This experiment is a continuation of the earlier experiment on molecular

Size: px
Start display at page:

Download "This experiment is a continuation of the earlier experiment on molecular"

Transcription

1 Molecular Modeling: Experiment 2 Page 115 Bonding and Molecular Structure Experiment 2 This experiment is a continuation of the earlier experiment on molecular structure. In that experiment you used a computer to construct models of molecules, learned to visualize those models, made measurements of bond angles, and began to recognize the factors determining molecular structure. The present experiment builds on the earlier experiment. Our objectives now are: to review the construction of electron dot structures of simple molecules; to review the factors determining molecular structure; to review the idea of formal charge on atoms; to observe the connection between bond length and bond order; to observe the consequences of double bonding; and to understand the notion of molecular polarity. Using the CAChe Software This experiment assumes that you know how to construct a molecule and measure bond angles and bond lengths using the CAChe Molecular Modeling system from Oxford Molecular. You should review the instructions for the software for the basic functions. Instruction in using two other functions of the software setting atom formal charge and determining the hybridization of an atom in a molecule or ion are given in a separate document. The Experiment You should work in pairs, using either the Macintosh or Windows computers. Follow the instructions in each part of the experiment be especially careful to draw the structures you are building and use the plastic molecular models available in the Computer Lab to help you further visualize the structures. Name Score /10 Instructor Comments: The instructions for using the CAChe modeling software are available on the General Chemistry web site at /kotzjc/111lab.html and in this Laboratory Manual. Background Before doing this experiment is is assumed that you are thoroughly familiar with the theories of bonding and molecular structure as outlined in Chapters 9 and 10 of Chemistry & Chemical Reactivity. Specifically, you should be familiar with drawing electron dot structures (Section 9.4) formal charge (Section 9.7) the properties of chemical bonds (bond order and bond length) (Section 9.8) the polarity of bonds and molecules hybridization (Section 10.2) the nature of multiple bonds and the consequences of multiple bond formation (pages )

2 Molecular Modeling: Experiment 2 Page 116 Part I: Drawing Dot Structures, Using VSEPR Theory, and Determining Molecular Polarity Using the CAChe software, construct a model of each of the following molecules having carbon oxygen bonds: a) Sketch the Lewis electron dot structure. (Make sure the item ELECTRONS is checked in the EDIT menu. This must be done in order to display the lone pairs of electrons properly.) b) Construct a model using the CAChe software, measure the C O bond angles in each molecule, and determine the hybridization of the C atom in CO 2, 2 CO, and 3 CO; c) Sketch the three-dimensional structure of each molecule (indicate the angles and hybridization on your sketch of the structure or on the dot structure); d) Using the terms of the VSEPR theory, describe the molecular geometry of each molecule. (In the case of methanol, describe the geometry around both the C and O atoms.) Carbon monoxide, CO (Note: In the case of CO, the formal charges must be set (C = -1 and O = +1) in order to see the lone pairs of electrons displayed properly.) Carbon Dioxide, CO 2

3 Molecular Modeling: Experiment 2 Page 117 Formaldehyde, 2 CO Methanol, 3 CO (To decide if methanol is polar, it is very helpful to build a plastic model of the molecule.) What is the relation between the C atom hybridization and the bond angles around the C atom in your molecules? Are any of the molecules above polar? If so, explain briefly why you would describe them as polar?

4 Molecular Modeling: Experiment 2 Page 118 Part II: Using VSEPR Theory and the Connection Between Bond Length and Bond Order Using the CAChe software, construct a model of each of the molecules below. b) Sketch each structure you have built and measure the unique bond angles in the molecule. (Indicate the angles on your sketch.) c) Using the terms of VSEPR theory, describe the geometry around the C atom in each molecule. d) Indicate on your drawings the hybridization of the C atoms. e) Indicate on your drawings the carbon carbon bond order in each molecule. (Bond order: Is the C C bond single, double, or triple or does it have some fractional order such as 1.5.) Ethane, 3 C C 3 Ethylene, 2 C=C 2

5 Molecular Modeling: Experiment 2 Page 119 Acetylene, C C Benzene, C 6 6 (obtain this structure from the fragment library) ow does the C atom hybridization change in this series of molecules? What is the relation between the geometry around the C atom in these molecules and the C atom hybridization?

6 Molecular Modeling: Experiment 2 Page 120 Part III: Using Formal Charge in Constructing a Model a) Draw electron dot structures for the SO 3 molecule and the SO 2-3 anion. Determine the formal charge of each atom in the molecule or ion and indicate the charge on your sketch. b) Based on your electron dot structures, predict the structure of SO 3 and SO 2-3. b) Construct models of SO 3 and SO 2-3. (Be careful to set the formal charge of each atom. See the separate instructions on the operation.) Sulfur trioxide, SO 3 (Be sure to draw dot structures for all possible resonance structures) The sulfite anion, SO 3 2- ow does the hybridization of the S atom change on adding two electrons to SO 3? Would you predict the three S O bonds in SO 3 to have the same or different lengths? Is the SO 3 molecule predicted to be polar? Does the CAChe structure agree with your prediction? Are there limitations to simple molecular modeling procedures?

7 Molecular Modeling: Experiment 2 Page 121 PART IV: Structures of Simple Molecules of BIochemical Importance In the Fragment Library in the CAChe system you will find a very large number of structures of important molecules. Look for the ones below and give the information requested. Glycine (in Amino Acid fragment library). This is the simplest alpha-amino acid. Sketch its structure, indicate the hybridization of each atom. Be sure to note that there are electric charges on the N atom and one O atom. Glyceraldehyde, C 3 6 O 3 (in the Carbohydrate fragment library). This is the simplest possible carbohydrate [C 3 6 O 3 = C 3 ( 2 O) 3 ]. Sketch its structure and indicate the hybridization of each atom. Is the molecule polar? Epinephrine, C 9 13 NO 3 (in the Drugs-All fragment library). This is a compound used as a bronchodilator and antiglaucoma agent. Sketch its structure, indicating the hybridization of the C and N atoms. Is the molecule polar?

8 Molecular Modeling: Experiment 2 Page 122 Part V: Consequences of Double Bonding Multiple bonds are found in many, many molecules, and they have important structural consequences. ere we look at two molecules and see some of the structural effects. Information on the effect of multiple bonds is found on pages of Chemistry & Chemical Reactivity. See especially Screen 10.8 of the Interactive General Chemistry CD-ROM. Pi (π) bonds are one component of a double or triple bond. You can view a pi bond by opening the file C24.MO6 on the General Chemistry CD-ROM. Go to the CAChe folder, then to ORBITALS, then to MOs, and then to the C24 folder. (A small picture of the orbital is shown here.) In your own words, describe the shape of the pi bond and where it is located in this molecule relative to the C and atoms. (Ignore the colors.) (Note: this file in ONLY available on the Macintosh computers.) The molecules cis- and trans-dichloroethylene are said to be structural isomers. That is, they have the same formula but different structures. Cl Build a model of the trans isomer and indicate the C atom hybridization. C C C C Cl Cl cis-dichloroethylene Cl trans-dichloroethylene ow do the molecules differ? Decide whether each molecule is polar or nonpolar.

9 Molecular Modeling: Experiment 2 Page 123 Cis- and trans-2-butene. 3 C C C C C 3 C C 3 cis-2-butene C 3 trans-2-butene The compound 2-butene has two structural isomers. That is, there are two molecules having the same formula, C 4 8. owever, one has the end C 3 groups one one side of the molecule (cis), whereas the other (trans) has the C 3 groups on opposite sides. Screen 10.8: As one end of the 2-butene molecule rotates relative to the other, the energy of the molecule changes. Notice that as the end of the molecule rotates the energy increases from about 27 kj/mol to over 233 kj/mol. That is, there is a very large energy barrier to be overcome to move one end of the molecule relative to the other. Observe the animations on Screen 10.8, listen carefully to the narration, and answer the following questions: a) As one end of trans-2-butene rotates, what do you observe? When the molecule has an energy at the top of the energy barrier, what is its structure? ow does it differ from the structure of the molecule at the bottom of the energy barrier? b) Why is there a large barrier to rotation in the 2-butene molecule? c) ow does the barrier to rotation in 2-butene compare with that in butane (the other animation on Screen 10.8)? Why is there a large difference in the energy involved and what does this tell you about single bonds relative to double bonds?

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

To visualize the three-dimensional structures of some common molecules. To obtain bond angle, bond length, and hybridization data for molecules.

To visualize the three-dimensional structures of some common molecules. To obtain bond angle, bond length, and hybridization data for molecules. Molecular Geometry PURPOSE A B C To explore some simple molecular structures. To explore the relationship between bond order and bond length. To explore resonance structures. GOALS To compare Lewis structures

More information

EXPERIMENT 12: MOLECULAR ARCHITECTURE

EXPERIMENT 12: MOLECULAR ARCHITECTURE Name Section EXPERIMENT 12: MLECULAR ARCITECTURE PRE-LABRATRY QUESTINS The following preparatory questions should be answered before coming to lab. They are intended to introduce you to several ideas important

More information

Name: Class: Date: 3. How many lone pairs of electrons are assigned to the carbon atom in carbon monoxide? a. 0 b. 1 c. 2 d. 3

Name: Class: Date: 3. How many lone pairs of electrons are assigned to the carbon atom in carbon monoxide? a. 0 b. 1 c. 2 d. 3 Class: Date: Midterm 3, Fall 2009 Record your name on the top of this exam and on the scantron form. Record the test ID letter in the top right box of the scantron form. Record all of your answers on the

More information

Chapter 10 Theories of Covalent Bonding

Chapter 10 Theories of Covalent Bonding Chapter 10 Theories of Covalent Bonding 1 Atomic Orbitals Molecules Bonding and 2 Molecular Structure Questions How are molecules held together? Why is O 2 paramagnetic? And how is this property connected

More information

Lab: Model Building with Covalent Compounds - Introduction

Lab: Model Building with Covalent Compounds - Introduction Name Date Period # Lab: Model Building with Covalent Compounds - Introduction Most of our learning is in two dimensions. We see pictures in books and on walls and chalkboards. We often draw representations

More information

CH 222 Sample Exam Exam I Name: Lab Section:

CH 222 Sample Exam Exam I Name: Lab Section: 222 Sample Exam Exam I Name: Lab Section: Part I: Multiple hoice Questions (100 Points) Use a scantron sheet for Part I. There is only one best answer for each question. 1. Which of the following statements

More information

Chemical Bonds, Lewis Structures, Bond Order, and Formal Charge

Chemical Bonds, Lewis Structures, Bond Order, and Formal Charge Chemical Bonds, Lewis Structures, Bond Order, and Formal Charge PRELAB ASSIGNMENT Read the entire laboratory write up. Write an objective, any hazards associated with this lab, and answer the following

More information

To learn how to use molecular modeling software, a commonly used tool in the chemical and pharmaceutical industry.

To learn how to use molecular modeling software, a commonly used tool in the chemical and pharmaceutical industry. NAME: Lab Day/Time: Molecular Modeling BV 1/2009 Purpose The purposes of this experiment are: To learn how to use molecular modeling software, a commonly used tool in the chemical and pharmaceutical industry.

More information

Chapter 27: Structure and Bonding

Chapter 27: Structure and Bonding Chapter 27: Structure and Bonding 1 Atomic Orbitals: Wave functions that represent the probability of finding electrons in a specific region of space s, p, d, f orbitals In organic chemistry, need to concentrate

More information

: O: (1) (2) (3) (4) Page 1 of 6 : : : : : : (8) H H

: O: (1) (2) (3) (4) Page 1 of 6 : : : : : : (8) H H Experiment #12 MOLECULAR MODELS An aspect of chemistry, which traditionally proves to be difficult to many students, is the visualization of compounds, ions, and molecules in three dimensional space. In

More information

Chemistry 14CL. Worksheet for the Molecular Modeling Workshop. (Revised FULL Version 2012 J.W. Pang) (Modified A. A. Russell)

Chemistry 14CL. Worksheet for the Molecular Modeling Workshop. (Revised FULL Version 2012 J.W. Pang) (Modified A. A. Russell) Chemistry 14CL Worksheet for the Molecular Modeling Workshop (Revised FULL Version 2012 J.W. Pang) (Modified A. A. Russell) Structure of the Molecular Modeling Assignment The molecular modeling assignment

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

CHEM 109A Organic Chemistry. CHEM 109A Organic Chemistry

CHEM 109A Organic Chemistry. CHEM 109A Organic Chemistry CEM 109A Organic Chemistry Wait Lists and Add code requests: Got you emails, working on it! Questions? (non chemistry) Chika Anyiwo, undergraduate advisor anyiwo@chem.ucsb.edu CEM 109A Organic Chemistry

More information

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display.

Chapter 4 Lecture Outline. Copyright McGraw-Hill Education. Permission required for reproduction or display. Chapter 4 Lecture Outline 1 Copyright McGraw-ill Education. Permission required for reproduction or display. 4.1 Introduction to Covalent Bonding Covalent bonds result from the sharing of electrons between

More information

Experiment 10: Molecular Models

Experiment 10: Molecular Models B hemistry 162 Laboratory Manual Name Section Experiment 10: Molecular Models Modeling the shape of small organic molecules Previously we have considered molecules and ions for which one chemical formula

More information

1. Which is the most electronegative atom in the compound below? N H A) Carbon B) Nitrogen C) Oxygen D) Bromine Ans: C

1. Which is the most electronegative atom in the compound below? N H A) Carbon B) Nitrogen C) Oxygen D) Bromine Ans: C Chapter 1 1. Which is the most electronegative atom in the compound below? Br A) Carbon B) itrogen C) xygen D) Bromine 2. Which of the following correctly describes the electrons of a carbon atom in its

More information

Chemical Bonds, Orbital Shapes, and Orbital Hybridization

Chemical Bonds, Orbital Shapes, and Orbital Hybridization Chemical Bonds, Orbital Shapes, and Orbital Hybridization PRELAB ASSIGNMENT Read the entire laboratory write up. Write an objective and answer the following questions in your laboratory notebook before

More information

1. Circle any of the following compounds that would properly be called a molecule.

1. Circle any of the following compounds that would properly be called a molecule. 65 hemquest 22 Name: Date: our: Information: Terminology Recall that an ionic bond results from the combination of a metal and a nonmetal. A covalent bond is the type of bond between two nonmetals. ovalent

More information

Chapter 1. The Basics Bonding and Molecular Structure. Ch. 1-1

Chapter 1. The Basics Bonding and Molecular Structure. Ch. 1-1 Chapter 1 The Basics Bonding and Molecular Structure Ch. 1-1 1. Introduction The name Organic Chemistry came from the word organism Organic Chemistry is the study of carbon compounds. Carbon, atomic number

More information

Molecular Modeling 1: Classic Molecular Modeling

Molecular Modeling 1: Classic Molecular Modeling Molecular Modeling 1: Classic Molecular Modeling Author: J. M. McCormick* Last Update: January 31, 2011 Introduction Dalton's Atomic Theory revolutionized chemistry by explaining chemical properties in

More information

LECTURE 2 STRUCTURE AND PROPERTIES OF ORGANIC MOLECULES

LECTURE 2 STRUCTURE AND PROPERTIES OF ORGANIC MOLECULES LECTURE 2 STRUCTURE AND PROPERTIES OF ORGANIC MOLECULES 1. Atomic wave functions and orbitals. LCAO. The important thing to know is that atomic orbitals are represented by wave functions, and they have

More information

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and how they are used to model covalent bonding.

More information

Molecular Structure and Orbitals

Molecular Structure and Orbitals CHEM 1411 General Chemistry Chemistry: An Atoms First Approach by Zumdahl 2 5 Molecular Structure and Orbitals Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and

More information

Chemistry 112 Laboratory Experiment 5: Visualizing Molecular Orbitals: A MacSpartan Pro Experience (This experiment will be conducted in OR341)

Chemistry 112 Laboratory Experiment 5: Visualizing Molecular Orbitals: A MacSpartan Pro Experience (This experiment will be conducted in OR341) Chemistry 112 Laboratory Experiment 5: Visualizing Molecular Orbitals: A MacSpartan Pro Experience (This experiment will be conducted in OR341) Introduction In class we have discussed Lewis structures,

More information

CHEMISTRY. Chapter 9 The Basics of Chemical Bonding. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 9 The Basics of Chemical Bonding. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CEMISTRY The Molecular Nature of Matter SIXT EDITIN Jespersen Brady yslop Chapter 9 The Basics of Chemical Bonding Copyright 2012 by John Wiley & Sons, Inc. Chemical Bonds Attractive forces that hold atoms

More information

BONDING THEORIES Chapter , Carey

BONDING THEORIES Chapter , Carey BONDING THEORIES Chapter 10.6-10.7, Carey The Covalent Chemical Bond (9.2) FIG I Potential Energy Change to Form H2 What is a chemical bond? Why do chemical bonds occur? Descriptions of bonding: Valence

More information

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes Reference: Chapter 9 10 in textbook 1 Valence Electrons Valence ae Electron Define: the outer shell electrons Important for determination

More information

Covalent Bonding & Molecular Structure

Covalent Bonding & Molecular Structure ovalent Bonding & Molecular Structure I. Electronic onfiguration and e! sharing. A. The Periodic Table s shape helps you understand outer- (and inner-) shell e! configuration. Which e! were of greatest

More information

Learning to Use Scigress Wagner, Eugene P. (revised May 15, 2018)

Learning to Use Scigress Wagner, Eugene P. (revised May 15, 2018) Learning to Use Scigress Wagner, Eugene P. (revised May 15, 2018) Abstract Students are introduced to basic features of Scigress by building molecules and performing calculations on them using semi-empirical

More information

Organic Nomenclature

Organic Nomenclature University of Puget Sound Department of Chemistry Chem 111 Spring, 2010 Organic Nomenclature LEARNING GOALS AND ASSESSMENTS 1. Be familiar with the structure and nomenclature of organic compounds. a. Identify

More information

Chapter 9 The Shapes of Molecules Cocaine

Chapter 9 The Shapes of Molecules Cocaine Chapter 9 The Shapes of Molecules 1 Cocaine 10.1 Depicting Molecules & Ions with Lewis Structures 2 Number of Covalent Bonds 3 The number of covalent bonds can be determined from the number of electrons

More information

Can atomic orbitals explain these shapes or angles? What s in Chapter 9: Shapes of molecules affect: reactivity physical properties

Can atomic orbitals explain these shapes or angles? What s in Chapter 9: Shapes of molecules affect: reactivity physical properties What s in Chapter 9: Can atomic orbitals explain these shapes or angles? Shapes of molecules affect: reactivity physical properties Shapes of molecules explained by: VSEPR Valence bond theory Why molecules

More information

EXPERIMENT 15: MOLECULAR MODELS

EXPERIMENT 15: MOLECULAR MODELS EXPERIMENT 15: MLEULAR MDELS Introduction: Given formulas of some molecules and ions, you will use the periodic table, valence electron count, and electronegativities to deduce their geometry and polarities.

More information

CHEM1101 Worksheet 6: Lewis Structures

CHEM1101 Worksheet 6: Lewis Structures CHEM1101 Worksheet 6: Lewis Structures Model 1: Simple Compounds of C, N, O and F The octet rule tells us that C, N, O and F will form covalent bonds so that they are surrounded by eight electrons. For

More information

Chapter 8: Concepts of Chemical Bonding

Chapter 8: Concepts of Chemical Bonding Chapter 8: Concepts of Chemical Bonding Learning Outcomes: Write Lewis symbols for atoms and ions. Define lattice energy and be able to arrange compounds in order of increasing lattice energy based on

More information

The Hückel Approximation

The Hückel Approximation The ückel Approximation 1 In this exercise you will use a program called ückel to look at the π molecular orbitals in conjugated molecules. The program calculates the energies and shapes of π (pi) molecular

More information

Assignment 1: Molecular Mechanics (PART 1 25 points)

Assignment 1: Molecular Mechanics (PART 1 25 points) Chemistry 380.37 Fall 2015 Dr. Jean M. Standard August 19, 2015 Assignment 1: Molecular Mechanics (PART 1 25 points) In this assignment, you will perform some molecular mechanics calculations using the

More information

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy Chapter ne MULTIPLE CICE QUESTIS Topic: General Section: 1.1 1. Credit for the first synthesis of an organic compound from an inorganic precursor is usually given to: A) Berzelius B) Arrhenius C) Kekule

More information

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A REVIEW OF GENERAL CEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES A STUDENT SOULD BE ABLE TO: 1. Draw Lewis (electron dot and line) structural formulas for simple compounds and ions from molecular

More information

Chemical Bonds, Molecular Models, and Molecular Shapes

Chemical Bonds, Molecular Models, and Molecular Shapes Chemical Bonds, Molecular Models, and Molecular Shapes PRELAB ASSINGMENT Read the entire laboratory write up and answer the following questions before coming to lab. Read the entire laboratory write up

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling Bonding/Lewis Dots Lecture Page 1 of 12 Date Bonding What is Coulomb's Law? Energy Profile: Covalent Bonds Electronegativity and Linus Pauling 2.1 H 1.0 Li 0.9 Na 0.8 K 0.8 Rb 0.7 Cs 0.7 Fr 1.5 Be 1.2

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

HW #4: 4.34, 4.36, 4.38, 4.40, 4.46, 4.50, 4.56, 4.60, 4.62, 4.64, 4.70, 4.72, 4.76, 4.80, 4.88, 4.96, 4.106

HW #4: 4.34, 4.36, 4.38, 4.40, 4.46, 4.50, 4.56, 4.60, 4.62, 4.64, 4.70, 4.72, 4.76, 4.80, 4.88, 4.96, 4.106 Chemistry 121 Lectures 9 & 10: Covalent Bonds and the Periodic Table; Molecular Formulas and Lewis Structures; Multiple Covalent Bonds; Coordinate Covalent Bonds; the Shapes of Molecules; Polar Molecules

More information

Covalent & Metallic Bonding

Covalent & Metallic Bonding Covalent & Metallic Bonding Metallic Bonding Metals are made of closely packed cations. These cations have a number of valence electrons floating around them as what we call a sea of electrons. Metallic

More information

General Class Information.

General Class Information. General Class Information Instructors: Lectures: Recitations: Text: B. Imperiali & S. 'Connor utline, Syllabus & Suggested Reading on Website Start Second Week; See andout for Policy on Changes "rganic

More information

The Hückel Approximation Consider a conjugated molecule i.e. a molecule with alternating double and single bonds, as shown in Figure 1.

The Hückel Approximation Consider a conjugated molecule i.e. a molecule with alternating double and single bonds, as shown in Figure 1. The Hückel Approximation In this exercise you will use a program called Hückel to look at the p molecular orbitals in conjugated molecules. The program calculates the energies and shapes of p (pi) molecular

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

Learning Organic Chemistry

Learning Organic Chemistry Objective 1 Represent organic molecules with chemical formulas, expanded formulas, Lewis structures, skeletal structures. Determine shape (VSEPR), bond polarity, and molecule polarity. Identify functional

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Tinker Toys: Molecular Modeling by Hand

Tinker Toys: Molecular Modeling by Hand Tinker Toys: Molecular Modeling by and Pre-lab Assignment: Reading: 1. hapters 8 and 9 in your course text. 2. This lab handout. ther points to note: 1. Please bring your text book to lab. 2. You may use

More information

Geometry of Covalent Compounds

Geometry of Covalent Compounds Geometry of Covalent Compounds Introduction This laboratory exercise will give you experience working with molecular model sets so you will better understand the geometries of small covalent molecules.

More information

Practice Test Questions 4 Molecular Orbital Theory: Polyatomic Molecules

Practice Test Questions 4 Molecular Orbital Theory: Polyatomic Molecules Practice Test Questions 4 Molecular rbital Theory: Polyatomic Molecules 1. The images below show the valence molecular orbitals obtained for the carbonate ion via a semiempirical calculation. Both side

More information

AP Chemistry- Practice Bonding Questions for Exam

AP Chemistry- Practice Bonding Questions for Exam AP Chemistry- Practice Bonding Questions for Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a correct Lewis structure for

More information

Objective 3. Draw resonance structures, use curved arrows, determine extent of delocalization. Identify major/minor contributor.

Objective 3. Draw resonance structures, use curved arrows, determine extent of delocalization. Identify major/minor contributor. Objective 3 Draw resonance structures, use curved arrows, determine extent of delocalization. Identify major/minor contributor. Structure Should Fit Experimental Data The chemical formula of benzene is

More information

Problems and questions How is a molecule or polyatomic ion held together? Why are atoms distributed at strange angles? Why are molecules not flat?

Problems and questions How is a molecule or polyatomic ion held together? Why are atoms distributed at strange angles? Why are molecules not flat? 1 Cocaine 2 Problems and questions ow is a molecule or polyatomic ion held together? Why are atoms distributed at strange angles? Why are molecules not flat? Can we predict the structure? ow is structure

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

Computational Chemistry Lab Module: Conformational Analysis of Alkanes

Computational Chemistry Lab Module: Conformational Analysis of Alkanes Introduction Computational Chemistry Lab Module: Conformational Analysis of Alkanes In this experiment, we will use CAChe software package to model the conformations of butane, 2-methylbutane, and substituted

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories MOLECULAR SHAPES 2 Molecular Shapes Lewis Structures show bonding and lone pairs do not denote shape Use Lewis Structures to determine shapes Molecular

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

Geometry of Covalent Compounds

Geometry of Covalent Compounds Geometry of Covalent Compounds Introduction This laboratory exercise will give you experience working with molecular model sets so you will better understand the geometries of small covalent molecules.

More information

CHAPTER 8. Molecular Structure & Covalent Bonding Theories

CHAPTER 8. Molecular Structure & Covalent Bonding Theories CAPTER 8 Molecular Structure & Covalent Bonding Theories 1 Chapter Goals 1. A Preview of the Chapter 2. Valence Shell Electron Pair Repulsion (VSEPR) Theory 3. Polar Molecules:The Influence of Molecular

More information

HOMEWORK PROBLEMS: POLAR BONDS, RESONANCE, ACIDS & BASES 1. Which of the following molecules is the most polar?

HOMEWORK PROBLEMS: POLAR BONDS, RESONANCE, ACIDS & BASES 1. Which of the following molecules is the most polar? CEM 31 MEWRK PRBLEMS: PLAR BDS, RESACE, ACIDS & BASES 1. Which of the following molecules is the most polar? 2. Trans-dichlorodifluoroethylene, C 2 Cl 2 2, has a number of polar bonds but no net dipole

More information

Valence Bond Theory. Localized Electron Model. Hybridize the Orbitals! Overlap and Bonding. Atomic Orbitals are. mmmkay. Overlap and Bonding

Valence Bond Theory. Localized Electron Model. Hybridize the Orbitals! Overlap and Bonding. Atomic Orbitals are. mmmkay. Overlap and Bonding Valence Bond Theory Atomic Orbitals are bad mmmkay Overlap and Bonding Lewis taught us to think of covalent bonds forming through the sharing of electrons by adjacent atoms. In such an approach this can

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Experiment 10 Organic Molecules: Description, Nomenclature and Modeling

Experiment 10 Organic Molecules: Description, Nomenclature and Modeling Experiment 10 Organic Molecules: Description, Nomenclature and Modeling Objectives The objectives for this lab are: Part I: To learn the structures of and construct models for simple organic molecules,

More information

7 Infrared, Thermochemistry, UV-Vis, and NMR

7 Infrared, Thermochemistry, UV-Vis, and NMR 7 Infrared, Thermochemistry, UV-Vis, and NMR Exercise 1 Method Dependence and Scaling for the Infrared Spectrum of Formaldehyde. Build a molecule of formaldehyde using sp 2 C and atoms. Clean up the structure

More information

Chapter 2 Polar Covalent Bonds; Acids and Bases. Chapter Outline

Chapter 2 Polar Covalent Bonds; Acids and Bases. Chapter Outline rganic Chemistry 9th Edition McMurry SLUTINS MANUAL Full clear download at: https://testbankreal.com/download/organic-chemistry-9th-edition-mcmurrysolutions-manual/ rganic Chemistry 9th Edition McMurry

More information

Chapter 12 Structure and Shape

Chapter 12 Structure and Shape Free Study Guide for Cracolice Peters Introductory Chemistry: An Active Learning Approach Second Edition www.brookscole.com/chemistry Chapter 12 Structure and Shape Chapter 12Assignment A: Lewis Diagrams

More information

Question 1.1. Electron Configurations Noble Gases and The Rule of Eight. Chapter 1

Question 1.1. Electron Configurations Noble Gases and The Rule of Eight. Chapter 1 ~ 0.1 nm Chapter 1 Structure and Bonding Anders Jöns Ångström (1814-1874) 1 Å = 10 picometers = 0.1 nanometers = 10-4 microns = 10-8 centimeters Acids and Bases Nucleus = 1/10,000 of the atom 1 nm = 10

More information

Chapter 9 Bonding. Dr. Sapna Gupta

Chapter 9 Bonding. Dr. Sapna Gupta Chapter 9 Bonding Dr. Sapna Gupta Lewis Dot Symbol Lewis dot symbols is a notation where valence electrons are shown as dots. Draw the electrons symmetrically around the sides (top, bottom, left and right)

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

Chapter 12. Chemical Bonding

Chapter 12. Chemical Bonding Chapter 12 Chemical Bonding Chapter 12 Introduction to Chemical Bonding Chemical Bonding Valence electrons are the electrons in the outer shell (highest energy level) of an atom. A chemical bond is a mutual

More information

CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING

CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING CHAPTER 6: CHEMICAL NAMES AND FORMULAS CHAPTER 16: COVALENT BONDING 6.1 Introduction to Chemical Bonding A chemical bond is a mutual electrical attraction between the nuclei and valence electrons of different

More information

Chapter 9. Ionic Compounds

Chapter 9. Ionic Compounds Chapter 9 Bonding Ionic Compounds Formed between metal and nonmetal Ionic solids: ions are arranged in a regular lattice Strong forces: attraction of ions for each other 1 Lattice Energy A measure of the

More information

Chemistry: The Central Science

Chemistry: The Central Science Chemistry: The Central Science Fourteenth Edition Chapter 8 Basic Concepts of Chemical Bonding Chemical Bonds Three basic types of bonds Ionic Electrostatic attraction between ions Covalent Sharing of

More information

Chapter 1. The Basics Bonding and Molecular Structure. Table of Contents. 1. Life & the Chemistry of Carbon Compounds

Chapter 1. The Basics Bonding and Molecular Structure. Table of Contents. 1. Life & the Chemistry of Carbon Compounds hapter 1 The Basics Bonding and Molecular Structure reated by Professor William Tam & Dr. Phillis hang Table of ontents 1. Life & the hemistry of arbon ompounds 2. Atomic Structure 3. hemical Bonds: The

More information

Isomerism in Alkanes, Haloalkanes, and Alkenes using Molecular Models

Isomerism in Alkanes, Haloalkanes, and Alkenes using Molecular Models EXPERIMENT 1 Isomerism in Alkanes, aloalkanes, and Alkenes using Molecular Models Materials Needed - Molecular model kit Relevant Textbook Reading Denniston, chap 11.2-11.4, 12.1-12.3 Background In uncharged,

More information

Outline for Today. Monday, Nov. 12. Wednesday Friday. Chapter 8: Chemical Bonding. Bond Enthalpies. Chapter 9: Theories of Bonding

Outline for Today. Monday, Nov. 12. Wednesday Friday. Chapter 8: Chemical Bonding. Bond Enthalpies. Chapter 9: Theories of Bonding Outline for Today Monday, Nov. 12 Chapter 8: Chemical Bonding Bond Enthalpies Chapter 9: Theories of Bonding VSEPR (Valence Shell Electron Pair Repulsion) Theory Valence Bond Orbital ybridization Molecular

More information

Name. Molecular Models

Name. Molecular Models Name Molecular Models Lab Day Introduction: The atom and molecule are truly small; 6 10 23 carbon atoms occupy about 4 cm 3, or each atom has a volume of about 6 10 24 cm 3. Molecules, though larger than

More information

Chapter 1: Structure and Bonding

Chapter 1: Structure and Bonding 1. What is the ground-state electronic configuration of a carbon atom? A) 1s 2, 2s 2, 2p 5 B) 1s 2, 2s 2, 2p 2 C) 1s 2, 2s 2, 2p 6 D) 1s 2, 2s 2, 2p 4 2. What is the ground-state electronic configuration

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

Molecular Visualization

Molecular Visualization Molecular Visualization Visualize Molecular Dipoles Even if a molecule contains bond dipoles, it might not have a molecular dipole due to symmetry. Spartan can demonstrates the separation of charges in

More information

CHM 151LL: Geometry of Covalent Compounds

CHM 151LL: Geometry of Covalent Compounds CM 151LL: Geometry of Covalent Compounds Introduction Octet Rule A Lewis structure (or electrondot formula) is a twodimensional structural formula showing the arrangement of electrons around atoms in covalently

More information

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons?

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons? REVIEW: VALENCE ELECTRONS 13 CHEMICAL BONDING What are valence electrons? Which groups on the periodic table readily give up electrons? What group readily accepts electrons? CHEMICAL BONDS: What are chemical

More information

Molecular Shapes and VSEPR (Valence Shell Electron Pair Repulsion Theory)

Molecular Shapes and VSEPR (Valence Shell Electron Pair Repulsion Theory) AP Chemistry Ms. Ye Name Date Block Molecular Shapes and VSEPR (Valence Shell Electron Pair Repulsion Theory) Go to bit.ly/vseprshapes Introduction Atoms bond to satisfy their need for more electrons.

More information

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory Chemistry: The Central Science Chapter 9: Molecular Geometry and Bonding Theory The shape and size of a molecule of a particular substance, together with the strength and polarity of its bonds, largely

More information

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape Chem 103, Section F0F Unit VI - Compounds Part II: Covalent Compounds Lecture 17 Using the Valence-Shell Electron-Pair Repulsion (VSEPR) Theory to predict molecular shapes Molecular shape and polarity

More information

UNIVERSITY OF VICTORIA. CHEMISTRY 101 Mid-Term Test 2, November

UNIVERSITY OF VICTORIA. CHEMISTRY 101 Mid-Term Test 2, November NAME Student No. SECTIN (circle one): A01 (Codding) A02 (Sirk) A03 (Briggs) Version A UNIVERSITY F VICTRIA CEMISTRY 101 Mid-Term Test 2, November 19 2010 Version A This test has two parts and 8 pages,

More information

Structure and Bonding of Organic Molecules

Structure and Bonding of Organic Molecules Chem 220 Notes Page 1 Structure and Bonding of Organic Molecules I. Types of Chemical Bonds A. Why do atoms forms bonds? Atoms want to have the same number of electrons as the nearest noble gas atom (noble

More information

Chapter 6 Chemical Bonding

Chapter 6 Chemical Bonding Chapter 6 Chemical Bonding Section 6-1 Introduction to Chemical Bonding Chemical Bonds Valence electrons are attracted to other atoms, and that determines the kind of chemical bonding that occurs between

More information

AN INTRODUCTION TO MOLECULAR ORBITALS

AN INTRODUCTION TO MOLECULAR ORBITALS AN INTRODUCTION TO MOLECULAR ORBITALS by YVES JEAN and FRANCOIS VOLATRON translated and edited by Jeremy Burdett New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Introduction, xiii I INTRODUCTION

More information

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210 Lecture outline: Section 9 Molecular l geometry and bonding theories 1. Valence shell electron pair repulsion theory 2. Valence bond theory 3. Molecular orbital theory 1 Ionic bonding Covalent bonding

More information

1. Sodium nitrite is an ionic compound containing a polyatomic ion. Answer the following questions relative to nitrite.

1. Sodium nitrite is an ionic compound containing a polyatomic ion. Answer the following questions relative to nitrite. Ch 10-11 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

Molecular Models: The shape of simple molecules and ions

Molecular Models: The shape of simple molecules and ions Molecular Models: The shape of simple molecules and ions Background The shape of a molecule is very important when investigating its properties and reactivity. For example, compare CO 2 and SO 2. Carbon

More information

Introduction to Alkenes. Structure and Reactivity

Introduction to Alkenes. Structure and Reactivity 4 4 Introduction to Alkenes. Structure and Reactivity Alkenes are hydrocarbons that contain one or more carbon carbon double bonds. Alkenes are sometimes called olefins, particularly in the chemical industry.

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories molecular shapes the VSEPR model molecular shape and molecular polarity covalent bonding and orbital overlap hybrid orbitals multiple bonds 9.1 Molecular

More information

Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals

Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals Experiment 15: Atomic Orbitals, Bond Length, and Molecular Orbitals Introduction Molecular orbitals result from the mixing of atomic orbitals that overlap during the bonding process allowing the delocalization

More information