Techniken der Oberflächenphysik (Techniques of Surface Physics)

Size: px
Start display at page:

Download "Techniken der Oberflächenphysik (Techniques of Surface Physics)"

Transcription

1 Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei Dr. Ynag Xu and Mr. Grote Fabian Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: Office: Heliosbau 1102, Prof. Schmidt-Straße 26 (tel: 3748) Vorlesung: Mittwochs (G), 9 10:30, C 108 Übung: Mittwochs (U), 9 10:30, C 108

2 Contents of Class 6 Short review of the contents in the pervious 5 classes (how to fabricate surfaces especially in nano-sized range) Nano-fabrication: lithography and soft lithography, nano-imprinting (how to characterize surfaces) PVD, ALD, CVD; STM and AFM

3 Surface Physics - Why? Objects are contacted via their surface. Chemical reactions: Catalysis, electrodes of batteries Many properties are related: Friction and Lubrication Nanotechnology - Surface Physics Surfaces become more important for smaller objects

4 Nobel Prizes with researches related to surface physics and structures: Kai M. Siegbahn (Swedish) Nobel Prize 1981 Physics Developing the method of Electron Spectroscopy for Chemical Analysis, now usually described as X-ray photoelectron spectroscopy (XPS) G. Binnig (German) & H. Rohrer (Swiss) Nobel Prize 1986 Physics Designing of the scanning tunneling microscope (STM) SPM systems

5 Gerhard Ertl (German) Nobel Prize 2007 Chemistry for his studies of chemical processes on solid surfaces Albert Fert (French) & Peter Grünberg (German) Nobel Prize 2007 Physics Interfaces - Giant magnetoresistance effect (GMR) which is a breakthrough in gigabyte hard disk drives.

6 Konstantin Novoselov & Andre Geim (Russian) Nobel Prize 2010 Physics for groundbreaking experiments regarding the two-dimensional graphene

7 SEM: Scanning Electron Microscope; STM/AFM: Scanning Tunneling Microscope/Atomic Force Microscope TEM: Analytical Transmission Electron Microscope X-Ray: X-ray Morphology; IP: Image Processing; LM: Lightweight Morphology; RBS: Rutherford Backscattering Spectrometry (Kelsall et al., Nanoscale science and technology. 2005)

8 TEM: Analytical Transmission Electron Microscopy; AES: Auger Electron Spectrometer; XRD: X-ray Diffraction; RBS: Rutherford Backscattering Spectrometry; XPS: X-ray Photoelectron Spectrometer; (Kelsall et al., Nanoscale science and technology. 2005)

9 SEM: Scanning Electron Microscopy; ATEM: Analytical Transmission Electron Microscopy; AEM: Auger Electron Microscopy. XRD: X-ray Diffraction; LEED: Lowenergy electron diffraction; RBS: Rutherford Backscattering Spectrometry (Kelsall et al., Nanoscale science and technology. 2005)

10 UTAM surface nano-patterning technique CdS replicated mask Alumina CdS nanodots Highly ordered CdS nanodot arrays, UTAMs and CdS top layer on the surface of the UTAM.

11 3D Surface Nano-Patterning: Addressing Addressing System for 3-D surface nanostructures with nano-scale resolution nanowire 1A Schematic of the addressing system (only shows an array of 3 3)

12 Templates with large-scale (1 mm 2 ) perfect rectangular pore arrays without defect

13 A B

14 Binary nanotube/nanowire arrays realized by ALD technique via templat Binary nanotube/wire array Binary nanotube/tube array

15 Supercapacitors The core material: Nanotube opening Partial etching and mechanical removal

16 Organic memory device C.L. Wang, Y. Lei et al., J. Mater. Chem. C 2013, (backside cover paper), 1, 8003.

17 3D Ordered Macro-mesoporous Mo:BiVO 4 Photoelectrochemical Water Splitting PS template BiVO 4 Mo:BiVO 4 Adjustable template with interconnected area Suitable infiltration with high infiltration fraction Controllable dual pore diameter in resulting architectures Applicable to various attractive materials

18 3D Porous AgVO 3 /graphene Aerogels Lithium Ion Storage Nanoscale, 2014, 6, 3536.

19 a) Photography of a device for photocurrent responses test; b) Top-view SEM images of Au nanoparticle array after coating a thin shell of TiO2 with thickness of ~22 nm by ALD (500 cycles); and photocurrent responses results of c) Au and d) Ag samples

20 Introduction of the fundamentals of surface physics and their most important points (what the main properties of surfaces) SPR, quantum-confinement effect, sensing (how to characterize surfaces) SEM, TEM, XPS; STM and AFM (how to fabricate surfaces especially in nano-sized range) Template-based processes, PVD, ALD, CVD Nano-fabrication: lithography and soft lithography, nano-imprinting (what s the main applications of surfaces) Solar water splitting, gas sensor, supercapacitor, etc.

21 Nanofabrication 1. Photon-based lithography: DUV (deep UV), EUV (extreme UV), X-ray 2. Charged-beam lithography: electron beam, focused ion beam 3. Soft lithography and nano-imprinting

22 Nanofabrication - two principals Top Down: Using techniques to remove, add or distribute atoms or molecules in a bulk material to create a final structure. Miniaturizing existing processes at the macro/micro/nano-scale Bottom up: Atomic and molecular (or nano-) scale directed assembly to create larger scale structures e.g., chemical self -assembly Machined Assembled

23 Bottom-up nanofabrication Synthesizing nano- or molecular-units: Nanotubes and nanowires Quantum dots and nanoparticles Functional arrangement Self assembly o Nano-sphere lithography o Block copolymers o Functionalized nanoscale structures Template-based growth Scanning probe manipulation o AFM, STM with atomic resolution Carbon nanotube Anodized aluminum oxide

24 Nanosphere lithography (bottom up, self assembly)

25 Top-down nanofabrication Top down approach: three components Lithography (lateral patterning): generate pattern in a material called resist photolithography, electron-beam lithography, nanoimprint lithography Thin film deposition (additive): spin coating, chemical vapor deposition, molecular beam epitaxy, sputtering, evaporation, electroplating Etching (subtractive): reactive ion etching, ion beam etching, wet chemical etching, polishing

26 Nanofabrication 1. Photon-based lithography: DUV (deep UV), EUV (extreme UV), X-ray 2. Charged-beam based lithography: electron beam, focused ion beam 3. Soft lithography, nano-imprinting

27 Photolithography for IC manufacturing In IC manufacturing, lithography is the single most important technology. 35% of wafer manufacturing costs comes from lithography. 70% dimension shrink every 3 yr. Patterning process consists of: Mask design Mask fabrication Wafer exposure

28 Photomask

29 Positive and Negative photoresist

30 Light source: mercury arc lamp Traditional Hg vapor lamps have been used which generate many spectral lines. g line =436 nm i line =365 nm (for 0.5 and 0.35μm lithography process) High pressure Hg-vapor lamps Order $1000, lasts 1000 hours.

31 Light source: excimer laser Decreasing feature size (to < 0.35 m) requires shorter. Kr NF 3 KrF photon emission energy KrF = 248 nm (used for 250 nm lithography generation) ArF = 193 nm (currently used for 45 nm node/generation production)

32 X-ray lithography (XRL) masks Advantages: Good resolution (down to 30 nm) No interference from dust Relatively fast Deep penetration to resist, high aspect ratio High aspect ratio micro-structures by XRL 80μm resist structure with aspect ratio > 10. White, APL, 66 (16) Three-cylinder photonic crystal structure in ceramic. Exposed by repeated exposures at different tilt angles. G. Feiertag, APL, 71 (11) 1997.

33 Nanofabrication 1. Introduction. 2. Photon-based lithography: DUV (deep UV), EUV (extreme UV), X-ray 3. Charged-beam based lithography: electron beam, focused ion beam 4. Soft lithography, nano-imprinting

34 Lithography using charged particles I: electron beam lithography (EBL) Finely focused electron beam, = 2-5 nm Resist (PMMA ) Metal patterning by EBL and liftoff

35 Electron beam lithography (EBL) Electron beam has a wavelength so small that diffraction no longer defines the lithographic resolution. Like a SEM with on-off capability. Accurate positioning, see the substrate first, then exposure. Most popular prototyping tool for R&D, but too slow for mass production. Wavelength of electrons ( nm) V Where V is electron energy in ev unit. For example, 30 kev = nm!

36 Lithography using charged particles II: focused ion beam (FIB) Ga + ion beam (down to 5 nm) to raster over the surface. FIB can cut away material (electron is too light for this). By introducing gases, FIB can selectively etch or deposit a metal or oxide.

37 Focused ion beam (FIB) Like electron beam lithography, direct write technique no masks necessary. Can expose a resist with higher sensitivity than EBL, but very low penetration depth (resist << 100nm, pattern transfer difficult). In summary, very versatile (deposition, etching, lithography, all in one tool); but slow and expensive, more complicated than EBL.

38 Nanofabrication 1. Introduction. 2. Photon-based lithography: DUV (deep UV), EUV (extreme UV), X-ray 3. Charged-beam based lithography: electron beam, focused ion beam 4. Soft lithography, nano-imprinting

39 Nanoimprint lithography: patterning by mechanical replication Waffel mold substrate

40 Lithography by molding/material transferring I: soft lithography (pattern duplication) A master mold is made by lithographic process and a stamp is cast from the master. Poly di-methyl siloxane (PDMS) is most popular material for stamps. Stamp (mold) production PDMS properties: Soft and flexible. Can be cured to create a robust PDMS stamp. Chemically inert, non-hygroscopic, good thermal stability. Can be bonded to a glass slide to create microfluidic components. (hygroscopic: readily taking up and retaining moisture) Photolithography pattern SU-8 Cast PDMS pre-polymer and cure PDMS stamp (mold) after peel off from SU-8 master

41 Lithography by molding/material transferring II: nanoimprint lithography (thermal/hot embossing) mold Heat-up polymer resist and press down Cool-down and remove mold Pattern transfer to substrate Mold = mask = template = stamp

42 (how to characterize surfaces) STM and AFM SPM Scanning Tunneling Microscopy (STM) Atomic Force Microscopy(AFM) Scanning Probe Microscopy (SPM)

43 Scanning Tunneling Microscopy Gerd Binnig Heinrich Rohrer (born 20 July 1947) German physicist (born June 6, 1933) Swiss physicist They shared half of the 1986 Nobel Prize in Physics with for the design of STM (the other half of the Prize was awarded to Ernst Ruska).

44 STM

45 The principle of STM Probe Sample

46 The structure of STM I t ~ e -2kd

47 The manipulation of STM

48 Constant current image (topography) of an atomic layer iron on W(001) with defects and atoms.

49

50 The Application of STM 1. Atomic Microscope Nickel (110) Platinum (111)

51 High performance STM image showing atomic resolution on Si(111) 7nm x 7nm cobalt sulfide "nanoflower" structure synthesized on a Au(111) surface 9nm x 9nm

52 2. Manipulation of single atoms or single molecules

53

54 Lateral manipulation: Transfer of atoms/molecules along surface using attractive/ repulsive forces between tip and absorbate. Vertical manipulation: The reversible transfer of atoms/molecules between surface and STM tip employing additional electronic/ vibrational excitation of absorbate. Desorption: Similar to vertical manipulation, but desorp individual absorbate directly into surrounding gas phase.

55 positioned 48 iron atoms into a circular ring in order to "corral" surface state electrons and force them into "quantum" states.

56 3. Single-molecular chemical reactions Dissociation: Selective bond breaking within a molecule Synthesis: Selective bond formation between two molecular units employing lateral manipulation, followed by electronic/vibrational excitation.

57 The advantages and disadvantages of STM Advantages: 3D profile of a surface, to examine roughness, surface defects and determining molecules such as size and conformation. Other advantages of STM include: much more details than many other microscopes, better understand on a molecular level. Versatile. STM can be used in ultra high vacuum, air, water and other liquids and gasses. STM can be operated in temperatures as low as zero Kelvin up to a few hundred degrees.

58 Disadvantages: 3 major downsides to using STMs: Less effectiveness. STM is a very specific technique that requires a lot of skill and precision. STM require very stable and clean surfaces, excellent vibration control and sharp tips. And STM only can be used to scan good conductor samples (no easy surface oxidized) STMs use highly specialized equipment that is fragile and expensive.

59 Atomic Force Microscopy (AFM) Binnig, Quate and Gerber invented the first atomic force microscope

60 The principle of AFM When tip closes to sample, mainly 2 forces operate. Typically forces contributing to the movement of AFM cantilever are coulombic and van der Waals interactions. The combination of the 2 forces. The repulsive force causes cantilever to bend as tip is very close to surface. Coulombic force: This strong,short range repulsive force arises from electrostatic repulsion by the electron clouds of tip and sample. This force increases as the separation decreases. Van der Waals force: longer range attractive force, which is felt at separations of up to 10 nm or more. As tip gets closer to the sample, this attraction increases.

61 The structure of AFM Position Sensing Part Position Sensing photodetctor Force Sensing Part Feedback System

62 Three primary imaging modes: 1. Contact AFM < 0.5 nm probe-surface separation 2. Tapping mode AFM (Intermittent contact ) nm probe-surface separation 3. Non-contact AFM nm probe-surface separation

63 1. Contact AFM In contact mode the tip contacts the sample surface. The detector monitors the changing cantilever deflection and the force is calculated using Hooke s law: F = k x (F = force, k = spring constant, x = cantilever deflection) The feedback circuit adjusts the probe height to try and maintain a constant force and deflection on the cantilever. This is known as the deflection setpoint.

64 2. Tapping mode AFM In tapping mode cantilever oscillates at or slightly below its resonant frequency. The amplitude of oscillation typically ranges from 20 to 100 nm. Tip slightly taps on sample surface during scanning. The oscillation is also damped when the tip is closer to the surface. Hence changes in the oscillation amplitude can be used to measure the distance between the tip and the surface. The feedback circuit adjusts the probe height to try and maintain a constant amplitude of oscillation i.e. the amplitude setpoint.

65 3. Non-contact AFM In non-contact mode cantilever oscillates near sample surface, but does not contact it. The oscillation is at slightly above the resonant frequency. Van der Waals and other long-range forces decrease the resonant frequency. In ambient conditions the adsorbed fluid layer is often much thicker than the region where van der Waals forces are significant. So the probe is either out of range of van der Waals force, or becomes trapped in the fluid layer. Therefore non-contact mode AFM works best under ultra-high vacuum conditions.

66 The Properties of the different operation modes in AFM.

67

68 Advantages and Disadvantages of AFM Modes Contact Mode Advantage - High scan speeds - Atomic resolution possible - Easier scanning of rough samples (with large changes in vertical topography). Disadvantage Lateral forces can distort the image Combination of these forces reduces spatial resolution and can cause damage to soft samples. Tapping Mode Noncontact Mode - Higher lateral resolution (1 to 5 nm). - Lower forces and less damage to soft samples in air. - Both normal and lateral forces are minimised, so good for very soft samples - Can get atomic resolution in a UHV environment Slower scan speed than in contact mode Slower scan speed Lower lateral resolution, limited by tip-sample separation. Usually only applicable in extremely hydrophobic samples.

69 1. Imaging The application of AFM AFM 3D image of a detail of artificial opal The figure is 800 nm wide and 10 nm high Pd/Fe/Pd thin film dots.

70 PMMA spheres scaning range 45x45 μm NCAFM image of the Ge/Si(105) surface, 4.2 nm x 4.2 nm AFM image of human plasma fibrinogen

71 2. Measuring forces (and mechanical properties) at the nanoscale An AFM tip measuring force, and to move a cobalt atom on a crystalline surface. The ability to measure the exact force and to move individual atom is one of the keys to design and construct small structures. (Credit: Image courtesy of IBM)

72 3. As a nanoscale tool Bending, cutting and extracting soft materials (Polymers, DNA, nanotubes) under high-resolution image controlling grabbing and holding a nanoparticle in position Manipulation of a nanotube on a silicon substrate. The AFM tip is used to create the Greek letter "theta" from a 2.5 micronmeter long nanotube

73 A single nanotube (in red) originally on an insulating substrate (SiO2, in green) is manipulated in a few steps onto a tungsten film (in blue), and finally is stretched across an insulating tungsten oxide barrier (in yellow).

74 The advantage and disadvantage of AFM Advantages : 1) True and high-resolution 3D surface images; 2) not require special sample treatments; 3) not require a vacuum (can be in both air and liquid); 4) could be used for organic materials. Disadvantages: 1) imaging feature size much smaller than electron microscopes; 2) slow in scanning an image, unlike an electron microscope which does it in almost real-time. 3) not true sample topography, but the interaction of the probe with the sample surface 4) expensive tips

75 Tip convolution----tip-related Artifacts protrusions (dots) appear wider, pores (depressions) narrower than the real size. Radius of tip end determine the resolution of the scan

76

77 Introduction of the fundamentals of surface physics and their most important points (what the main properties of surfaces) SPR, quantum-confinement effect, sensing (how to characterize surfaces) SEM, TEM, XPS; STM and AFM (how to fabricate surfaces especially in nano-sized range) Template-based processes, PVD, ALD, CVD Nano-fabrication: lithography and soft lithography, nano-imprinting (what s the main applications of surfaces) Solar water splitting, gas sensor, supercapacitor, etc.

78 Thank you and have a nice day!

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de yang.xu@tu-ilmenau.de

More information

Techniken der Oberflächenphysik (Technique of Surface Physics)

Techniken der Oberflächenphysik (Technique of Surface Physics) Techniken der Oberflächenphysik (Technique of Surface Physics) Yong Lei & Fabian Grote Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; fabian.grote@tu-ilmenau.de

More information

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei & Dr. Yang Xu, Dr. Huaping Zhao Fachgebiet Angewante Nanophysik, Institut für Physik Contact: yong.lei@tu-ilmenau.de yang.xu@tu-ilmenau.de

More information

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei & Dr. Yang Xu (& Liying Liang) Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de;

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman General concept and defining characteristics of AFM Dina Kudasheva Advisor: Prof. Mary K. Cowman Overview Introduction History of the SPM invention Technical Capabilities Principles of operation Examples

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

Nanotechnology Fabrication Methods.

Nanotechnology Fabrication Methods. Nanotechnology Fabrication Methods. 10 / 05 / 2016 1 Summary: 1.Introduction to Nanotechnology:...3 2.Nanotechnology Fabrication Methods:...5 2.1.Top-down Methods:...7 2.2.Bottom-up Methods:...16 3.Conclusions:...19

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Scanning Probe Microscopy. EMSE-515 F. Ernst

Scanning Probe Microscopy. EMSE-515 F. Ernst Scanning Probe Microscopy EMSE-515 F. Ernst 1 Literature 2 3 Scanning Probe Microscopy: The Lab on a Tip by Ernst Meyer,Ans Josef Hug,Roland Bennewitz 4 Scanning Probe Microscopy and Spectroscopy : Theory,

More information

Fabrication at the nanoscale for nanophotonics

Fabrication at the nanoscale for nanophotonics Fabrication at the nanoscale for nanophotonics Ilya Sychugov, KTH Materials Physics, Kista silicon nanocrystal by electron beam induced deposition lithography Outline of basic nanofabrication methods Devices

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST 2015 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization

More information

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Contents What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Figure1: 2004 Seth Copen Goldstein What is AFM? A type of Scanning Probe Microscopy

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities Kavli Workshop for Journalists June 13th, 2007 CNF Cleanroom Activities Seeing nm-sized Objects with an SEM Lab experience: Scanning Electron Microscopy Equipment: Zeiss Supra 55VP Scanning electron microscopes

More information

Nanotechnology Nanofabrication of Functional Materials. Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany

Nanotechnology Nanofabrication of Functional Materials. Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany Nanotechnology Nanofabrication of Functional Materials Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany Contents Part I History and background to nanotechnology Nanoworld Nanoelectronics

More information

MICRO AND NANOPROCESSING TECHNOLOGIES

MICRO AND NANOPROCESSING TECHNOLOGIES LECTURE 5 MICRO AND NANOPROCESSING TECHNOLOGIES Introduction Ion lithography X-ray lithography Soft lithography E-beam lithography Concepts and processes Lithography systems Masks and resists Chapt.9.

More information

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Peter Liljeroth Department of Applied Physics, Aalto University School of Science peter.liljeroth@aalto.fi Projekt współfinansowany

More information

Nanostructures Fabrication Methods

Nanostructures Fabrication Methods Nanostructures Fabrication Methods bottom-up methods ( atom by atom ) In the bottom-up approach, atoms, molecules and even nanoparticles themselves can be used as the building blocks for the creation of

More information

MSN551 LITHOGRAPHY II

MSN551 LITHOGRAPHY II MSN551 Introduction to Micro and Nano Fabrication LITHOGRAPHY II E-Beam, Focused Ion Beam and Soft Lithography Why need electron beam lithography? Smaller features are required By electronics industry:

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

Photolithography 光刻 Part II: Photoresists

Photolithography 光刻 Part II: Photoresists 微纳光电子材料与器件工艺原理 Photolithography 光刻 Part II: Photoresists Xing Sheng 盛兴 Department of Electronic Engineering Tsinghua University xingsheng@tsinghua.edu.cn 1 Photolithography 光刻胶 负胶 正胶 4 Photolithography

More information

Introduction to Scanning Probe Microscopy Zhe Fei

Introduction to Scanning Probe Microscopy Zhe Fei Introduction to Scanning Probe Microscopy Zhe Fei Phys 590B, Apr. 2019 1 Outline Part 1 SPM Overview Part 2 Scanning tunneling microscopy Part 3 Atomic force microscopy Part 4 Electric & Magnetic force

More information

Introduction to Scanning Probe Microscopy

Introduction to Scanning Probe Microscopy WORKSHOP Nanoscience on the Tip Introduction to Scanning Probe Microscopy Table of Contents: 1 Historic Perspectives... 1 2 Scanning Force Microscopy (SFM)... 2 2.1. Contact Mode... 2 2.2. AC Mode Imaging...

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Yong Lei & Fabian Grote Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; fabian.grote@tu-ilmenau.de Office: Heliosbau 1102,

More information

SOLID STATE PHYSICS PHY F341. Dr. Manjuladevi.V Associate Professor Department of Physics BITS Pilani

SOLID STATE PHYSICS PHY F341. Dr. Manjuladevi.V Associate Professor Department of Physics BITS Pilani SOLID STATE PHYSICS PHY F341 Dr. Manjuladevi.V Associate Professor Department of Physics BITS Pilani 333031 manjula@bits-pilani.ac.in Characterization techniques SEM AFM STM BAM Outline What can we use

More information

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools 1. Introduction Solid Surfaces Analysis Group, Institute of Physics, Chemnitz University of Technology, Germany 2. Limitations of Conventional Optical Microscopy 3. Electron Microscopies Transmission Electron

More information

Outline Scanning Probe Microscope (SPM)

Outline Scanning Probe Microscope (SPM) AFM Outline Scanning Probe Microscope (SPM) A family of microscopy forms where a sharp probe is scanned across a surface and some tip/sample interactions are monitored Scanning Tunneling Microscopy (STM)

More information

Technologies VII. Alternative Lithographic PROCEEDINGS OF SPIE. Douglas J. Resnick Christopher Bencher. Sponsored by. Cosponsored by.

Technologies VII. Alternative Lithographic PROCEEDINGS OF SPIE. Douglas J. Resnick Christopher Bencher. Sponsored by. Cosponsored by. PROCEEDINGS OF SPIE Alternative Lithographic Technologies VII Douglas J. Resnick Christopher Bencher Editors 23-26 February 2015 San Jose, California, United States Sponsored by SPIE Cosponsored by DNS

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Huaping Zhao Fachgebiet Angewandte Nanophysik, Institut für Physik Contact: yong.lei@tu-ilmenau.de; huaping.zhao@tu-ilmenau.de Office: Unterpoerlitzer

More information

High-density data storage: principle

High-density data storage: principle High-density data storage: principle Current approach High density 1 bit = many domains Information storage driven by domain wall shifts 1 bit = 1 magnetic nanoobject Single-domain needed Single easy axis

More information

Atomic Force Microscopy imaging and beyond

Atomic Force Microscopy imaging and beyond Atomic Force Microscopy imaging and beyond Arif Mumtaz Magnetism and Magnetic Materials Group Department of Physics, QAU Coworkers: Prof. Dr. S.K.Hasanain M. Tariq Khan Alam Imaging and beyond Scanning

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

Unconventional Nano-patterning. Peilin Chen

Unconventional Nano-patterning. Peilin Chen Unconventional Nano-patterning Peilin Chen Reference Outlines History of patterning Traditional Nano-patterning Unconventional Nano-patterning Ancient Patterning "This is the Elks' land". A greeting at

More information

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM Module 26: Atomic Force Microscopy Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM 1 The AFM apart from generating the information about the topography of the sample features can be used

More information

There's Plenty of Room at the Bottom

There's Plenty of Room at the Bottom There's Plenty of Room at the Bottom 12/29/1959 Feynman asked why not put the entire Encyclopedia Britannica (24 volumes) on a pin head (requires atomic scale recording). He proposed to use electron microscope

More information

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high?

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high? STM STM With a scanning tunneling microscope, images of surfaces with atomic resolution can be readily obtained. An STM uses quantum tunneling of electrons to map the density of electrons on the surface

More information

Overview of the main nano-lithography techniques

Overview of the main nano-lithography techniques Overview of the main nano-lithography techniques Soraya Sangiao sangiao@unizar.es Outline Introduction: Nanotechnology. Nano-lithography techniques: Masked lithography techniques: Photolithography. X-ray

More information

ORION NanoFab: An Overview of Applications. White Paper

ORION NanoFab: An Overview of Applications. White Paper ORION NanoFab: An Overview of Applications White Paper ORION NanoFab: An Overview of Applications Author: Dr. Bipin Singh Carl Zeiss NTS, LLC, USA Date: September 2012 Introduction With the advancement

More information

Fabrication of ordered array at a nanoscopic level: context

Fabrication of ordered array at a nanoscopic level: context Fabrication of ordered array at a nanoscopic level: context Top-down method Bottom-up method Classical lithography techniques Fast processes Size limitations it ti E-beam techniques Small sizes Slow processes

More information

Characterization Tools

Characterization Tools Lectures in Nanoscience & Technology Characterization Tools K. Sakkaravarthi Department of Physics National Institute of Technology Tiruchirappalli 620 015 Tamil Nadu India sakkaravarthi@nitt.edu ksakkaravarthi.weebly.com

More information

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur Nova 600 NanoLab Dual beam Focused Ion Beam system @ IITKanpur Dual Beam Nova 600 Nano Lab From FEI company (Dual Beam = SEM + FIB) SEM: The Electron Beam for SEM Field Emission Electron Gun Energy : 500

More information

Halbleiter. Prof. Yong Lei. Prof. Thomas Hannappel.

Halbleiter. Prof. Yong Lei. Prof. Thomas Hannappel. Halbleiter Prof. Yong Lei Prof. Thomas Hannappel yong.lei@tu-ilemnau.de thomas.hannappel@tu-ilmenau.de Important Events in Semiconductors History 1833 Michael Faraday discovered temperature-dependent conductivity

More information

Initial Stages of Growth of Organic Semiconductors on Graphene

Initial Stages of Growth of Organic Semiconductors on Graphene Initial Stages of Growth of Organic Semiconductors on Graphene Presented by: Manisha Chhikara Supervisor: Prof. Dr. Gvido Bratina University of Nova Gorica Outline Introduction to Graphene Fabrication

More information

And Manipulation by Scanning Probe Microscope

And Manipulation by Scanning Probe Microscope Basic 15 Nanometer Scale Measurement And Manipulation by Scanning Probe Microscope Prof. K. Fukuzawa Dept. of Micro/Nano Systems Engineering Nagoya University I. Basics of scanning probe microscope Basic

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

AFM for Measuring Surface Topography and Forces

AFM for Measuring Surface Topography and Forces ENB 2007 07.03.2007 AFM for Measuring Surface Topography and Forces Andreas Fery Scanning Probe : What is it and why do we need it? AFM as a versatile tool for local analysis and manipulation Dates Course

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Introduction. Photoresist : Type: Structure:

Introduction. Photoresist : Type: Structure: Photoresist SEM images of the morphologies of meso structures and nanopatterns on (a) a positively nanopatterned silicon mold, and (b) a negatively nanopatterned silicon mold. Introduction Photoresist

More information

Nanoscale Surface Physics PHY 5XXX

Nanoscale Surface Physics PHY 5XXX SYLLABUS Nanoscale Surface Physics PHY 5XXX Spring Semester, 2006 Instructor: Dr. Beatriz Roldán-Cuenya Time: Tuesday and Thursday 4:00 to 5:45 pm Location: Theory: MAP 306, Laboratory: MAP 148 Office

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NNANO.2016.257 Multiple nanostructures based on anodized aluminium oxide templates Liaoyong Wen, Rui Xu, Yan Mi, Yong Lei * 1 NATURE NANOTECHNOLOGY

More information

Techniken der Oberflächenphysik

Techniken der Oberflächenphysik Techniken der Oberflächenphysik Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik 18.01.2018 Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Heisenbergbau

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

MEEN Nanoscale Issues in Manufacturing. Lithography Lecture 1: The Lithographic Process

MEEN Nanoscale Issues in Manufacturing. Lithography Lecture 1: The Lithographic Process MEEN 489-500 Nanoscale Issues in Manufacturing Lithography Lecture 1: The Lithographic Process 1 Discuss Reading Assignment 1 1 Introducing Nano 2 2 Size Matters 3 3 Interlude One-The Fundamental Science

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

Atomic Force Microscopy (AFM) Part I

Atomic Force Microscopy (AFM) Part I Atomic Force Microscopy (AFM) Part I CHEM-L2000 Eero Kontturi 6 th March 2018 Lectures on AFM Part I Principles and practice Imaging of native materials, including nanocellulose Part II Surface force measurements

More information

Università degli Studi di Bari "Aldo Moro"

Università degli Studi di Bari Aldo Moro Università degli Studi di Bari "Aldo Moro" Table of contents 1. Introduction to Atomic Force Microscopy; 2. Introduction to Raman Spectroscopy; 3. The need for a hybrid technique Raman AFM microscopy;

More information

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 13:00 Monday, 12/February/2018 (P/T 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) CHEM53200: Lecture 9 Scanning Probe Microscopy (SPM) Major reference: 1. Scanning Probe Microscopy and Spectroscopy Edited by D. Bonnell (2001). 2. A practical guide to scanning probe microscopy by Park

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) http://ww2.sljus.lu.se/staff/rainer/spm.htm Scanning Probe Microscopy (FYST42 / FAFN30) Scanning Probe Microscopy (SPM) overview & general principles March 23 th, 2018 Jan Knudsen, room K522, jan.knudsen@sljus.lu.se

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

Final Reading Assignment: Travels to the Nanoworld: pages pages pages

Final Reading Assignment: Travels to the Nanoworld: pages pages pages Final Reading Assignment: Travels to the Nanoworld: pages 152-164 pages 201-214 pages 219-227 Bottom-up nanofabrication Can we assemble nanomachines manually? What are the components (parts)? nanoparticles

More information

Nanoimprint Lithography

Nanoimprint Lithography Nanoimprint Lithography Wei Wu Quantum Science Research Advanced Studies HP Labs, Hewlett-Packard Email: wei.wu@hp.com Outline Background Nanoimprint lithography Thermal based UV-based Applications based

More information

Nanotechnology. Gavin Lawes Department of Physics and Astronomy

Nanotechnology. Gavin Lawes Department of Physics and Astronomy Nanotechnology Gavin Lawes Department of Physics and Astronomy Earth-Moon distance 4x10 8 m (courtesy NASA) Length scales (Part I) Person 2m Magnetic nanoparticle 5x10-9 m 10 10 m 10 5 m 1 m 10-5 m 10-10

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 12: Summary. Byungha Shin Dept. of MSE, KAIST

MS482 Materials Characterization ( 재료분석 ) Lecture Note 12: Summary. Byungha Shin Dept. of MSE, KAIST 2015 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 12: Summary Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1

More information

Lecture 26 MNS 102: Techniques for Materials and Nano Sciences

Lecture 26 MNS 102: Techniques for Materials and Nano Sciences Lecture 26 MNS 102: Techniques for Materials and Nano Sciences Reference: #1 C. R. Brundle, C. A. Evans, S. Wilson, "Encyclopedia of Materials Characterization", Butterworth-Heinemann, Toronto (1992),

More information

Three Approaches for Nanopatterning

Three Approaches for Nanopatterning Three Approaches for Nanopatterning Lithography allows the design of arbitrary pattern geometry but maybe high cost and low throughput Self-Assembly offers high throughput and low cost but limited selections

More information

Top down and bottom up fabrication

Top down and bottom up fabrication Lecture 24 Top down and bottom up fabrication Lithography ( lithos stone / graphein to write) City of words lithograph h (Vito Acconci, 1999) 1930 s lithography press Photolithography d 2( NA) NA=numerical

More information

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy

High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy High-resolution Characterization of Organic Ultrathin Films Using Atomic Force Microscopy Jing-jiang Yu Nanotechnology Measurements Division Agilent Technologies, Inc. Atomic Force Microscopy High-Resolution

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design

Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System Design Tamkang Journal of Science and Engineering, Vol. 12, No. 4, pp. 399 407 (2009) 399 Integrating MEMS Electro-Static Driven Micro-Probe and Laser Doppler Vibrometer for Non-Contact Vibration Mode SPM System

More information

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM U.S. -KOREA Forums on Nanotechnology 1 CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM February 17 th 2005 Eung-Sug Lee,Jun-Ho Jeong Korea Institute of Machinery & Materials U.S. -KOREA Forums

More information

Atomic and molecular interactions. Scanning probe microscopy.

Atomic and molecular interactions. Scanning probe microscopy. Atomic and molecular interactions. Scanning probe microscopy. Balázs Kiss Nanobiotechnology and Single Molecule Research Group, Department of Biophysics and Radiation Biology 27. November 2013. 2 Atomic

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

In the name of Allah

In the name of Allah In the name of Allah Nano chemistry- 4 th stage Lecture No. 1 History of nanotechnology 16-10-2016 Assistance prof. Dr. Luma Majeed Ahmed lumamajeed2013@gmail.com, luma.ahmed@uokerbala.edu.iq Nano chemistry-4

More information

Lesson 4: Tools of the Nanosciences. Student Materials

Lesson 4: Tools of the Nanosciences. Student Materials Lesson 4: Tools of the Nanosciences Student Materials Contents Black Box Lab Activity: Student Instructions and Worksheet Seeing and Building Small Things: Student Reading Seeing and Building Small Things:

More information

I. NANOFABRICATION O AND CHARACTERIZATION Chap. 2 : Self-Assembly

I. NANOFABRICATION O AND CHARACTERIZATION Chap. 2 : Self-Assembly I. Nanofabrication and Characterization : TOC I. NANOFABRICATION O AND CHARACTERIZATION Chap. 1 : Nanolithography Chap. 2 : Self-Assembly Chap. 3 : Scanning Probe Microscopy Nanoscale fabrication requirements

More information

Introduction to Photolithography

Introduction to Photolithography http://www.ichaus.de/news/72 Introduction to Photolithography Photolithography The following slides present an outline of the process by which integrated circuits are made, of which photolithography is

More information

Title Single Row Nano-Tribological Printing: A novel additive manufacturing method for nanostructures

Title Single Row Nano-Tribological Printing: A novel additive manufacturing method for nanostructures Nano-Tribological Printing: A novel additive manufacturing method for nanostructures H.S. Khare, N.N. Gosvami, I. Lahouij, R.W. Carpick hkhare@seas.upenn.edu carpick@seas.upenn.edu carpick.seas.upenn.edu

More information

ESH Benign Processes for he Integration of Quantum Dots (QDs)

ESH Benign Processes for he Integration of Quantum Dots (QDs) ESH Benign Processes for he Integration of Quantum Dots (QDs) PIs: Karen K. Gleason, Department of Chemical Engineering, MIT Graduate Students: Chia-Hua Lee: PhD Candidate, Department of Material Science

More information

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM Chapter 9 Electron mean free path Microscopy principles of SEM, TEM, LEEM 9.1 Electron Mean Free Path 9. Scanning Electron Microscopy (SEM) -SEM design; Secondary electron imaging; Backscattered electron

More information

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE. Biomedical Nanotechnology. Lec-05 Characterisation of Nanoparticles

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE. Biomedical Nanotechnology. Lec-05 Characterisation of Nanoparticles INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE Biomedical Nanotechnology Lec-05 Characterisation of Nanoparticles Dr. P. Gopinath Department of Biotechnology Indian Institute

More information

Review. Surfaces of Biomaterials. Characterization. Surface sensitivity

Review. Surfaces of Biomaterials. Characterization. Surface sensitivity Surfaces of Biomaterials Three lectures: 1.23.05 Surface Properties of Biomaterials 1.25.05 Surface Characterization 1.27.05 Surface and Protein Interactions Review Bulk Materials are described by: Chemical

More information

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica Nanotechnology Yung Liou P601 yung@phys.sinica.edu.tw Institute of Physics Academia Sinica 1 1st week Definition of Nanotechnology The Interagency Subcommittee on Nanoscale Science, Engineering and Technology

More information

MEMS Metrology. Prof. Tianhong Cui ME 8254

MEMS Metrology. Prof. Tianhong Cui ME 8254 MEMS Metrology Prof. Tianhong Cui ME 8254 What is metrology? Metrology It is the science of weights and measures Refers primarily to the measurements of length, weight, time, etc. Mensuration- A branch

More information

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition Gaetano L Episcopo Scanning Electron Microscopy Focus Ion Beam and Pulsed Plasma Deposition Hystorical background Scientific discoveries 1897: J. Thomson discovers the electron. 1924: L. de Broglie propose

More information

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays Abstract #: 983 Program # MI+NS+TuA9 Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays D. A. Tulchinsky, M. H. Kelley, J. J. McClelland, R. Gupta, R. J. Celotta National Institute of Standards

More information

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and SCANNING TUNNELING MICROSCOPE Brief history: Heinrich Rohrer and Gerd K. Binnig, scientists at IBM's Zurich Research Laboratory in Switzerland, are awarded the 1986 Nobel Prize in physicss for their work

More information

Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

Fabrication of micro-optical components in polymer using proton beam micro-machining and modification Nuclear Instruments and Methods in Physics Research B 210 (2003) 250 255 www.elsevier.com/locate/nimb Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

More information