Electrochemical Properties of Materials for Electrical Energy Storage Applications

Size: px
Start display at page:

Download "Electrochemical Properties of Materials for Electrical Energy Storage Applications"

Transcription

1 Electrochemical Properties of Materials for Electrical Energy Storage Applications Lecture Note 3 October 11, 2013 Kwang Kim Yonsei Univ., KOREA kbkim@yonsei.ac.kr 39 Y O N Se I 126.9

2 Nernst Equation Nernst equation for an electrode reaction of O + ne = R as: G = G 0 + RT ln ((a (Reductant) /a (Oxidant) ) -G = zfe, -G 0 = zfe 0 E = E 0 -(RT/nF) ln (a (Reductant) /a (Oxidant) ) Other thermodynamic quantities can be derived from electrochemical measurement. G = H- TS, dg = VdP S dt S = -(G/T) p S = nf (E cell /T) p H = G + TS = nf [T(E cell /T) p -E cell ] RT ln K rxn = -G 0 = zfe 0

3 Reversibility Thermodynamics : system at equilibrium : reversibility Chemical reversibility : Pt/H 2 /H +, Cl - /AgCl/Ag Overall H 2 + 2AgCl 2Ag + 2H + + 2Cl - One can overcome the cell voltage by opposing it with the external dc source, then the current flow through the cell will reverse. The new cell reaction is 2Ag + 2H + + 2Cl - H 2 + 2AgCl Thermodynamic reversibility A process is thermodynamic reversible when an infinitesimal reversal in the driving force causes it to reverse direction. Obviously, this cannot happen unless the system feels only an infinitesimal driving force at any time. Hence, the system essentially be always at equilibrium.

4 Reversibility Thermodynamics : system at equilibrium : reversibility Practical reversibility : Reversible process : infinitely slow process Since all actual processes occur at finite rates, they cannot proceed with strictly thermodynamic reversibility. However, a process may be in practice be carried out in such a manner that thermodynamic equations apply to a desired accuracy. Example; Removal of a large weight from a spring balance Reversible removal of a weight requires continuous equilibrium of Kx = mg. The spring is never prone to contract more than an infinitesimal distance because the weight is removed progressively in infinitesimal portions.

5 Reversibility Practical reversibility (continued) O + ne = R E = E o - (RT/nF) (a R /a O ), E o =? If the system follows the Nernst equation, the electrode reaction is often said to be thermodynamically or electrochemically reversible (or nernstian). Reversibility of a process ; one s ability to detect the signs of disequilibrium Rate of change of force driving the observed process vs. speed with which the system can reestablish equilibrium If the perturbation applied to the system is small enough, or if the system can attain equilibrium rapidly enough compared to the measuring time, thermodynamic relation will apply.

6 Reaction at each electrode (half cell reaction) Differing reactivities of metals of Mg and Cu: When metals react, they give away electrons and form positive ions. This particular topic sets about comparing the ease with which a metal does this to form hydrated ions in solution for example, Mg 2+ (aq) or Cu2+ (aq).

7 Electrode/Solution Interface :Electric Double Layer Capacitance Electrode: Electronic conductor Charge transported by electron Solution: Ionic conductor Charge transported by ion : Charge Transfer Resistance (a) Non Faradaic Process :Double Layer Charge/Discharge (b) Faradaic Process : Charge Transfer Reaction, Redox reaction

8

9 Ideal Polarizable Electrode (interface) :Electric Double Layer Capacitance X : Charge Transfer Resistance R F : infinite resistance

10 Ideal Non Polarizable Electrode (Interface) X :Electric Double Layer Capacitance : Charge Transfer Resistance R F : Zero

11 Electrical double layer Diffuse Layer Bulk Electrolyte Solid Aqueous Solution The charged surface and the diffuse ion layer of counterions form a double-layer (diffuse) capacitor.

12 From Coulomb s Law, F c q 1 q 2 4D 0 r 2 By integration we can estimate the energy to separate a charge q1 from q2. In water W~1.9x10-20 J, In Air W~1.5x10-18 J Clearly it is the high dielectric constant or polar nature of water which causes dissociation. In air or hexane (D~2), no dissociation is expected. This is why NaCl dissolves in water but not in oil.

13 Electrical Double Layer The model which gave rise to the term 'electrical double layer' was first put forward in the 1850's by Helmholtz. - No electron transfer reactions occur at the electrode - Interactions between the ions in solution and the electrode surface are assumed to be electrostatic in nature and resulted from the fact that the electrode holds a charge density (q m )which arises from either an excess or deficiency of electrons at the electrode surface. - In order for the interface to remain neutral the charge held on the electrode is balanced by the redistribution of ions (q s )close to the electrode surface. lq m l=lq s l q m q s

14 Helmholtz Electrical Double Layer This theory is a simplest approximation that the surface charge is neutralized by opposite sign counterions placed at an increment of d away from the surface. The overall result is two layers of charge (the double layer) and a linear potential drop which is confined to only this region (termed the outer Helmholtz Plane, OHP) in solution. The result is absolutely analogous to an electrical capacitor which has two plates of charge separated by some distance (d) with the potential drop occurring in a linear manner between the two plates. q m q s lq m l=lq s l

15 Helmholtz model E 0 d Electrode possesses a charge density resulted from excess charge at the electrode surface (q m ), this must be balanced by an excess charge in the electrolyte (-q s )

16 Helmholtz model C A 0 r q V 0 r d A d q charge on electrode (in Coulomb) Helmholtz model Two sheets of charge, having opposite polarity, separated by a distance of molecular order equivalent to a parallel plate capacitor Relation of stored charge density, q, and voltage drop V between the plates q = (εε0/d)v ε :dielectric constant of the medium, ε0 : permittivity of free space, d : spacing Differential capacitance q / V = Cd= εε0/d Weakness of this model: predict Cd is const

17 Surface potential 1) Transfer of charged species e - Cu 2+ Cu 2+ (aq) e - Cu 2+ e - e - Cu 2+ Cu Cu e - e - Cu 2+ e - e - Cu 2+

18 2) Specific adsorption of ions I I I I I I I +

19 3) Orientation of dipole molecules +

20 Gouy-Chappman layer Plane of shear E 0 d Charge on the electrode is confined to surface but same is not true for the solution. Due to interplay between electros tatic forces and thermal randomizing force particularly at low concentrations, it may take a finite thickness to accumulate necessary counter charge in solution.

21 Gouy-Chappman layer Plane of shear E 0 d

22 Gouy-Chappman layer Debye Length * 2nze kt o moles L o C =1/cm C onc Does not belong N z e kt x10 1L 100cm x charge mole 10 cm m charge x10 C m Nm x10 unitless 2 N m cm J K o A C J 298K

23 Gouy-Chappman layer * zf ( 2C ) zf0 C d cosh RT 2RT 1 2 sinh x e x e 2 x Hyperbolic functions 1) Minimum in capacitance at the potential of zero charge 2) dependence of C d on concentration

24 Stern double layer Combination of Helmholtz and Guoy-Chapman Models Now the ions are assumed to be able to move in solution and so the electrostatic interactions are in competition with Brownian motion. The result is still a region close to the electrode surface (100x10-10 m) containing an excess of one type of ion but now the potential drop occurs over the region called the diffuse layer.

25 Stern double layer Combination of Helmholtz and Guoy-Chapman Models The potential drop may be broken into two contributions. ( ) ( ) m s m 2 2 s

26 Stern double layer ( ) ( ) m s m 2 2 s Inner layer + diffuse layer This may be seen as two capacitors in series: M C i C d S 1 C t 1 C i 1 C d C i : inner layer capacitance C d : diffuse layer capacitance-given by Gouy-Chapman

27 Stern double layer M C i C d S 1 C t 1 C i 1 C d Total capacitance (C t ) dominated by the smaller of the two. At low c 0 At high c 0 C d dominant C i dominant C d C t C i C t

28

29 Reaction Rate Energy Reactants Products Reaction coordinate

30 Activation Energy - Minimum energy to make the reaction happen Energy Reactants Products Reaction coordinate

31 Energy Reactants Overall energy change Products Reaction coordinate

32 Energy Reactants Products Reaction coordinate

33

34 Catalysts H H Hydrogen bonds to surface of metal. Break H-H bonds H H H H H H Pt surface

35 Energy This reaction takes place in three steps Reaction coordinate

36 E a Energy First step is fast Low activation energy Reaction coordinate

37 E a Energy Second step is slow High activation energy Reaction coordinate

38 E a Energy Third step is fast Low activation energy Reaction coordinate

39 Second step is slow High activation energy Energy Second step is rate determining Reaction coordinate

40

41 INCREASING TEMPERATURE NUMBER OF MOLECUES WITH A PARTICULAR ENERGY MAXWELL-BOLTZMANN DISTRIBUTION OF MOLECULAR ENERGY MOLECULAR ENERGY Because of the many collisions taking place between molecules, there is a spread of molecular energies and velocities. This has been demonstrated by experiment. It indicated that... no particles have zero energy/velocity. some have very low and some have very high energies/velocities. most have intermediate velocities.

42 INCREASING TEMPERATURE NUMBER OF MOLECUES WITH A PARTICULAR ENERGY T 1 MAXWELL-BOLTZMANN DISTRIBUTION OF MOLECULAR ENERGY T 2 TEMPERATURE T 2 > T 1 MOLECULAR ENERGY Increasing the temperature alters the distribution get a shift to higher energies/velocities. curve gets broader and flatter due to the greater spread of values. area under the curve stays constant - it corresponds to the total number of particles.

43 DECREASING TEMPERATURE NUMBER OF MOLECUES WITH A PARTICULAR ENERGY T 3 T 1 MAXWELL-BOLTZMANN DISTRIBUTION OF MOLECULAR ENERGY TEMPERATURE T 1 > T 3 MOLECULAR ENERGY Decreasing the temperature alters the distribution get a shift to lower energies/velocities. curve gets narrower and more pointed due to the smaller spread of values. area under the curve stays constant - it corresponds to the total number of particles.

44 INCREASING TEMPERATURE NUMBER OF MOLECUES WITH A PARTICULAR ENERGY T 3 T 1 MAXWELL-BOLTZMANN DISTRIBUTION OF MOLECULAR ENERGY T 2 TEMPERATURE T 2 > T 1 > T 3 MOLECULAR ENERGY No particles have zero energy/velocity. Some particles have very low and some have very high energies/velocities. Most have intermediate velocities. As the temperature increases the curves flatten, broaden and shift to higher energies.

45 INCREASING TEMPERATURE NUMBER OF MOLECUES WITH A PARTICULAR ENERGY MAXWELL-BOLTZMANN DISTRIBUTION OF MOLECULAR ENERGY E a NUMBER OF MOLECULES WITH SUFFICIENT ENERGY TO OVERCOME THE ENERGY BARRIER MOLECULAR ENERGY ACTIVATION ENERGY - E a The Activation Energy is the minimum energy required for a reaction to take place. The area under the curve beyond E a corresponds to the number of molecules with sufficient energy to overcome the energy barrier and react.

46 INCREASING TEMPERATURE NUMBER OF MOLECUES WITH A PARTICULAR ENERGY TEMPERATURE T 2 > T 1 T 1 MAXWELL-BOLTZMANN DISTRIBUTION OF MOLECULAR ENERGY T 2 E a EXTRA MOLECULES WITH SUFFICIENT ENERGY TO OVERCOME THE ENERGY BARRIER MOLECULAR ENERGY Increasing the temperature gives more particles an energy greater than E a. More reactants are able to overcome the energy barrier and form products. A small rise in temperature can lead to a large increase in rate.

47 General Chemical Reaction Equation cc + dd = aa + bb v A A v B B v C C v D D v i S i 0 v stoichiometric coefficients v C c v D d v A a v B b

48 Extent of Reaction n i n i0 v i n i n i0 v i extent of reaction (moles reacting) n i = moles of species i present in the system after the reaction occurs n i0 moles of species i present in the system when the reaction starts v i coefficient for species i in the particular chemical reaction equation (moles of species i produced or consumed per moles reacting)

49 Reaction rate 2N 2 O ) 4 NO O 2 If we want to equalize the rates then: Rate = Δ[O 2 ] = 1/4 Δ[NO 2 ] = - 1/2 Δ[N 2 O 5 ] Δt Δt Δt - divide by balancing coefficients when we equalize rates.

50 Reaction rate The problem of having several possibly different rates to describe the same reaction is avoided by defining the unique rate of reaction as the rate of change of the extent of reaction,ξ (small chi ) : Reaction rate = n d dt n 0 v J Because J J,, the change in the extent of reaction is related to the change in the amount of each substance J by, so v d J dn J Reaction rate = 1 v J dn dt J

51 Reaction rate In it s most general representation, we can discuss a reaction rate as a function of the extent of reaction: Rate = dξ/vdt where ξ is the extent of rxn, V is the volume of the system and t is time Normalized to concentration and stoichiometry: rate = dn i /v Vdt i = d[c i ]/v dt i where n is # moles, v is stoichiometric coefficient, and C is molar concentration of species i

52

53

54

55

Electrochemical Properties of Materials for Electrical Energy Storage Applications

Electrochemical Properties of Materials for Electrical Energy Storage Applications Electrochemical Properties of Materials for Electrical Energy Storage Applications Lecture Note 2 March 4, 2015 Kwang Kim Yonsei Univ., KOREA kbkim@yonsei.ac.kr 39 Y 88.91 8 O 16.00 7 N 14.01 34 Se 78.96

More information

V. Electrostatics. MIT Student

V. Electrostatics. MIT Student V. Electrostatics Lecture 26: Compact Part of the Double Layer MIT Student 1 Double-layer Capacitance 1.1 Stern Layer As was discussed in the previous lecture, the Gouy-Chapman model predicts unphysically

More information

Electrochemical methods : Fundamentals and Applications Introduction

Electrochemical methods : Fundamentals and Applications Introduction Electrochemical methods : Fundamentals and Applications Introduction March 05, 2014 Kwang Kim Yonsei University kbkim@yonsei.ac.kr 39 8 7 34 53 Y O N Se I 88.91 16.00 14.01 78.96 126.9 Electrochemical

More information

CHEMISTRY. Chapter 14 Chemical Kinetics

CHEMISTRY. Chapter 14 Chemical Kinetics CHEMISTRY The Central Science 8 th Edition Chapter 14 Kozet YAPSAKLI kinetics is the study of how rapidly chemical reactions occur. rate at which a chemical process occurs. Reaction rates depends on The

More information

Electrochemistry objectives

Electrochemistry objectives Electrochemistry objectives 1) Understand how a voltaic and electrolytic cell work 2) Be able to tell which substance is being oxidized and reduced and where it is occuring the anode or cathode 3) Students

More information

Electrochem 1 Electrochemistry Some Key Topics Conduction metallic electrolytic Electrolysis effect and stoichiometry Galvanic cell Electrolytic cell Electromotive Force (potential in volts) Electrode

More information

3/24/11. Introduction! Electrogenic cell

3/24/11. Introduction! Electrogenic cell March 2011 Introduction Electrogenic cell Electrode/electrolyte interface Electrical double layer Half-cell potential Polarization Electrode equivalent circuits Biopotential electrodes Body surface electrodes

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Electrochemistry. Goal: Understand basic electrochemical reactions. Half Cell Reactions Nernst Equation Pourbaix Diagrams.

Electrochemistry. Goal: Understand basic electrochemical reactions. Half Cell Reactions Nernst Equation Pourbaix Diagrams. Electrochemistry Goal: Understand basic electrochemical reactions Concepts: Electrochemical Cell Half Cell Reactions Nernst Equation Pourbaix Diagrams Homework: Applications Battery potential calculation

More information

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T.

Outline: Kinetics. Reaction Rates. Rate Laws. Integrated Rate Laws. Half-life. Arrhenius Equation How rate constant changes with T. Chemical Kinetics Kinetics Studies the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light on the reaction mechanism (exactly

More information

Fernando O. Raineri. Office Hours: MWF 9:30-10:30 AM Room 519 Tue. 3:00-5:00 CLC (lobby).

Fernando O. Raineri. Office Hours: MWF 9:30-10:30 AM Room 519 Tue. 3:00-5:00 CLC (lobby). Fernando O. Raineri Office Hours: MWF 9:30-10:30 AM Room 519 Tue. 3:00-5:00 CLC (lobby). P1) What is the reduction potential of the hydrogen electrode g bar H O aq Pt(s) H,1 2 3 when the aqueous solution

More information

Lecture 3 Charged interfaces

Lecture 3 Charged interfaces Lecture 3 Charged interfaces rigin of Surface Charge Immersion of some materials in an electrolyte solution. Two mechanisms can operate. (1) Dissociation of surface sites. H H H H H M M M +H () Adsorption

More information

Electron Transfer Reactions

Electron Transfer Reactions ELECTROCHEMISTRY 1 Electron Transfer Reactions 2 Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation of an electric current (electricity) or be caused by

More information

Lecture 12: Electroanalytical Chemistry (I)

Lecture 12: Electroanalytical Chemistry (I) Lecture 12: Electroanalytical Chemistry (I) 1 Electrochemistry Electrochemical processes are oxidation-reduction reactions in which: Chemical energy of a spontaneous reaction is converted to electricity

More information

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 14. Chemical Kinetics. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 14 John D. Bookstaver St. Charles Community College Cottleville, MO In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at

More information

8 Phenomenological treatment of electron-transfer reactions

8 Phenomenological treatment of electron-transfer reactions 8 Phenomenological treatment of electron-transfer reactions 8.1 Outer-sphere electron-transfer Electron-transfer reactions are the simplest class of electrochemical reactions. They play a special role

More information

CHAPTER 1. FUNDAMENTAL CONCEPTS OF ELECTROANALYTICAL CHEMISTRY

CHAPTER 1. FUNDAMENTAL CONCEPTS OF ELECTROANALYTICAL CHEMISTRY CHAPTER 1. FUNDAMENTAL CONCEPTS OF ELECTROANALYTICAL CHEMISTRY I. Introduction What is electrochemistry? Fundamental process: charge transfer at an interface FIGURE 1-1. Electrochemistry as an Interdisciplinary

More information

Electrodes MB - JASS 09. Metal in electrolyte

Electrodes MB - JASS 09. Metal in electrolyte Electrodes MB - JASS 09 Metal in electrolyte 1 Helmholtz double layer (1) Helmholtz double layer : simplest approximation surface charge is neutralized by opposite signed counterions placed away from the

More information

ELECTROCHEMISTRY I. The science concerned with the study of electron transfer across phase boundary

ELECTROCHEMISTRY I. The science concerned with the study of electron transfer across phase boundary ELECTROCHEMISTRY I The science concerned with the study of electron transfer across phase boundary Electrode: Is a conducting material immersed in a media. Electrode potential: Is the potential difference

More information

Next layer is called diffuse layer----ions not held tightly----thickness is > 1000 angstroms-- exact distance depends on ionic strength of soln

Next layer is called diffuse layer----ions not held tightly----thickness is > 1000 angstroms-- exact distance depends on ionic strength of soln What does double layer of IPE look like?-see Fig.1.2.3 Also called Electrified Inteface At no external E appl -- inner Stern layer or Inner Helmholz plane (IHP) contains mostly solvent solvent molecules

More information

Lecture 14. Electrolysis.

Lecture 14. Electrolysis. Lecture 14 Electrolysis: Electrosynthesis and Electroplating. 95 Electrolysis. Redox reactions in which the change in Gibbs energy G is positive do not occur spontaneously. However they can be driven via

More information

Review: Balancing Redox Reactions. Review: Balancing Redox Reactions

Review: Balancing Redox Reactions. Review: Balancing Redox Reactions Review: Balancing Redox Reactions Determine which species is oxidized and which species is reduced Oxidation corresponds to an increase in the oxidation number of an element Reduction corresponds to a

More information

C H E M I C N E S C I

C H E M I C N E S C I C H E M I C A L K I N E T S C I 4. Chemical Kinetics Introduction Average and instantaneous Rate of a reaction Express the rate of a reaction in terms of change in concentration Elementary and Complex

More information

ELECTROCHEMISTRY OXIDATION-REDUCTION

ELECTROCHEMISTRY OXIDATION-REDUCTION ELECTROCHEMISTRY Electrochemistry involves the relationship between electrical energy and chemical energy. OXIDATION-REDUCTION REACTIONS SPONTANEOUS REACTIONS Can extract electrical energy from these.

More information

4. Electrode Processes

4. Electrode Processes Electrochemical Energy Engineering, 2012 4. Electrode Processes Learning subject 1. Working electrode 2. Reference electrode 3. Polarization Learning objective 1. Understanding the principle of electrode

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

CHEMICAL KINETICS (RATES OF REACTION)

CHEMICAL KINETICS (RATES OF REACTION) Kinetics F322 1 CHEMICAL KINETICS (RATES OF REACTION) Introduction Chemical kinetics is concerned with the dynamics of chemical reactions such as the way reactions take place and the rate (speed) of the

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Electrochemistry. Chapter 18. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Electrochemistry Chapter 18 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Electrochemical processes are oxidation-reduction reactions in which: the energy

More information

Chapter 18 Electrochemistry

Chapter 18 Electrochemistry Chapter 18 Electrochemistry Definition The study of the interchange of chemical and electrical energy in oxidation-reduction (redox) reactions This interchange can occur in both directions: 1. Conversion

More information

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes.

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes. REACTION KINETICS Study of reaction rates Why? Rates of chemical reactions are primarily controlled by 5 factors: the chemical nature of the reactants 2 the ability of the reactants to come in contact

More information

b t u t sta t y con o s n ta t nt

b t u t sta t y con o s n ta t nt Reversible Reactions & Equilibrium Reversible Reactions Reactions are spontaneous if G G is negative. 2H 2 (g) + O 2 (g) 2H 2 O(g) + energy If G G is positive the reaction happens in the opposite direction.

More information

Electrical double layer

Electrical double layer Electrical double layer Márta Berka és István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry http://dragon.unideb.hu/~kolloid/ 7. lecture Adsorption of strong electrolytes from

More information

3. Potentials and thermodynamics

3. Potentials and thermodynamics Electrochemical Energy Engineering, 2012 3. Potentials and thermodynamics Learning subject 1. Electrochemical reaction 2. Thermodynamics and potential 3. Nernst equation Learning objective 1. To set up

More information

Electrochemical methods : Fundamentals and Applications

Electrochemical methods : Fundamentals and Applications Electrochemical methods : Fundamentals and Applications Lecture Note 7 May 19, 2014 Kwang Kim Yonsei University kbkim@yonsei.ac.kr 39 8 7 34 53 Y O N Se I 88.91 16.00 14.01 78.96 126.9 Electrochemical

More information

Chapter 18 problems (with solutions)

Chapter 18 problems (with solutions) Chapter 18 problems (with solutions) 1) Assign oxidation numbers for the following species (for review see section 9.4) a) H2SO3 H = +1 S = +4 O = -2 b) Ca(ClO3)2 Ca = +2 Cl = +5 O = -2 c) C2H4 C = -2

More information

Chapter 14. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 14. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 14 John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice Hall,

More information

Enduring Understandings & Essential Knowledge for AP Chemistry

Enduring Understandings & Essential Knowledge for AP Chemistry Enduring Understandings & Essential Knowledge for AP Chemistry Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements

More information

Guide to Chapter 18. Electrochemistry

Guide to Chapter 18. Electrochemistry Guide to Chapter 18. Electrochemistry We will spend three lecture days on this chapter. During the first class meeting we will review oxidation and reduction. We will introduce balancing redox equations

More information

Structure & properties of water

Structure & properties of water OCN 623 Chemical Oceanography Reading: Libes, Chapter 7 Structure & properties of water Water accounts for 96.5 weight percent of seawater Innate characteristics affect nearly all properties of seawater

More information

Introduction of Electrode Processes (Ch. 1)

Introduction of Electrode Processes (Ch. 1) Introduction of Electrode Processes (Ch. 1) Introduction Electrochemical cells & reactions: thermodynamics and potentials Nonfaradaic processes & electrode-solution interface Capacitance and charge of

More information

Kinetics. Chapter 14. Chemical Kinetics

Kinetics. Chapter 14. Chemical Kinetics Lecture Presentation Chapter 14 Yonsei University In kinetics we study the rate at which a chemical process occurs. Besides information about the speed at which reactions occur, kinetics also sheds light

More information

Chemistry 2000 (Spring 2014) Problem Set #7: Redox Reactions and Electrochemistry Solutions

Chemistry 2000 (Spring 2014) Problem Set #7: Redox Reactions and Electrochemistry Solutions Chemistry 2000 (Spring 2014) Problem Set #7: Redox Reactions and Electrochemistry Solutions Answers to Questions in Silberberg (only those w/out answers at the back of the book) 192 An electrochemical

More information

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12:

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12: Kinetics: Contents Brown et al, Chemistry, 2 nd ed (AUS), Ch. 12: Why kinetics? What is kinetics? Factors that Affect Reaction Rates Reaction Rates Concentration and Reaction Rate The Change of Concentration

More information

Hg2 2+ (aq) + H2(g) 2 Hg(l) + 2H + (aq)

Hg2 2+ (aq) + H2(g) 2 Hg(l) + 2H + (aq) The potential difference between two electrodes in a cell is called the electromotive force, or The EMF of a voltaic cell is called the The cell voltage of a voltaic cell will be a Note: We are used to

More information

V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes

V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes MIT Student 1. Poisson-Nernst-Planck Equations The Nernst-Planck Equation is a conservation of mass equation that describes the influence of

More information

Types of Cells Chemical transformations to produce electricity- Galvanic cell or Voltaic cell (battery)

Types of Cells Chemical transformations to produce electricity- Galvanic cell or Voltaic cell (battery) Electrochemistry Some Key Topics Conduction metallic electrolytic Electrolysis effect and stoichiometry Galvanic cell Electrolytic cell Electromotive Force Electrode Potentials Gibbs Free Energy Gibbs

More information

957 Lecture #13 of 18

957 Lecture #13 of 18 Lecture #13 of 18 957 958 Q: What was in this set of lectures? A: B&F Chapter 2 main concepts: Section 2.1 : Section 2.3: Salt; Activity; Underpotential deposition Transference numbers; Liquid junction

More information

Equilibrium. Chapter How Reactions Occur How Reactions Occur

Equilibrium. Chapter How Reactions Occur How Reactions Occur Copyright 2004 by Houghton Mifflin Company. Equilibrium Chapter 16 ll rights reserved. 1 16.1 How Reactions Occur Kinetics: the study of the factors that effect speed of a rxn mechanism by which a rxn

More information

18.3 Electrolysis. Dr. Fred Omega Garces. Chemistry 201. Driving a non-spontaneous Oxidation-Reduction Reaction. Miramar College.

18.3 Electrolysis. Dr. Fred Omega Garces. Chemistry 201. Driving a non-spontaneous Oxidation-Reduction Reaction. Miramar College. 18.3 Electrolysis Driving a non-spontaneous Oxidation-Reduction Reaction Dr. Fred Omega Garces Chemistry 201 Miramar College 1 Electrolysis Voltaic Vs. Electrolytic Cells Voltaic Cell Energy is released

More information

ΔG T,P = - w electrical. = - nfe joules

ΔG T,P = - w electrical. = - nfe joules Electrical work is just the amount of charge Q and the potential V through whichh we move it. Voltage, J coulomb -1, is electric potential energy per unit charge w = ele ectrical Q = nf = VQQ F is the

More information

14.1 Expressing the Reaction Rate

14.1 Expressing the Reaction Rate 14.1 Expressing the Reaction Rate Differential Rate and Integrated Rate Laws Fred Omega Garces Chemistry 201 Miramar College 1 Expressing Reaction Rates Outline Kinetics: Intro Factors influencing Reaction

More information

Classical Models of the Interface between an Electrode and Electrolyte. M.Sc. Ekaterina Gongadze

Classical Models of the Interface between an Electrode and Electrolyte. M.Sc. Ekaterina Gongadze Presented at the COMSOL Conference 009 Milan Classical Models of the Interface between an Electrode and Electrolyte M.Sc. Ekaterina Gongadze Faculty of Informatics and Electrical Engineering Comsol Conference

More information

Electrolyte Solutions

Electrolyte Solutions Chapter 8 Electrolyte Solutions In the last few chapters of this book, we will deal with several specific types of chemical systems. The first one is solutions and equilibria involving electrolytes, which

More information

Electrochemical Cells

Electrochemical Cells Electrochemistry Electrochemical Cells The Voltaic Cell Electrochemical Cell = device that generates electricity through redox rxns 1 Voltaic (Galvanic) Cell An electrochemical cell that produces an electrical

More information

Chap. 4 AQUEOUS RXNS. O H δ+ 4.1 WATER AS A SOLVENT 4.2 AQUEOUS IONIC REACTIONS. Page 4-1. NaOH(aq) + HCl(g) NaCl(aq) +H 2 O

Chap. 4 AQUEOUS RXNS. O H δ+ 4.1 WATER AS A SOLVENT 4.2 AQUEOUS IONIC REACTIONS. Page 4-1. NaOH(aq) + HCl(g) NaCl(aq) +H 2 O Chap. AQUEOUS RXNS.1 WATER AS A SOLVENT Describe solution composition in terms of molarity Describe strong and weak electrolyte solutions, including acids and bases Use ionic equations to describe neutralization

More information

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions

Collision Theory. Collision theory: 1. atoms, ions, and molecules must collide in order to react. Only a small number of collisions produce reactions UNIT 16: Chemical Equilibrium collision theory activation energy activated complex reaction rate reversible reaction chemical equilibrium law of chemical equilibrium equilibrium constant homogeneous equilibrium

More information

CHAPTER 17: ELECTROCHEMISTRY. Big Idea 3

CHAPTER 17: ELECTROCHEMISTRY. Big Idea 3 CHAPTER 17: ELECTROCHEMISTRY Big Idea 3 Electrochemistry Conversion of chemical to electrical energy (discharge). And its reverse (electrolysis). Both subject to entropic caution: Convert reversibly to

More information

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s)

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s) CHEMICAL EQUILIBRIUM AP Chemistry (Notes) Most chemical processes are reversible. Reactants react to form products, but those products can also react to form reactants. Examples of reversible reactions:

More information

Energy in Chemical Reaction Reaction Rates Chemical Equilibrium. Chapter Outline. Energy 6/29/2013

Energy in Chemical Reaction Reaction Rates Chemical Equilibrium. Chapter Outline. Energy 6/29/2013 Energy in Chemical Reaction Reaction Rates Chemical Equilibrium Chapter Outline Energy change in chemical reactions Bond dissociation energy Reaction rate Chemical equilibrium, Le Châtelier s principle

More information

Lecture Presentation. Chapter 14. James F. Kirby Quinnipiac University Hamden, CT. Chemical Kinetics Pearson Education, Inc.

Lecture Presentation. Chapter 14. James F. Kirby Quinnipiac University Hamden, CT. Chemical Kinetics Pearson Education, Inc. Lecture Presentation Chapter 14 James F. Kirby Quinnipiac University Hamden, CT In chemical kinetics we study the rate (or speed) at which a chemical process occurs. Besides information about the speed

More information

Collision Theory. Reaction Rates A little review from our thermodynamics unit. 2. Collision with Incorrect Orientation. 1. Reactants Must Collide

Collision Theory. Reaction Rates A little review from our thermodynamics unit. 2. Collision with Incorrect Orientation. 1. Reactants Must Collide Reaction Rates A little review from our thermodynamics unit Collision Theory Higher Temp. Higher Speeds More high-energy collisions More collisions that break bonds Faster Reaction In order for a reaction

More information

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt

Reaction Rate. Rate = Conc. of A at t 2 -Conc. of A at t 1. t 2 -t 1. Rate = Δ[A] Δt Kinetics The study of reaction rates. Spontaneous reactions are reactions that will happen - but we can t tell how fast. Diamond will spontaneously turn to graphite eventually. Reaction mechanism- the

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Learning goals and key skills: Understand the factors that affect the rate of chemical reactions Determine the rate of reaction given time and concentration Relate the rate

More information

Chapter 11: CHEMICAL KINETICS

Chapter 11: CHEMICAL KINETICS Chapter : CHEMICAL KINETICS Study of the rate of a chemical reaction. Reaction Rate (fast or slow?) Igniting gasoline? Making of oil? Iron rusting? We know about speed (miles/hr). Speed Rate = changes

More information

Lecture 20. Chemical Potential

Lecture 20. Chemical Potential Lecture 20 Chemical Potential Reading: Lecture 20, today: Chapter 10, sections A and B Lecture 21, Wednesday: Chapter 10: 10 17 end 3/21/16 1 Pop Question 7 Boltzmann Distribution Two systems with lowest

More information

2 Reaction kinetics in gases

2 Reaction kinetics in gases 2 Reaction kinetics in gases October 8, 2014 In a reaction between two species, for example a fuel and an oxidizer, bonds are broken up and new are established in the collision between the species. In

More information

Chemistry 112, Spring 2006 Prof. Metz Final Exam Name Each question is worth 4 points, unless otherwise noted

Chemistry 112, Spring 2006 Prof. Metz Final Exam Name Each question is worth 4 points, unless otherwise noted Chemistry 112, Spring 2006 Prof. Metz Final Exam Name Each question is worth 4 points, unless otherwise noted 1. The predominant intermolecular attractive force in solid sodium is: (A) metallic (B) ionic

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E.

Chemical. Chapter 14. Kinetics. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 14 1 PDF Created with deskpdf PDF www.farq.xyz Writer - Trial :: http://www.docudesk.com

More information

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS This chapter deals with reaction rates, or how fast chemical reactions occur. Reaction rates vary greatly some are very

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

Chem 321 Lecture 16 - Potentiometry 10/22/13

Chem 321 Lecture 16 - Potentiometry 10/22/13 Student Learning Objectives Chem 321 Lecture 16 - Potentiometry 10/22/13 In lab you will use an ion-selective electrode to determine the amount of fluoride in an unknown solution. In this approach, as

More information

Electrochemistry. Dr. A. R. Ramesh Assistant Professor of Chemistry Govt. Engineering College, Kozhikode

Electrochemistry. Dr. A. R. Ramesh Assistant Professor of Chemistry Govt. Engineering College, Kozhikode Electrochemistry Dr. A. R. Ramesh Assistant Professor of Chemistry Govt. Engineering College, Kozhikode 1 Electro Chemistry : Chemistry of flow of electrons Redox Reaction The electrons flow through the

More information

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. Oxidation number The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. 1. Free elements (uncombined state) have an oxidation number of zero. Na,

More information

Student Achievement. Chemistry 12

Student Achievement. Chemistry 12 Student Achievement Chemistry 12 Key Elements: Reaction Kinetics Estimated Time: 14 16 hours By the end of this course, students will be able to explain the significance of reaction rates, demonstrate

More information

Electrochemical Cells at Non-Standard Conditions

Electrochemical Cells at Non-Standard Conditions Electrochemical Cells at Non-Standard Conditions Oxidation-reduction reactions in the real world rarely occur under standard conditions. Even if the cell started out with all dissolved species at 1M concentration,

More information

Revision Notes on Chemical and Ionic Equilibrium

Revision Notes on Chemical and Ionic Equilibrium Revision Notes on Chemical and Ionic Equilibrium Equilibrium Equilibrium is the state of a process in which the properties like temperature, pressure, and concentration etc of the system do not show any

More information

Chapter 17 Electrochemistry

Chapter 17 Electrochemistry Chapter 17 Electrochemistry 17.1 Galvanic Cells A. Oxidation-Reduction Reactions (Redox Rxns) 1. Oxidation = loss of electrons a. the substance oxidized is the reducing agent 2. Reduction = gain of electrons

More information

Oxidation & Reduction II. Suggested reading: Chapter 5

Oxidation & Reduction II. Suggested reading: Chapter 5 Lecture 1 Oxidation & Reduction II Suggested reading: Chapter 5 Recall from Last time: Redox Potentials The Nernst equation: E cell E 0 RT F ln Q Cell Potential and ph For the H + /H couple at 1 bar and

More information

Chemical Kinetics and Equilibrium

Chemical Kinetics and Equilibrium Chemical Kinetics and Equilibrium Part 1: Kinetics David A. Katz Department of Chemistry Pima Community College Tucson, AZ USA Chemical Kinetics The study of the rates of chemical reactions and how they

More information

Chemistry 2000 Lecture 15: Electrochemistry

Chemistry 2000 Lecture 15: Electrochemistry Chemistry 2000 Lecture 15: Electrochemistry Marc R. Roussel February 21, 2018 Marc R. Roussel Chemistry 2000 Lecture 15: Electrochemistry February 21, 2018 1 / 33 Electrochemical cells Electrochemical

More information

1044 Lecture #14 of 18

1044 Lecture #14 of 18 Lecture #14 of 18 1044 1045 Q: What s in this set of lectures? A: B&F Chapter 13 main concepts: Section 1.2.3: Diffuse double layer structure Sections 13.1 & 13.2: Gibbs adsorption isotherm; Electrocapillary

More information

Q1. Why does the conductivity of a solution decrease with dilution?

Q1. Why does the conductivity of a solution decrease with dilution? Q1. Why does the conductivity of a solution decrease with dilution? A1. Conductivity of a solution is the conductance of ions present in a unit volume of the solution. On dilution the number of ions per

More information

Basic Concepts in Electrochemistry

Basic Concepts in Electrochemistry Basic Concepts in Electrochemistry 1 Electrochemical Cell Electrons Current + - Voltage Source ANODE Current CATHODE 2 Fuel Cell Electrons (2 e) Current - + Electrical Load ANODE Current CATHODE H 2 2H

More information

Chapter 9. Chemical reactions

Chapter 9. Chemical reactions Chapter 9 Chemical reactions Topics we ll be looking at in this chapter Types of chemical reactions Redox and non-redox reactions Terminology associated with redox processes Collision theory and chemical

More information

Chapter 17. Electrochemistry

Chapter 17. Electrochemistry Chapter 17 Electrochemistry Contents Galvanic cells Standard reduction potentials Cell potential, electrical work, and free energy Dependence of cell potential on concentration Batteries Corrosion Electrolysis

More information

Electrochemical System

Electrochemical System Electrochemical System Topic Outcomes Week Topic Topic Outcomes 8-10 Electrochemical systems It is expected that students are able to: Electrochemical system and its thermodynamics Chemical reactions in

More information

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam 10.626 Electrochemical Energy Systems, Spring 2014, M. Z. Bazant Final Exam Instructions. This is a three-hour closed book exam. You are allowed to have five doublesided pages of personal notes during

More information

AP CHEMISTRY 2009 SCORING GUIDELINES

AP CHEMISTRY 2009 SCORING GUIDELINES 2009 SCORING GUIDELINES Question 1 (10 points) Answer the following questions that relate to the chemistry of halogen oxoacids. (a) Use the information in the table below to answer part (a)(i). Acid HOCl

More information

Chpt 20: Electrochemistry

Chpt 20: Electrochemistry Cell Potential and Free Energy When both reactants and products are in their standard states, and under constant pressure and temperature conditions where DG o = nfe o DG o is the standard free energy

More information

AR-7781 (Physical Chemistry)

AR-7781 (Physical Chemistry) Model Answer: B.Sc-VI th Semester-CBT-602 AR-7781 (Physical Chemistry) One Mark Questions: 1. Write a nuclear reaction for following Bethe s notation? 35 Cl(n, p) 35 S Answer: 35 17Cl + 1 1H + 35 16S 2.

More information

REDUCTION - OXIDATION TITRATION REDOX TITRATION

REDUCTION - OXIDATION TITRATION REDOX TITRATION References REDUCTION OXIDATION TITRATION REDOX TITRATION 1 Fundamentals of analytical chemistry, Skoog. 2 Analytical chemistry, Gary D. Christian. الكيمياء التحليلية الجامعية تأليف د.هادي حسن جاسم 3 Oxidation

More information

Ch 18 Electrochemistry OIL-RIG Reactions

Ch 18 Electrochemistry OIL-RIG Reactions Ch 18 Electrochemistry OIL-RIG Reactions Alessandro Volta s Invention Modified by Dr. Cheng-Yu Lai Daily Electrochemistry Appliactions Electrochemistry: The area of chemistry that examines the transformations

More information

KINETICS CHEMICAL CHEMIC. Unit. I. Multiple Choice Questions (Type-I)

KINETICS CHEMICAL CHEMIC. Unit. I. Multiple Choice Questions (Type-I) Unit 4 CHEMICAL CHEMIC KINETICS I. Multiple Choice Questions (Type-I) 1. The role of a catalyst is to change. gibbs energy of reaction. enthalpy of reaction. activation energy of reaction. equilibrium

More information

Class 12 Important Questions for Chemistry Electrochemistry

Class 12 Important Questions for Chemistry Electrochemistry Class 12 Important Questions for Chemistry Electrochemistry Multiple Choice Questions (Type-I) 1. Which cell will measure standard electrode potential of copper electrode? o (i) Pt (s) H2 (g,0.1 bar) H

More information

7/19/2011. Models of Solution. State of Equilibrium. State of Equilibrium Chemical Reaction

7/19/2011. Models of Solution. State of Equilibrium. State of Equilibrium Chemical Reaction Models of Solution Chemistry- I State of Equilibrium A covered cup of coffee will not be colder than or warmer than the room temperature Heat is defined as a form of energy that flows from a high temperature

More information

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS

Chemistry 102 Chapter 19 OXIDATION-REDUCTION REACTIONS OXIDATION-REDUCTION REACTIONS Some of the most important reaction in chemistry are oxidation-reduction (redox) reactions. In these reactions, electrons transfer from one reactant to the other. The rusting

More information

Chapter 2. Dielectric Theories

Chapter 2. Dielectric Theories Chapter Dielectric Theories . Dielectric Theories 1.1. Introduction Measurements of dielectric properties of materials is very important because it provide vital information regarding the material characteristics,

More information

Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON. Name /98

Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON. Name /98 Ch 15 Chemical Equilibrium STUDY GUIDE Accelerated Chemistry SCANTRON Name /98 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Correct the False statments by changing

More information