8 9 (Goals 1.2, 1.3, 1.6, 1.8), Grade 10 (1.2, 1.3, 1.6) Materials: A penny, an eyedropper or pipette, a cup of water, and paper towels for each team of students. Background: Sometimes we call water H2O. That s because water molecules each have two hydrogen atoms and one oxygen atom. While water molecules are neutral as a whole, one end of the water molecule tends to have a positive charge while the other has a negative charge (polarity). Each end of a water molecule is attracted to the opposite charged end of another water molecule. This is called hydrogen bonding. Activity: How many drops of water can you fit on a penny? Make a prediction. Clean the penny using a paper towel. Don t use soap! Place the penny heads up on a flat surface. Fill the eyedropper and drop one drop of water on the penny at a time. After dropping five drops of water, take a look at your penny from the side view. What is happening? Continue to place drops of water on the penny. How many drops of water did your penny hold? What did the water on your penny look like? Were you surprised? Repeat the experiment and see if you can fit more drops of water on the penny. Follow up: After the activity, hold a discussion about the shape of the water on the penny and

6 why the so many water drops fit on the head of the penny. Introduce the term surface tension. When you put water drops on a penny, the drops pile up into a dome because of surface tension. Surface tension is produced by the force of attraction between water molecules. Within the liquid, each water molecule is attracted to its neighboring molecules, making them stick together. The water molecules at the top, however, stick only to the water molecules next to and below them. That s because there are none above them. This unbalanced attractive force causes the water to act as if it had a thin skin on the surface. As you add more drops, the force of gravity becomes stronger than the force of attraction among the water molecules at the surface. This causes the water to spill over the edge of the coin. Extension: Students will conduct a simple test to determine how many drops of each of three liquids can be placed on a penny before spilling over. The three liquids are water, rubbing alcohol, and vegetable oil. Students will make a hypotheses based on the previous experiment. Conduct the experiment using water, rubbing alcohol and vegetable oil and ask students to report their findings. Note: Oils have few, if any, hydrogen bonds amongst their large, organic molecules. When oil is dropped onto a flat, nonporous surface, it quickly spreads and forms a thin layer coating considerably more surface area than would a drop of water. Rubbing alcohol, on the other hand, is a mixture consisting of 70 percent isopropyl alcohol and 30 percent water. It does contain some hydrogen bonds within its structure, but not nearly as many as occur in pure water. Rubbing alcohol will form a bead when dropped onto a flat, nonporous surface, but the bead will be slightly flatter and larger in diameter than a corresponding bead of pure water.

Surface Tension: Liquids Stick Together Student Advanced Version

Surface Tension: Liquids Stick Together Student Advanced Version Surface Tension: Liquids Stick Together Student Advanced Version In this lab you will learn about properties of liquids, specifically cohesion, adhesion, and surface tension. These principles will be demonstrated

More information

Surface Tension: Liquids Stick Together Advanced Student Version

Surface Tension: Liquids Stick Together Advanced Student Version Surface Tension: Liquids Stick Together Advanced Student Version Image from www.eyefetch.com In this lab you will learn about surface tension. Surface tension is a special property of liquids that allows

More information

Surface Tension: Liquids Stick Together Teacher Version

Surface Tension: Liquids Stick Together Teacher Version Surface Tension: Liquids Stick Together Teacher Version In this lab you will learn about properties of liquids, specifically cohesion, adhesion, and surface tension. These principles will be demonstrated

More information

Intermolecular forces: Background

Intermolecular forces: Background Intermolecular forces: Background Electrostatics Up until now, we have just discussed attractions between molecules in the area of the covalent bond. Here, atoms within a molecule are attracted to one

More information

PreAP Properties of Water Lab

PreAP Properties of Water Lab PreAP of Water Lab Background The structure of the water molecule gives water unique properties. Water is a polar molecule, which means that it has a region with a slight negative charge (the oxygen atom),

More information

Chapter 5, Lesson 2 Surface Tension

Chapter 5, Lesson 2 Surface Tension Chapter 5, Lesson 2 Surface Tension Key Concepts The attraction of molecules at the surface of a liquid is called surface tension. The polarity of water molecules can help explain why water has a strong

More information

Surface Tension: Liquids Stick Together Student Version

Surface Tension: Liquids Stick Together Student Version Surface Tension: Liquids Stick Together Student Version In this lab you will learn about properties of liquids, specifically cohesion, adhesion, and surface tension. These principles will be demonstrated

More information

Lab #11: Investigating Intermolecular Forces (mini-lab)

Lab #11: Investigating Intermolecular Forces (mini-lab) (mini-lab) Part One: The Penny Drop Activity What effects do intermolecular forces have on surface tension? Name Materials: Pennies Water Rubbing Alcohol (ethyl or isopropyl will work fine) Dec. 14, 2016

More information

Chapter 5, Lesson 1: Water is a Polar Molecule

Chapter 5, Lesson 1: Water is a Polar Molecule Chapter 5, Lesson 1: Water is a Polar Molecule Key Concepts The water molecule, as a whole, has 10 protons and 10 electrons, so it is neutral. In a water molecule, the oxygen atom and hydrogen atoms share

More information

Intermolecular Forces of Various. Substances Lab Report. Chemistry. Period 3. Crater School of BIS. January 14, Joshua L.

Intermolecular Forces of Various. Substances Lab Report. Chemistry. Period 3. Crater School of BIS. January 14, Joshua L. Intermolecular Forces of Various Substances Lab Report Chemistry Period 3 Crater School of BIS January 14, 2016 Joshua L. Idiart Introduction: In this experiment, six substances were tested in various

More information

#2: THE FLOATING PAPER CLIP

#2: THE FLOATING PAPER CLIP Activity #1: PILE IT ON. Materials: 1 DRY penny, 1 eye dropper, water. Procedure: Make sure the penny is dry. Begin by estimating the number of drops of water that can be piled on the penny before it spills

More information

ATOMIC AND MOLECULAR ATTRACTION

ATOMIC AND MOLECULAR ATTRACTION ATOMIC AND MOLECULAR ATTRACTION Name(s) PART 1 DROPS ON A PENNY Assemble the following materials: three pennies, two eye droppers, several paper towels, a small cup of water, a small cup of alcohol, and

More information

Chapter 5, Lesson 1: Water is a Polar Molecule

Chapter 5, Lesson 1: Water is a Polar Molecule Chapter 5, Lesson 1: Water is a Polar Molecule Key Concepts The water molecule, as a whole, has 10 protons and 10 electrons, so it is neutral. In a water molecule, the oxygen atom and hydrogen atoms share

More information

CHEM-UP! D A Y The Academic Support Daytona State College (Chem-Up 3, Page 1 of 101)

CHEM-UP! D A Y The Academic Support Daytona State College (Chem-Up 3, Page 1 of 101) CHEM-UP! D A Y 3-2013 The Academic Support Center @ Daytona State College (Chem-Up 3, Page 1 of 101) Chapter 4 Lecture Basic Chemistry Chem Up! An Introduction to Basic Chemistry Concepts Day 3 Fourth

More information

Kitchen Chemistry Test 1

Kitchen Chemistry Test 1 Roy1 Penny water-droplet lab Kitchen Chemistry Test 1 Question: How many drops of water will fit on the surface of a clean, dry penny? Make a hypothesis, and then continue. Hypothesis: I think that if

More information

Properties of Liquids Adapted from Flinn Scientific, Flinn ChemTopic Labs: Solids and Liquids Name. Introduction

Properties of Liquids Adapted from Flinn Scientific, Flinn ChemTopic Labs: Solids and Liquids Name. Introduction Introduction Properties of Liquids Adapted from Flinn Scientific, Flinn ChemTopic Labs: Solids and Liquids Name Have you ever seen an insect or spider appear to walk on water? The ability of water bugs

More information

2. What type of bonding allows water to attract other water molecules? 3. What is the difference between solutions and mixtures?

2. What type of bonding allows water to attract other water molecules? 3. What is the difference between solutions and mixtures? Biology Lab Name(s) Period: Date: Purpose: To investigate the properties of water, ph, and enzymes that biologically impact biological functions. Background Information: Water: Sometimes we call water

More information

Unit 6 Topic: Molecular Geometry VSEPR Date: February 25, 2011

Unit 6 Topic: Molecular Geometry VSEPR Date: February 25, 2011 Unit 6 Topic: Molecular Geometry VSEPR Date: February 25, 2011 NSES: STS A-E; ASE A-E; SCS 9-12 B Grade level: 10 th and 11 th SOL: CH.2 The student will investigate and understand that the placement of

More information

Station 1 Water is a polar molecule and has a very unique structure

Station 1 Water is a polar molecule and has a very unique structure Station 1 Water is a polar molecule and has a very unique structure A water molecule, because of its shape, is a polar molecule. That is, it has one side that is positively charged and one side that is

More information

Chapter 8 Notes. Covalent Bonding

Chapter 8 Notes. Covalent Bonding Chapter 8 Notes Covalent Bonding Molecules and Molecular Compounds Helium and Neon are monoatomic, meaning they exist as single atoms Some compounds exist as crystalline solids, such as NaCl Others exist

More information

Ball-and-Stick Models ChemCatalyst

Ball-and-Stick Models ChemCatalyst I-9: New Smells, New Ideas Ball-and-Stick Models ChemCatalyst Do you think any of these molecules will smell similar? What evidence do you have to support your prediction? citronellol, C 10 H 20 O menthol,

More information

Properties of Water Lab

Properties of Water Lab Name Properties of Water Lab Block Directions: Please record all of your answers regarding the properties of water lab on this lab report sheet. Introduction: Water is all around you - an incredibly important

More information

What are covalent bonds?

What are covalent bonds? Covalent Bonds What are covalent bonds? Covalent Bonds A covalent bond is formed when neutral atoms share one or more pairs of electrons. Covalent Bonds Covalent bonds form between two or more non-metal

More information

Chemistry II Unit 5b Practice Test

Chemistry II Unit 5b Practice Test Practice for Unit 5b Exam 2013 1 Unit5Practicetest2013.odt Chemistry II Unit 5b Practice Test Reading: This material is covered in chapter 5 and chapter 12 in your book. Your notes and your molecular drawings

More information

Cross-Disciplinary Standards Assessed. C.1. Analyze a situation to identify a problem to be solved.

Cross-Disciplinary Standards Assessed. C.1. Analyze a situation to identify a problem to be solved. TCCRI College Readiness Assignments Instructor Task Information Crossing the Border Overview Description In this activity, students will mix several solutions, record their observations, and interpret

More information

Name Date Period Molecular Nature of Water

Name Date Period Molecular Nature of Water Name Date Period Molecular Nature of Water Purpose: To determine how water molecules react using molecular models and Lab demos. Materials: I cup of 12 water molecules (red & white), 1 Na (blue), 1 Cl

More information

CHM The Liquid State (r15) Charles Taylor 1/7

CHM The Liquid State (r15) Charles Taylor 1/7 CHM 111 - The Liquid State (r15) - 2015 Charles Taylor 1/7 Introduction We have discussed solids and liquids in general. We're now going to discuss the liquid phase in greater detail. We will discuss properties

More information

Name: Hour: Teacher: ROZEMA / CHEMISTRY. Molecular Attractions

Name: Hour: Teacher: ROZEMA / CHEMISTRY. Molecular Attractions Name: Hour: Teacher: ROZEMA / CHEMISTRY Molecular Attractions Name: Hour: Teacher: Ms. Rozema Starter Questions Grading: 2 pts = Date and full question written, question answered. 1 pt. = one requirement

More information

Comparing the Strength of Intermolecular Forces

Comparing the Strength of Intermolecular Forces Station 1 comparing liquids with hydrogen bonding There are 3 flasks with different liquids: C 2 H 5 OH (ethanol), C 2 H 4 (OH) 2 (ethylene glycol), and C 3 H 5 (OH) 3 (glycerin). DO NOT remove the stoppers

More information

NGSSS: SC.912.L.18.12

NGSSS: SC.912.L.18.12 Teacher NGSSS: SC.912.L.18.12 Discuss the special properties of water that contribute to Earth's suitability as an environment for life: cohesive behavior, ability to moderate temperature, expansion upon

More information

Comparing Ionic and Covalent Compounds

Comparing Ionic and Covalent Compounds Comparing Ionic and Covalent Compounds It takes energy to overcome the forces holding particles together. Thus, it takes energy to cause a substance to go from the liquid to the gaseous state. The boiling

More information

Lesson 1 Solids, Liquids, and Gases

Lesson 1 Solids, Liquids, and Gases Lesson 1 Student Labs and Activities Page Launch Lab 8 Content Vocabulary 9 Lesson Outline 10 MiniLab 12 Content Practice A 13 Content Practice B 14 School to Home 15 Key Concept Builders 16 Enrichment

More information

Lesson Plan: Stearic Acid

Lesson Plan: Stearic Acid Lesson Plan: Stearic Acid Created by: In this lesson, students investigate how stearic acid undergoes a 2014 AACT Middle School phase change from solid to liquid and back from liquid to solid. Content

More information

Lab: Detecting ph of Commonly Used Acids and Bases

Lab: Detecting ph of Commonly Used Acids and Bases Lab: Detecting ph of Commonly Used Acids and Bases FOR THE TEACHER Summary In this lab, students will use their knowledge of acids and bases to determine the acidity and basicity of every day items by

More information

Grade Level: 8-12 Time: One 55-minute class period for lecture and test. Curriculum Standards for the ten most populous states:

Grade Level: 8-12 Time: One 55-minute class period for lecture and test. Curriculum Standards for the ten most populous states: Lesson Plan ow Soap leans bjective: Illustrate atomic and intermolecular bonding in an every day activity such as washing hands. This lesson plan is suggested for a review and as a way to place a practical

More information

POGIL: Intermolecular Forces

POGIL: Intermolecular Forces Name Date Block POGIL: Intermolecular Forces Model 1: What is an intermolecular force? As you have learned, matter is made up of discrete particles called atoms, which chemically combine to form molecules.

More information

Lab #20: Observing the Behavior of Electrons

Lab #20: Observing the Behavior of Electrons Lab #20: Observing the Behavior of Electrons Background: In today s lab we will examine the attractive forces that hold molecules together and the disruptive forces that break them apart. The forces between

More information

Polar molecules vs. Nonpolar molecules A molecule with separate centers of positive and negative charge is a polar molecule.

Polar molecules vs. Nonpolar molecules A molecule with separate centers of positive and negative charge is a polar molecule. CHM 123 Chapter 8 8.5 8.6 Polar covalent Bonds and Dipole moments Depending on the relative electronegativities of the two atoms sharing electrons, there may be partial transfer of electron density from

More information

of its physical and chemical properties.

of its physical and chemical properties. 8.4 Molecular Shapes VSEPR Model The shape of a molecule determines many of its physical and chemical properties. Molecular l geometry (shape) can be determined with the Valence Shell Electron Pair Repulsion

More information

Lab 3: Solubility of Organic Compounds

Lab 3: Solubility of Organic Compounds Lab 3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

Intermolecular Forces OR WHY IS WATER SPECIAL?

Intermolecular Forces OR WHY IS WATER SPECIAL? Intermolecular Forces OR WHY IS WATER SPECIAL? Define the prefixes Inter Between, as internet, interstate Intra Inside, as intramural Intermolecular Forces (2) Forces between covalent molecules These are

More information

Chemistry, physical science, problem solving

Chemistry, physical science, problem solving Subject Area(s) Associated Unit Associated Lesson Activity Title Grade Level 11 (9-12) Chemistry, physical science, problem solving Water Powered Boats Time Required 30 minutes Group Size 28 Expendable

More information

Don t Flip Your Lid Comparing Intermolecular Forces

Don t Flip Your Lid Comparing Intermolecular Forces Don t Flip Your Lid Comparing Intermolecular Forces About this Lesson This lesson is a short experiment which allows students the opportunity to apply knowledge of bonding and intermolecular forces to

More information

Chapter 9 Lesson 1: Substances and Mixtures

Chapter 9 Lesson 1: Substances and Mixtures Chapter 9 Lesson 1: Substances and Mixtures Vocabulary -Substance -Heterogeneous mixture -Mixture -Homogeneous mixture -Solution Matter: Substances and Mixtures How do compounds and mixtures differ? Because

More information

Solutions are HOMOGENEOUS mixtures and can be gases, liquids, or solids.

Solutions are HOMOGENEOUS mixtures and can be gases, liquids, or solids. UNIT 4 Solutions and Solubility Chapter 8 Solutions and Concentration Types of Solutions The simplest solutions contain 2 substances: 1. SOLVENT o any substance that has another substance o dissolved in

More information

Scientists learned that elements in same group on PT react in a similar way. Why?

Scientists learned that elements in same group on PT react in a similar way. Why? Unit 5: Bonding Scientists learned that elements in same group on PT react in a similar way Why? They all have the same number of valence electrons.which are electrons in the highest occupied energy level

More information

TITLE Intermolecular forces and molecules. AUTHORS Ted Clark (The Ohio State University) Julia Chamberlain (University of Colorado Boulder)

TITLE Intermolecular forces and molecules. AUTHORS Ted Clark (The Ohio State University) Julia Chamberlain (University of Colorado Boulder) TITLE Intermolecular forces and molecules AUTHORS Ted Clark (The Ohio State University) Julia Chamberlain (University of Colorado Boulder) COURSE General Chemistry TYPE Interactive Lecture Demonstration

More information

Covalent Bonding bonding that results from the sharing of electron pairs.

Covalent Bonding bonding that results from the sharing of electron pairs. Unit 5 Notes Covalent Bonding, Covalent Compounds, and Intermolecular Forces Chemical Bond a mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms

More information

Do Now. On the piece of paper, indicate whether the following characteristics are associated with ionic or covalent compounds

Do Now. On the piece of paper, indicate whether the following characteristics are associated with ionic or covalent compounds 11/3 Do Now On the piece of paper, indicate whether the following characteristics are associated with ionic or covalent compounds 1. Electrical conductivity in aqueous solution 2. Relatively low melting

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces Molecular Compounds The simplest molecule is H 2 : Increased electron density draws nuclei together The pair of shared electrons constitutes a covalent bond. Intermolecular Forces

More information

NGSS DCI: Unit Lesson Plan Intermolecular (IM) Forces. Teacher: <Teacher> Time Frame: 9 days. Grade: 10 School: <School>

NGSS DCI: Unit Lesson Plan Intermolecular (IM) Forces. Teacher: <Teacher> Time Frame: 9 days. Grade: 10 School: <School> Unit Lesson Plan Intermolecular (IM) Forces Teacher: Time Frame: 9 days Grade: 10 School: Subject: PSI Chemistry NGSS DCI: AP Standards: HS-PS1-3 Plan and conduct an investigation to

More information

QUESTION (2012:1) The 3-dimensional diagrams of two molecules are shown below.

QUESTION (2012:1) The 3-dimensional diagrams of two molecules are shown below. QUESTION (2012:1) (c) The 3-dimensional diagrams of two molecules are shown below. Circle the word that describes the polarity of each of the molecules CBr 4 and CH 3 Br. CBr 4 Polar Non-polar CH 3 Br

More information

Polarity Notes. What is polarity?

Polarity Notes. What is polarity? Polarity Notes What is polarity? Polarity is a word that describes a molecule s electrical balance. If there is an imbalance with electrical charge, then a molecule is polar. If the electrical charge is

More information

POGIL 7 KEY Intermolecular Forces

POGIL 7 KEY Intermolecular Forces Honors Chem Block Name POGIL 7 KEY Intermolecular Forces In chemistry we talk a lot about properties of substances, since the object of chemistry is substances and their properties. After learning different

More information

One Q partial negative, the other partial negative Ø H- bonding particularly strong. Abby Carroll 2

One Q partial negative, the other partial negative Ø H- bonding particularly strong. Abby Carroll 2 Chemistry Notes v Polarity Experiment Ø Things involved Polarity Solubility Dispersion Ø Polarity Shaving cream has soap steric acid Water is polar Food coloring is polar/ionic because dissolved Like dissolves

More information

How are atoms held together in a Covalent Bond?

How are atoms held together in a Covalent Bond? 4.3 Covalent Bonds Vocabulary: Covalent Bond - Molecule - Double bond Triple bond Molecular compound Nonpolar bond Polar bond - How are atoms held together in a Covalent Bond? The chemical bond formed

More information

University of Houston-Downtown

University of Houston-Downtown University of Houston-Downtown Course Prefix, Number, and Title: CHEM 1307: General Chemistry * Credits/Lecture/Lab Hours: 3/0/0 Foundational Component Area: Life and Physical Sciences Prerequisites: Credit

More information

States of Matter: A Solid Lesson where Liquids Can be a Gas!

States of Matter: A Solid Lesson where Liquids Can be a Gas! TEACHER GUIDE STATES OF MATTER 60 Minute Physical Science Lesson Science- to- Go! Program Grades: 1-3 States of Matter: A Solid Lesson where Liquids Can be a Gas! Description Your classroom will be converted

More information

CHAPTER 12 CHEMICAL BONDING

CHAPTER 12 CHEMICAL BONDING Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 12 CHEMICAL BONDING Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

Dipole-Dipole Interactions https://www.youtube.com/watch?v=cerb1d6j4-m London Dispersion Forces https://www.youtube.com/watch?

Dipole-Dipole Interactions https://www.youtube.com/watch?v=cerb1d6j4-m London Dispersion Forces https://www.youtube.com/watch? CATALYST Lesson Plan GLE Physical Science 22. Predict the kind of bond that will form between two elements based on electronic structure and electronegativity of the elements (e.g., ionic, polar, nonpolar)

More information

CHEMISTRY Matter and Change. Chapter 12: States of Matter

CHEMISTRY Matter and Change. Chapter 12: States of Matter CHEMISTRY Matter and Change Chapter 12: States of Matter CHAPTER 12 States of Matter Section 12.1 Section 12.2 Section 12.3 Section 12.4 Gases Forces of Attraction Liquids and Solids Phase Changes Click

More information

Molecules and Matter. Grade Level: 4 6

Molecules and Matter. Grade Level: 4 6 Molecules and Matter Grade Level: 4 6 Teacher Guidelines pages 1 2 Instructional Pages pages 3 4 Partner Project page 5 Crossword Puzzle page 6 Answer Key page 7 Classroom Procedure 1. Without introduction,

More information

Lab 4D: Formula of a Hydrate

Lab 4D: Formula of a Hydrate Lab 4D: Formula of a Hydrate Name: Block: Group Members: Date: / /2018 Due Date: Drop Date: Criteria Objective: Clearly states the purpose of the experiment, written in your own words and briefly outlines

More information

What does the word BOND mean to you?

What does the word BOND mean to you? Chemical Bonds What does the word BOND mean to you? Chemical Bond attractive force between atoms or ions in a molecule or compound. Formed by: transferring e - (losing or gaining) sharing e - What do you

More information

Teacher s Name Ms. Kadie Calac. Lesson Title: Chemical Reactions. I. Identification. Course title: Agriculture Biology

Teacher s Name Ms. Kadie Calac. Lesson Title: Chemical Reactions. I. Identification. Course title: Agriculture Biology Lesson Title: Chemical Reactions Teacher s Name Ms. Kadie Calac I. Identification Course title: Agriculture Biology Teaching unit: The Chemistry of Life CDE Standards Addressed: 1.3 Explain the role of

More information

Polarity. Q

Polarity.  Q Unit 6 Polarity Polarity Reflect: Hydrogen has a very low affinity for electrons, while oxygen has a very high affinity. What do you think the bond between the two is like? Polarity http://www.youtube.com/watch?v=kj3o0xvhvq

More information

Sit with your group from yesterday. You have 5 minutes to finish your poster and be ready to present your property of water to the class.

Sit with your group from yesterday. You have 5 minutes to finish your poster and be ready to present your property of water to the class. To get out: Yellow Packet To pick up: Poster and markers Sit with your group from yesterday. You have 5 minutes to finish your poster and be ready to present your property of water to the class. Homework:

More information

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation Atoms and Molecules: 6.E.1 Modeling Molecules: Atoms & Molecules Grade Level 6 Sessions Seasonality Instructional Mode(s) Team Size WPS Benchmarks MA Frameworks Key Words 1 approximately 70 minutes N/A

More information

Intermolecular Forces and Strengths How do molecules stick together even in the worst of times?

Intermolecular Forces and Strengths How do molecules stick together even in the worst of times? Why? Intermolecular Forces and Strengths How do molecules stick together even in the worst of times? As you have learned, matter is made up of discrete particles called atoms, which chemically combine

More information

Electron dot. a.? Structural formula. b.? Space-filling. c.? Electron cloud. d.?

Electron dot. a.? Structural formula. b.? Space-filling. c.? Electron cloud. d.? 6.2 Covalent Bonding Section 6.2 1 FOCUS Key Concepts How are atoms held together in a covalent bond? What happens when atoms don t share electrons equally? What factors determine whether a molecule is

More information

How To Complete and Experiment and Write a Lab Report: Using Questions to Write a Hypothesis With Clear Independent and Dependent Variables

How To Complete and Experiment and Write a Lab Report: Using Questions to Write a Hypothesis With Clear Independent and Dependent Variables How To Complete and Experiment and Write a Lab Report: Using Questions to Write a Hypothesis With Clear Independent and Dependent Variables 1 I can How to Write a Hypothesis http://www.myteacherpages.com/webpages/jflynt/portfolio.cfm?subpage=1001394

More information

CP Covalent Bonds Ch. 8 &

CP Covalent Bonds Ch. 8 & CP Covalent Bonds Ch. 8 & 9 2015-2016 Why do atoms bond? Atoms want stability- to achieve a noble gas configuration ( ) For bonds there is a transfer of electrons to get an octet of electrons For covalent

More information

Topic 4: Chemical Bonds. IB Chemistry SL Ms. Kiely Coral Gables Senior High

Topic 4: Chemical Bonds. IB Chemistry SL Ms. Kiely Coral Gables Senior High Topic 4: Chemical Bonds IB Chemistry SL Ms. Kiely Coral Gables Senior High Bell-Ringer Draw an example of each type of intermolecular force using the following molecules: TOPIC 4 TEST NEXT CLASS MONDAY

More information

Bay Area Scientists in Schools Presentation Plan

Bay Area Scientists in Schools Presentation Plan Bay Area Scientists in Schools Presentation Plan Lesson Name Presenter(s) Chemical Reactions Mercedes Taylor, Nick Settineri, Jessica Ziegler, Tyler Hurlburt, Parker Deal Grade Level 5 Standards Connection(s)

More information

To dissolve or not dissolve

To dissolve or not dissolve To dissolve or not dissolve What s the mystery? Domain(s) Subdomain keywords Two glasses are half full of clear liquid. When a teaspoon of salt is added to both and stirred, it dissolves in one but not

More information

Date: Monday, February 6, Obj: Write electron dot structures. Complete: How many valence electrons in the following? H Be B C.

Date: Monday, February 6, Obj: Write electron dot structures. Complete: How many valence electrons in the following? H Be B C. Do Now Date: Monday, February 6, 2017 Obj: Write electron dot structures. Complete: How many valence electrons in the following? H Be B C N O F Ne Valence Electrons Remember: in chemical bonds we re talking

More information

Title: Does Size Matter?: A student investigation of the inverse relationship between molecule size and per-unit-volume concentrations.

Title: Does Size Matter?: A student investigation of the inverse relationship between molecule size and per-unit-volume concentrations. Title: Does Size Matter?: A student investigation of the inverse relationship between molecule size and per-unit-volume concentrations. Author: Eric Kolb Date: May 5, 2003 Background: When comparing two

More information

States of Matter. Intermolecular Forces. The States of Matter. Intermolecular Forces. Intermolecular Forces

States of Matter. Intermolecular Forces. The States of Matter. Intermolecular Forces. Intermolecular Forces Intermolecular Forces Have studied INTRAmolecular forces the forces holding atoms together to form compounds. Now turn to forces between molecules INTERmolecular forces. Forces between molecules, between

More information

CHAPTER 2 ATOMS, MOLECULES,

CHAPTER 2 ATOMS, MOLECULES, CHAPTER 2 ATOMS, MOLECULES, AND LIFE LECTURE OUTLINE Case Study: Unstable Atoms Unleashed 2.1 What Are Atoms? A. Atoms Are the Basic Structural Units of Elements (Figures 2-1 and 2-2, and Table 2-1) 1.

More information

Electrostatics: Charging Objects by Friction

Electrostatics: Charging Objects by Friction Physical Science 8 Electrostatics: Charging Objects by Friction Relevant SOL(s): PS 1 a) chemicals and equipment are used safely; f) independent and dependent variables, constants, controls, and repeated

More information

Lesson Plan Book-stacking Activity

Lesson Plan Book-stacking Activity T o g o d i r e c t l y t o a l e s s o n, c l i c k o n e o f t h e f o l l o w i n g l i n k s : B o o k - s t a c k i n g A c t i v i t y B a l l o o n A c t i v i t y H y d r o g e n G a s L a b F

More information

Lewis Theory of Shapes and Polarities of Molecules

Lewis Theory of Shapes and Polarities of Molecules Lewis Theory of Shapes and Polarities of Molecules Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Molecular Shape or Geometry The way in which atoms of a molecule are arranged in space

More information

Name: Practice Packet. Regents Chemistry: Dr. Shanzer. Chapter 9: Chemical Bonding.

Name: Practice Packet. Regents Chemistry: Dr. Shanzer. Chapter 9: Chemical Bonding. Name: Regents Chemistry: Dr. Shanzer Practice Packet Chapter 9: Chemical Bonding http://drshanzerchemistry.weebly.com 1 Chemical Bonding Objectives Describe the 2 major types of chemical bonds in terms

More information

Introduction to Chemistry (includes bonding, water, and ph) C1

Introduction to Chemistry (includes bonding, water, and ph) C1 Introduction to Chemistry (includes bonding, water, and ph) C1 Do Now: What are atoms made up of and list the location of each particle. Finish up Labs Chemistry review Homework: Read, take notes on 2.1

More information

Balancing Chemical Equations

Balancing Chemical Equations Lesson Created by: Lauryn Atwood Length of lesson: 1 week Description of the class: Heterogeneous Name of course: Chemistry Grade level: 10-12 Honors or regular: Regular Balancing Chemical Equations Source

More information

Chapter 1, Lesson 3: The Ups and Downs of Thermometers

Chapter 1, Lesson 3: The Ups and Downs of Thermometers Chapter 1, Lesson 3: The Ups and Downs of Thermometers Key Concepts The way a thermometer works is an example of heating and cooling a liquid. When heated, the molecules of the liquid in the thermometer

More information

The Extraordinary Properties of Water

The Extraordinary Properties of Water The Extraordinary Properties of Water Table of Contents Date Topic Page Number(s) Periodic Table 1 Scientific Method 2 SI Units 3 Density of Pennies Lab 4-5 Chemistry Diagnostic Mastery Tracker 6 Glassware

More information

CHM 130LL: Molecular Models

CHM 130LL: Molecular Models CM 130LL: Molecular Models In this lab, you will study covalently bonded molecules i.e., molecules where nonmetal atoms are held together because they share one or more pairs of electrons. In this experiment,

More information

AS91164 Bonding, structure, properties and energychanges Level 2 Credits 5

AS91164 Bonding, structure, properties and energychanges Level 2 Credits 5 AS91164 Bonding, structure, properties and energychanges Level 2 Credits 5 LEWIS DIAGRAMS, SHAPES OF MOLECULES, POLAR AND NON POLAR MOLECULES Lewis diagrams: use dots (or x) to represent electrons, show

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

Chem 11 Unit 4 POLARITY, MOLECULE SHAPE, and BEHAVIOUR

Chem 11 Unit 4 POLARITY, MOLECULE SHAPE, and BEHAVIOUR Chem 11 Unit 4 POLARITY, MOLECULE SHAPE, and BEHAVIOUR Polarity is unequal distribution of a charge on a molecule caused by: 1) some degree of ionic character in the bonding (i.e. unequal electron sharing)

More information

Life is a chemical process

Life is a chemical process CHEMISTRY FOR LIFE Life is a chemical process Relies on and is subject to chemistry Must obey the laws of physics Biologists study Chemistry because all living things are made of matter. Matter undergoes

More information

OBJECTIVES: By the end of class, students will be able to DO NOW

OBJECTIVES: By the end of class, students will be able to DO NOW 7 th Grade Science Unit: Matter and Periodic Table Lesson: Matter 9 States of Matter Demonstrations Name: Date: Thursday, December 8, 2016 OBJECTIVES: By the end of class, students will be able to SWBAT

More information

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds

Chapter 8 : Covalent Bonding. Section 8.1: Molecular Compounds Chapter 8 : Covalent Bonding Section 8.1: Molecular Compounds What is a molecule? A molecular compound? A molecule is a neutral group of atoms joined together by covalent bonds A molecular compound is

More information

CHEM.A.1.1.1: CHEM.A.1.1.2: CHEM.A.1.1.3: CHEM.A.1.1.4: CHEM.A.1.2.1: CHEM.A.1.2.2:

CHEM.A.1.1.1: CHEM.A.1.1.2: CHEM.A.1.1.3: CHEM.A.1.1.4: CHEM.A.1.2.1: CHEM.A.1.2.2: Topic: Matter and Energy Duration: Traditional (50 minute periods) : 12-23 days (adjust to student needs using professional discretion) Block Schedule (90 minute periods) : 6-12 days (adjust to student

More information

Dipole - Electronegativity - Nonpolar covalent bond - Partial charges - Polar covalent bond - Polarity -

Dipole - Electronegativity - Nonpolar covalent bond - Partial charges - Polar covalent bond - Polarity - Chemistry Electronegativity & Polarity Guided Inquiry (Textbook 10.3) Use your knowledge of chemical bonding, the textbook, your classmates, the PhET simulation and the internet to answer the questions

More information

What is this? Electrons: charge, mass? Atom. Negative charge(-), mass = 0. The basic unit of matter. Made of subatomic particles:

What is this? Electrons: charge, mass? Atom. Negative charge(-), mass = 0. The basic unit of matter. Made of subatomic particles: Chemical Bonds What is this? Atom The basic unit of matter. Electrons: charge, mass? Negative charge(-), mass = 0 Made of subatomic particles: Protons: charge, mass? Positive charge (+), mass = 1 Neutrons:

More information

CHAPTER 2 ATOMS, MOLECULES,

CHAPTER 2 ATOMS, MOLECULES, CHAPTER 2 ATOMS, MOLECULES, AND LIFE LECTURE OUTLINE Case Study: Unstable Atoms Unleashed 2.1 What Are Atoms? A. Atoms Are the Basic Structural Units of Elements (Table 2-1) 1. An element is a substance

More information

What determines whether a substance will be a solid, liquid, or gas? Thursday, April 24, 14

What determines whether a substance will be a solid, liquid, or gas? Thursday, April 24, 14 What determines whether a substance will be a solid, liquid, or gas? Answer: The attractive forces that exists between its particles. Answer: The attractive forces that exists between its particles. For

More information

By All INdICATIONS (2 Hours)

By All INdICATIONS (2 Hours) By All INdICATIONS (2 Hours) Addresses NGSS Level of Difficulty: 5 Grade Range: 6-8 OVERVIEW In this activity, students create an acid-base indicator using red cabbage extract. Students then use this indicator

More information