On Gaussian Distribution

Size: px
Start display at page:

Download "On Gaussian Distribution"

Transcription

1 Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. Gui itributio i i ollow O Gui Ditributio π Th utio i lrl poitiv vlu. Bor llig thi utio probbilit it utio w houl h whthr th r ur th urv i qul to or ot. R. Ar ur Gui Ditributio [Sigl Ali Ppouli] Lt I I th b impl hg o vribl I ; th 0 π π π r rrφ Thi how tht i vli probbilit it utio. R. M Vri Clultio or Gui Ditributio; M It b ot tht th itributio i mmtri rou tht i. W ow tht th m vlu houl b lot t th tr o mmtr th. W how thi rult ollow B impl hg o vribl w gt. But i w hv

2 Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. th. Vri Thi i mor tri [Probbilit Ppouli]. Th r ur th Gui itributio i qul to tht i. ow tig rivtiv o thi π rltio wrt to w gt π π 0 0 Th lt qutio b writt 0 howig o mor tim tht th m o Gui itributio i. Tig rivtiv o 0 rltio with rpt to or o tim w gt 0 howig tht th vri o Gui itributio i. Tig rivtiv wrt to ott uh i hr i powrul lultioproo tool. Thi pro b o i th rltio who rivtiv i t i vli or otiuum o vlu. I our th r ur Gui itributio i or vlu o. H I i vli or. π A o ot i o th itrhg o rivtiv itgrl oprtor. Thi tp loo iot but it i i trhrou. W hv to vri th itrhg i grl. I ou hv o i or oubl i itgrl O i itgrl h uppr or lowr limit ± oubl i itgrl hv upprlowr limit.; th itgrl m or m ot ovrg. Th itrhg o itgrl or rivtiv oprtor i th itrhg o two limitig oprtio. Rmmbr rivtiv i lo i t limit o h 0 or h. O h to b rul bout thi itrhg. Th itgrl tui i th probbilit our i grl bhv il poitiv uit r utio. But w

3 Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. houl lw b rul wh w hg oprtor ivolvig iiit or iiitiml qutiti. R.3 Th itributio o b whr i orml itribut Th itributio o b b pr uig th umtl thorm or b utio o rom vribl. Wh th iitio or Gui it i ubtitut or w gt b π From th lt qutio w ot tht b vri b. π. i lo Gui itribut with m W rh importt oluio tht b lig biig Gui r.v. w gt othr Gui r.v. with irt m vri. Th m vri o th w Gui rom vribl b il lult uig pttio oprtor b b imilr rltio or vri. A th itributio o b writt b uig th lult m vri. W ow tht i rom vribl i Gui itribut w ol to lult it m vri to writ th itributio. A mpl lt 0 Gui itribut or orml itribut with ro m uit vri th w 0 0 i -000 i th m o 0 0 i -0 it vri i w w R.4 Momt Grtig Futio Lt b ro m uit vri Gui itributio 0. Th momt grtig utio o i. W writ - π prt qur orrtio trm ollow. Thi pro i ow ompltig th qur rqutl u. Wh thi rltio i ubtitut to w gt

4 Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. π π π. Th momt grtig utio i vli or ll vlu. Wh i Gui rom vribl with m vri ; th w ow tht b writt whr. 0 Th momt grtig utio o i qul to. R.5 Highr Orr Momt o Gui Ditributio Lt w ow tht. Uig powr ri pio o whih i 0! w writ ollow Th oiit o i i qul to!. Wh 0 w hv !! m R.6 Aitio o two ipt Gui r.v. i Gui r.v. Wh two Gui itribut ipt rom vribl r th rultt itributio i lo Gui itribut whr.. Thi i proprt o grt import i prti. Thi rult b il how uig momt grtig utio. whr w hv u th ip o i th lt qulit. From R.4 w ubtitut th momt grtig utio o Gui itributio gt

5 Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. w olu tht vri.. Comprig thi rult with R.4 i i Gui itribut with m I th t tio w i joit Guiit how tht rbitrr lir ombitio o Gui rom vribl rult i Gui itributio. Joitl Gui Rom Vribl W irt mi two rom vribl th t to rom vtor whih i th joit itributio o rom vribl. Two rom vribl writt i th ollowig orm r ll joitl Gui i thir joit it b p π Th utio i lrl poitiv vlu o iit r i uppr bou b - or lrg thror with propr lig it b utili it utio. ot tht i utio o two ipt vribl h iv prmtr. W will tth th lbl o m vri orrltio oiit to th vribl tr jutiig wh w o o. A ltrtiv but quivlt iitio or joit Guiit b giv ollow r ll joitl Gui i ϖ ϖ i Gui itribut or vlu o ϖ ϖ. Hr i th tr uivribl Gui itributio tht w hv prvioul mi. lo ll uivrit Gui W t grt th quivl o two iitio pro without proo or ow. Th utio g rlt riptio giv i R.4 giv blow b ormult proo.

6 Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. R. Diitio i mtri orm Th iitio lo b writt ollow [ ] p π ot tht th rgumt o th potil mimi th o imio Gui itributio. I ou tr ot to th trm rlt to vribl th ou hv [ ] p p From hr w l tht multi-imiol Gui itributio i li to uivrit igl vribl Gui itributio whih i t who til r mi blow. Th quivl o mtri iitio giv i R. to th origil iitio ollow vr impl b lultig th mtri ivr i th mtri iitio R. Diitio or ro m joitl itribut Gui r.v. Wh ro i ubtitut or th m w gt th ollowig [ ] p π I w rom vribl r i rom whr r joitl Gui r.v. with ro m th joit p i giv bov uh tht Th itributio o w rom vribl i b umtl thorm w tht th itributio o h th orm o grl joit Gui it. Si m vlu ol hit th tr o mmtr to poit o pl omtim w prr to wor with ro m Gui itributio

7 Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. tht thi rult i lo vli or o-ro m Gui itributio. Thi i u to th mtio hit i th tr o mmtr. W hv om mpl o thi itutio i th ot. R.3 Two ipt Gui r.v. r joitl Gui Lt r ipt Gui itribut ro m rom vribl. A ot i R. th vlu o th m i ot importt i thi rgumt. W prr to t th m vlu ro to impl th prttio. Th wh th iitio or th uivrit Gui itributio i irt w gt th iitio o joit Gui itributio or ro m vribl. Si th joit it o two ipt Gui rom vribl b writt i th orm rquir b th th joit itributio o Gui iti two ipt Gui rom vribl r i joitl Gui. Thi i ot vr urpriig th lbl o th itributio giv w th il oluio. A mor urpriig rult i th t o. I but ot ipt th joit itributio o Tht i i mrgil iti o ril Gui. A impl mpl i ollow. Lt r ow to b Gui itribut i ot ril i Gui. r Gui th joit it o i ot 0. Hr t th vlu o with qul probbilit. It i ot vr iiult to how tht or 30 tut tht i lo 0. Clrl mppig. Thror i δ o giv Gui itribut th Thror th itributio or tht Ppouli]. r rlt to h othr through rom r ot ipt. Furthrmor th oitio it δ giv. W how i R tht i r joitl i lw uivrit Gui itributio. giv whih i 0.5δ 0.5δ giv w r ot joitl Gui. For otrutiv mpl [Probbilit R.4 Momt Grtig Futio o joit Gui r.v. ro m [ ] Ipt C i qul to b ip. Th

8 Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. Dpt C Lt Lt i th rom vribl b ipt ro m Gui rom vribl. rom ollow lt i rbitrr looig utio g ollow Hr g p p p p p r om lr. Wh th momt grtig utio or irt i th lt qutio w gt g i ow w itrprt g tblih it otio with. Th momt grtig utio i i or vlu or whih th pttio rult i iit. For uivrit Gui itributio uh utio i i or ll ompl vlu. Th m i lo vli or vribl. W th tht g utio i i or rbitrr ompl vlu pir o. Si th prmtr o g utio b rbitrr w hoo to rlbl thm to gt

9 Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. p g w gt th ollowig or th momt grtig utio o. t w u th umtl thorm to pr th itributio o. W lo ivrt giv i to gt th itributio o but w prr uig th umtl thorm it o ivr Lpl trorm. Rwritig qutio i th mtri orm w gt th ollowig 0 0 Th p p A J 3 Hr J i th Jobi whih i J A i lr who t vlu i ot o itrt or ow. Fill w i giv i to om pil vlu. Th 3 bom p A 3

10 Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. From 3 w gt th momt grtig utio o joitl itribut Gui ro m rom vribl. R.5 Momt Grtig Futio o joit Gui r.v. o-ro m Lt grtig utio o vribl b joitl itribut ro m Gui rom vribl. Th momt Th momt grtig utio o i giv i R.4 qutio. Di w rom b writt ollow whih i ot tht wh 0 th momt grtig utio giv i th lt qutio ru to th o ou or th ipt vribl i R.4. R.6 Corrltio oiit btw i. W ow tht th orrltio oiit btw rom vribl iitio i ot t b th m vlu o b it. W lo ow tht 0. W t th momt grtig utio o joit Gui rom vribl with ro m lult it prtil rivtiv ollow

11 Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. Wh ro i ubtitut or w gt rom hr w tht. ot tht right h i o th lt rltio i th iitio o orrltio oiit or ro m rom vribl. Thror pprig i th iitio o th joit it i th tul vlu o orrltio oiit btw. W ll thi prmtr th orrltio oiit. R.7 I th orrltio oiit o joitl Gui itribut r.v. i ro th rom vribl r ipt. I R.5 w hv ot tht ot tht wh 0 th momt grtig utio giv i th lt qutio ru to th o ou or th ipt vribl i R.4. w hv lo how tht th orrltio oiit btw i R.5. Thi importt rult ollow rom th ombitio o R.4 R.5. R.7 Th mrgil it or i Gui. Th momt grtig utio or th mrgil it or i. Th m utio b pr rom th momt grtig utio o th joit itributio b tig 0. Wh thi i o w gt whih i th momt grtig utio o uivrit Gui itributio with m vri. H wh w mrgili joit Gui it th w hv uivrit Gui it. R.8 Th oitiol it o giv \ Thi i lo Gui itribut to b how

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

IX. Ordinary Differential Equations

IX. Ordinary Differential Equations IX. Orir Diffrtil Equtios A iffrtil qutio is qutio tht iclus t lst o rivtiv of uow fuctio. Ths qutios m iclu th uow fuctio s wll s ow fuctios of th sm vribl. Th rivtiv m b of orr thr m b svrl rivtivs prst.

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ;

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) = ( + )(y + ) Diff prtilly w.r.to & y hr p & q p = (y + ) ; q = ( +

More information

ASSERTION AND REASON

ASSERTION AND REASON ASSERTION AND REASON Som qustios (Assrtio Rso typ) r giv low. Ech qustio cotis Sttmt (Assrtio) d Sttmt (Rso). Ech qustio hs choics (A), (B), (C) d (D) out of which ONLY ONE is corrct. So slct th corrct

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Fourier Transform Methods for Partial Differential Equations

Fourier Transform Methods for Partial Differential Equations Itrtiol Jourl o Prtil Dirtil Equtio d Applitio,, Vol, No 3, -57 Avill oli t http://puipuom/ijpd//3/ Si d Edutio Pulihig DOI:69/ijpd--3- Fourir Trorm Mthod or Prtil Dirtil Equtio Nol Tu Ngro * Dprtmt o

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3 SOLVED EXAMPLES E. If f() E.,,, th f() f() h h LHL RHL, so / / Lim f() quls - (D) Dos ot ist [( h)+] [(+h) + ] f(). LHL E. RHL h h h / h / h / h / h / h / h As.[C] (D) Dos ot ist LHL RHL, so giv it dos

More information

Lectures 2 & 3 - Population ecology mathematics refresher

Lectures 2 & 3 - Population ecology mathematics refresher Lcturs & - Poultio cology mthmtics rrshr To s th mov ito vloig oultio mols, th olloig mthmtics crisht is suli I i out r mthmtics ttook! Eots logrithms i i q q q q q q ( tims) / c c c c ) ( ) ( Clculus

More information

COMSACO INC. NORFOLK, VA 23502

COMSACO INC. NORFOLK, VA 23502 YMOL 9. / 9. / 9. / 9. YMOL 9. / 9. OT:. THI RIG VLOP ROM MIL--/ MIL-TL-H, TYP II, L ITH VITIO OLLO:. UPO RULT O HOK TTIG, HOK MOUT (ITM, HT ) HV IR ROM 0.0 THIK TO 0.090 THIK LLO Y MIL-TL-H, PRGRPH...

More information

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

x, x, e are not periodic. Properties of periodic function: 1. For any integer n, Chpr Fourir Sri, Igrl, d Tror. Fourir Sri A uio i lld priodi i hr i o poiiv ur p uh h p, p i lld priod o R i,, r priodi uio.,, r o priodi. Propri o priodi uio:. For y igr, p. I d g hv priod p, h h g lo

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

How much air is required by the people in this lecture theatre during this lecture?

How much air is required by the people in this lecture theatre during this lecture? 3 NTEGRATON tgrtio is us to swr qustios rltig to Ar Volum Totl qutity such s: Wht is th wig r of Boig 747? How much will this yr projct cost? How much wtr os this rsrvoir hol? How much ir is rquir y th

More information

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space Mish Kumr Mishr D.B.OhU Ktoch It. J. Comp. Tch. Appl. Vol ( 33-37 Som Commo Fi Poit Thorms for Pir of No psiv Mppigs i Grliz Epotil Cov Mtric Spc D.B.Oh Mish Kumr Mishr U Ktoch (Rsrch scholr Drvii Uivrsit

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions MAT 8: Clculus II Tst o Chptr 9: qucs d Ifiit ris T-Hom Portio olutios. l l l l 0 0 L'Hôpitl's Rul 0 . Bgi by computig svrl prtil sums to dvlop pttr: 6 7 8 7 6 6 9 9 99 99 Th squc of prtil sums is s follows:,,,,,

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

National Quali cations

National Quali cations PRINT COPY OF BRAILLE Ntiol Quli ctios AH08 X747/77/ Mthmtics THURSDAY, MAY INSTRUCTIONS TO CANDIDATES Cdidts should tr thir surm, form(s), dt of birth, Scottish cdidt umbr d th m d Lvl of th subjct t

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

National Quali cations

National Quali cations Ntiol Quli ctios AH07 X77/77/ Mthmtics FRIDAY, 5 MAY 9:00 AM :00 NOON Totl mrks 00 Attmpt ALL qustios. You my us clcultor. Full crdit will b giv oly to solutios which coti pproprit workig. Stt th uits

More information

Chapter 3 Higher Order Linear ODEs

Chapter 3 Higher Order Linear ODEs ht High Od i ODEs. Hoogous i ODEs A li qutio: is lld ohoogous. is lld hoogous. Tho. Sus d ostt ultils of solutios of o so o itvl I gi solutios of o I. Dfiitio. futios lld lil iddt o so itvl I if th qutio

More information

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M ISSN 5-353 APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS S.M.Khirnr, R.M.Pi*, J.N.Slun** Dprtmnt o Mthmti Mhrhtr

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point: roic Oscilltor Pottil W r ow goig to stuy solutios to t TIS for vry usful ottil tt of t roic oscilltor. I clssicl cics tis is quivlt to t block srig robl or tt of t ulu (for sll oscilltios bot of wic r

More information

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai Clssil Thoy o Foi Sis : Dmystii Glis VIVEK V RANE Th Istitt o Si 5 Mm Cm Ro Mmbi-4 3 -mil ss : v_v_@yhoooi Abstt : Fo Rim itgbl tio o itvl o poit thi w i Foi Sis t th poit o th itvl big ot how wh th tio

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Factors Success op Ten Critical T the exactly what wonder may you referenced, being questions different the all With success critical ten top the of l

Factors Success op Ten Critical T the exactly what wonder may you referenced, being questions different the all With success critical ten top the of l Fr Su p T rl T xl r rr, bg r ll Wh u rl p l Fllg ll r lkg plr plr rl r kg: 1 k r r u v P 2 u l r P 3 ) r rl k 4 k rprl 5 6 k prbl lvg hkg rl 7 lxbl F 8 l S v 9 p rh L 0 1 k r T h r S pbl r u rl bv p p

More information

EE Control Systems LECTURE 11

EE Control Systems LECTURE 11 Up: Moy, Ocor 5, 7 EE 434 - Corol Sy LECTUE Copyrigh FL Lwi 999 All righ rrv POLE PLACEMET A STEA-STATE EO Uig fc, o c ov h clo-loop pol o h h y prforc iprov O c lo lc uil copor o oi goo y- rcig y uyig

More information

Relation of Finite Mellin Integral Transform. with Laplace and Fourier Transforms

Relation of Finite Mellin Integral Transform. with Laplace and Fourier Transforms Cotmpo Egiig Si Vol. 4 o. 6 69-88 Rltio o Fiit Mlli Itgl Tom with Lpl d Foui Tom S. M. Khi R. M. Pi* d J. N. Sluk** Dptmt o Mthmti Mhht Adm o Egiig Aldi-45Pu Idi mkhi7@gmil.om *Dptmt o Mthmti (A.S.&H.

More information

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu Emil Oltu-Th pl rottio oprtor s mtri fuctio THE PLNE ROTTON OPERTOR S MTRX UNTON b Emil Oltu bstrct ormlism i mthmtics c offr m simplifictios, but it is istrumt which should b crfull trtd s it c sil crt

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

Madad Khan, Saima Anis and Faisal Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan

Madad Khan, Saima Anis and Faisal Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan Rsr Jorl o Ali is Eiri Tolo 68: 326-334 203 IN: 2040-7459; -IN: 2040-7467 Mwll itii Oritio 203 itt: M 04 202 At: Frr 0 203 Plis: Jl 0 203 O F- -ils o -Al-Grss's Groois M K i Ais Fisl Drtt o Mttis COMAT

More information

1. Introduction and notations.

1. Introduction and notations. Alyi Ar om plii orml or q o ory mr Rol Gro Lyé olyl Roièr, r i lir ill, B 5 837 Tolo Fr Emil : rolgro@orgr W y hr q o ory mr, o ll h o ory polyomil o gi rm om orhogol or h mr Th mi rl i orml mig plii h

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Predictors of long term post-traumatic stress in mothers and fathers after a child s admission to PICU

Predictors of long term post-traumatic stress in mothers and fathers after a child s admission to PICU Prictors of log tr post-trutic strss i othrs fthrs ftr chil s issio to PICU Colvill G, Boyls C, Gry S, Ross O, Mht R PICU, Southpto Grl Hospitl Rlvt Litrtur Post Trutic Strss Disorr DSM IV critri Trutic

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S. Rfrc: (i) (ii) (iii) Advcd Egirig Mhmic, K.A. Sroud, Dxr J. Booh Egirig Mhmic, H.K. D Highr Egirig Mhmic, Dr. B.S. Grwl Th mhod of m Thi coi of h followig xm wih h giv coribuio o h ol. () Mid-rm xm : 3%

More information

Chapter 9 Infinite Series

Chapter 9 Infinite Series Sctio 9. 77. Cotiud d + d + C Ar lim b lim b b b + b b lim + b b lim + b b 6. () d (b) lim b b d (c) Not tht d c b foud by prts: d ( ) ( ) d + C. b Ar b b lim d lim b b b b lim ( b + ). b dy 7. () π dy

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is Discrt-tim ourir Trsform Rviw or discrt-tim priodic sigl x with priod, th ourir sris rprsttio is x + < > < > x, Rviw or discrt-tim LTI systm with priodic iput sigl, y H ( ) < > < > x H r rfrrd to s th

More information

G-001 CHATHAM HARBOR AUNT LYDIA'S COVE CHATHAM ATLANTIC OCEAN INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1" = 500' CANADA

G-001 CHATHAM HARBOR AUNT LYDIA'S COVE CHATHAM ATLANTIC OCEAN INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1 = 500' CANADA TR ISL ROR UST 8 O. R-2,4-3 R-4 IX O VITIO IS STT PL ORPI OORITS POSITIO 27698 4-39'-" 88 69-6'-4."W 278248 4-4'-" 8968 69-6'-4"W 27973 4-4'-2" 88 69-6'-"W W MPSIR OOR UUST PORTL MI OR 27 8-OOT OR L -

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems 0 Th -Trsform Dpt. of Elctroics Eg. -- DH609 Sigls d Systms 0. Th -Trsform Lplc trsform - for cotios tim sigl/systm -trsform - for discrt tim sigl/systm 0. Th -trsform For ipt y H H h with ω rl i.. DTFT

More information

ACCURACY ENHANCEMENT OF VISION METROLOGY THROUGH AUTOMATIC TARGET PLANE DETERMINATION

ACCURACY ENHANCEMENT OF VISION METROLOGY THROUGH AUTOMATIC TARGET PLANE DETERMINATION CCURCY ENHNCEENT OF VSON ETROLOGY THROUGH UTOTC TRGET PLNE DETERNTON J.O. Otpk *, C.S. Frr titut o Photogrmmtr & Rmot Sig, Thil Uivrit o Vi, Guhutr 7-9/E, 040 Vi, utri jo@ip.tuwi..t Dprtmt o Gomti, Uivrit

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE FOR DETAILS

CREATED USING THE RSC COMMUNICATION TEMPLATE (VER. 2.1) - SEE   FOR DETAILS uortig Iormtio: Pti moiitio oirmtio vi 1 MR: j 5 FEFEFKFK 8.6.. 8.6 1 13 1 11 1 9 8 7 6 5 3 1 FEFEFKFK moii 1 13 1 11 1 9 8 7 6 5 3 1 m - - 3 3 g i o i o g m l g m l - - h k 3 h k 3 Figur 1: 1 -MR or th

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

First assignment of MP-206

First assignment of MP-206 irt igmet of MP- er to quetio - 7- Norml tre log { : MP Priipl tree: I MP II MP III MP Priipl iretio: { I { II { III Iitill uppoe tht i tre tte eribe i the referee tem ' i the me tre tte but eribe i other

More information

LE230: Numerical Technique In Electrical Engineering

LE230: Numerical Technique In Electrical Engineering LE30: Numricl Tchiqu I Elctricl Egirig Lctur : Itroductio to Numricl Mthods Wht r umricl mthods d why do w d thm? Cours outli. Numbr Rprsttio Flotig poit umbr Errors i umricl lysis Tylor Thorm My dvic

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

minimize c'x subject to subject to subject to

minimize c'x subject to subject to subject to z ' sut to ' M ' M N uostrd N z ' sut to ' z ' sut to ' sl vrls vtor of : vrls surplus vtor of : uostrd s s s s s s z sut to whr : ut ost of :out of : out of ( ' gr of h food ( utrt : rqurt for h utrt

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp

1- I. M. ALGHROUZ: A New Approach To Fractional Derivatives, J. AOU, V. 10, (2007), pp Jourl o Al-Qus Op Uvrsy or Rsrch Sus - No.4 - Ocobr 8 Rrcs: - I. M. ALGHROUZ: A Nw Approch To Frcol Drvvs, J. AOU, V., 7, pp. 4-47 - K.S. Mllr: Drvvs o or orr: Mh M., V 68, 995 pp. 83-9. 3- I. PODLUBNY:

More information

Introduction to Laplace Transforms October 25, 2017

Introduction to Laplace Transforms October 25, 2017 Iroduco o Lplc Trform Ocobr 5, 7 Iroduco o Lplc Trform Lrr ro Mchcl Egrg 5 Smr Egrg l Ocobr 5, 7 Oul Rvw l cl Wh Lplc rform fo of Lplc rform Gg rform b gro Fdg rform d vr rform from bl d horm pplco o dffrl

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

TWO MARKS WITH ANSWER

TWO MARKS WITH ANSWER TWO MARKS WITH ANSWER MA65/TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS REGULATION: UNIT I PARTIAL DIFFERENTIAL EQUATIONS Formtio o rti dirti utio Sigur itgr -- Soutio o tdrd t o irt ordr rti dirti utio

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Trigonometric Formula

Trigonometric Formula MhScop g of 9 FORMULAE SHEET If h lik blow r o-fucioig ihr Sv hi fil o your hrd driv (o h rm lf of h br bov hi pg for viwig off li or ju coll dow h pg. [] Trigoomry formul. [] Tbl of uful rigoomric vlu.

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

G-001 SACO SACO BAY BIDDEFORD INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1" = 1000' CANADA MAINE STATE PLANE GEOGRAPHIC NO.

G-001 SACO SACO BAY BIDDEFORD INDEX OF NAVIGATION AIDS GENERAL NOTES: GENERAL PLAN A6 SCALE: 1 = 1000' CANADA MAINE STATE PLANE GEOGRAPHIC NO. 2 3 6 7 8 9 0 2 3 20000 230000 220000 ST TORY M 8-OOT W ST 2880000 2880000 L ROOK RL OTS: UKI OR TUR RKWTR (TYP) U O ROOK. SOUIS R I T TTS. T RR PL IS M LOWR LOW WTR (MLLW) IS S O T 983-200 TIL PO. SOUIS

More information

UNIT I FOURIER SERIES T

UNIT I FOURIER SERIES T UNIT I FOURIER SERIES PROBLEM : Th urig mom T o h crkh o m gi i giv or ri o vu o h crk g dgr 6 9 5 8 T 5 897 785 599 66 Epd T i ri o i. Souio: L T = i + i + i +, Sic h ir d vu o T r rpd gc o T T i T i

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Practice Final Exam. 3.) What is the 61st term of the sequence 7, 11, 15, 19,...?

Practice Final Exam. 3.) What is the 61st term of the sequence 7, 11, 15, 19,...? Discrt mth Prctic Fl Em.) Fd 4 (i ) i=.) Fd i= 6 i.) Wht is th 6st trm th squnc 7,, 5, 9,...? 4.) Wht s th 57th trm, 6,, 4,...? 5.) Wht s th sum th first 60 trms th squnc, 5, 7, 9,...? 6.) Suppos st A

More information

page 11 equation (1.2-10c), break the bar over the right side in the middle

page 11 equation (1.2-10c), break the bar over the right side in the middle I. Corrctios Lst Updtd: Ju 00 Complx Vrils with Applictios, 3 rd ditio, A. Dvid Wusch First Pritig. A ook ought for My 007 will proly first pritig With Thks to Christi Hos of Swd pg qutio (.-0c), rk th

More information

Binomials and Pascal s Triangle

Binomials and Pascal s Triangle Binomils n Psl s Tringl Binomils n Psl s Tringl Curriulum R AC: 0, 0, 08 ACS: 00 www.mthltis.om Binomils n Psl s Tringl Bsis 0. Intif th prts of th polnomil: 8. (i) Th gr. Th gr is. (Sin is th highst

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

ENGR 323 BHW 15 Van Bonn 1/7

ENGR 323 BHW 15 Van Bonn 1/7 ENGR 33 BHW 5 Van Bonn /7 4.4 In Eriss and 3 as wll as man othr situations on has th PDF o X and wishs th PDF o Yh. Assum that h is an invrtibl untion so that h an b solvd or to ild. Thn it an b shown

More information

Inner Product Spaces INNER PRODUCTS

Inner Product Spaces INNER PRODUCTS MA4Hcdoc Ir Product Spcs INNER PRODCS Dto A r product o vctor spc V s ucto tht ssgs ubr spc V such wy tht th ollowg xos holds: P : w s rl ubr P : P : P 4 : P 5 : v, w = w, v v + w, u = u + w, u rv, w =

More information

12 - M G P L Z - M9BW. Port type. Bore size ø12, ø16 20/25/32/40/50/ MPa 10 C to 60 C (With no condensation) 50 to 400 mm/s +1.

12 - M G P L Z - M9BW. Port type. Bore size ø12, ø16 20/25/32/40/50/ MPa 10 C to 60 C (With no condensation) 50 to 400 mm/s +1. ris - MP - Compt gui ylinr ø, ø, ø, ø, ø, ø, ø, ø ow to Orr Cln sris lif typ (with spilly trt sliing prts) Vuum sution typ (with spilly trt sliing prts) ir ylinr otry tutor - M P - - MW ll ushing ring

More information

Handout 11. Energy Bands in Graphene: Tight Binding and the Nearly Free Electron Approach

Handout 11. Energy Bands in Graphene: Tight Binding and the Nearly Free Electron Approach Hdout rg ds Grh: Tght dg d th Nrl Fr ltro roh I ths ltur ou wll lr: rg Th tght bdg thod (otd ) Th -bds grh FZ C 407 Srg 009 Frh R Corll Uvrst Grh d Crbo Notubs: ss Grh s two dsol sgl to lr o rbo tos rrgd

More information

Chapter 7 Rules of Differentiation & Taylor Series

Chapter 7 Rules of Differentiation & Taylor Series RS - Ch 7 - Ruls o Dirtiatio Chaptr 7 Ruls o Dirtiatio & Taylor Sris Isaa Nwto a Gottri Libiz 7. Rviw: Drivativ a Drivativ Ruls Rviw: Diitio o rivativ. y ' lim lim Applyig this iitio, w rviw th 9 ruls

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Planar convex hulls (I)

Planar convex hulls (I) Covx Hu Covxty Gv st P o ots 2D, tr ovx u s t sst ovx oyo tt ots ots o P A oyo P s ovx or y, P, t st s try P. Pr ovx us (I) Coutto Gotry [s 3250] Lur To Bowo Co ovx o-ovx 1 2 3 Covx Hu Covx Hu Covx Hu

More information

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem Avll t http:pvu.u Appl. Appl. Mth. ISSN: 9-9466 Vol. 0 Issu Dr 05 pp. 007-08 Appltos Appl Mthts: A Itrtol Jourl AAM Etso oruls of Lurll s utos Appltos of Do s Suto Thor Ah Al Atsh Dprtt of Mthts A Uvrst

More information

Integration by Guessing

Integration by Guessing Itgrtio y Gussig Th computtios i two stdrd itgrtio tchiqus, Sustitutio d Itgrtio y Prts, c strmlid y th Itgrtio y Gussig pproch. This mthod cosists of thr stps: Guss, Diffrtit to chck th guss, d th Adjust

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist

Calculus Cheat Sheet. ( x) Relationship between the limit and one-sided limits. lim f ( x ) Does Not Exist Clulus Cht Sht Limits Dfiitios Pris Dfiitio : W sy lim f L if Limit t Ifiity : W sy lim f L if w for vry ε > 0 thr is δ > 0 suh tht mk f ( ) s los to L s w wt y whvr 0 < < δ th f L < ε. tkig lrg ough positiv.

More information

PRELIMINARY- NOT FOR CONSTRUCTION

PRELIMINARY- NOT FOR CONSTRUCTION PRLMR- O OR RUO M:\L PRO 0\00 U\\0 VR. /0/0 :: M ML' - U, - LURL PL X: 0. VR O URV. MO PL. LOU PL. -. RV-RU PL. R PL. UL PL. LP PL PROPR RPO: LO,, 9 L MMRL PL, OL PL O LU ORM PR O O U, LL U, O. R: LURL

More information

Hadamard-Type Inequalities for s-convex Functions

Hadamard-Type Inequalities for s-convex Functions Interntionl Mthemtil Forum, 3, 008, no. 40, 965-975 Hdmrd-Type Inequlitie or -Convex Funtion Mohmmd Alomri nd Mlin Dru Shool o Mthemtil Siene Fulty o Siene nd Tehnology Univeriti Kebngn Mlyi Bngi 43600

More information

Decimals DECIMALS.

Decimals DECIMALS. Dimls DECIMALS www.mthltis.o.uk ow os it work? Solutions Dimls P qustions Pl vlu o imls 0 000 00 000 0 000 00 0 000 00 0 000 00 0 000 tnths or 0 thousnths or 000 hunrths or 00 hunrths or 00 0 tn thousnths

More information

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * *

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * * Dmis o Mrie Biologil Resores A FUNCTION * * * REVIEW OF SOME MATHEMATICS * * * z () z g(,) A tio is rle or orml whih estlishes reltioshi etwee deedet vrile (z) d oe or more ideedet vriles (,) sh tht there

More information