Control of Dynamics of SPM Probes for Non-destructive Defectoscopy

Size: px
Start display at page:

Download "Control of Dynamics of SPM Probes for Non-destructive Defectoscopy"

Transcription

1 XXX. ASR '2005 Seminar, Instruments and Control, Ostrava, April 29, Control of Dynamics of SPM Probes for Non-destructive Defectoscopy KALA, Jaroslav Ing., Physics Department, FEEC, BUT, Technická 8, Brno, Abstract: Paper describes a control of dynamics of Scanning Probe Microscopy (SPM) and especially STM microscope probes, which are going to be used for non-destructive defectoscopy on surface and subsurface layers of material with nanometer resolution. STM microscope is based on an electron tunnel effect. The tunnel effect proceeds between a probe and a tested sample, where a probe disturbs so called near-field of the material. A principle of STM microscope allows get an information only from material spot which is just under the probe. Therefore have to be used a manipulator to move with the sample under probe to scan whole surface of the material. The piezonanomanipulator is necessary to this movement, this instrument provide movement under the probe with high accuracy of few nanometers. The nanomanipulator can move itself in 3 axis x,y,z, a movement is realized by the help of piezocrystals, these are feeding by the voltage from 2 to +12 V. Paper is focused on the quality of used nanomanipulator for a mouvement of the sample. Some characteristics of the capacitance sensors, which form feedback of the mouvement, were also presented. Keywords: STM, SPM, probes, nanotechnology, near-field Introduction STM (Scanning Tunneling Microscopy) belongs to the group of the methods with raster probe known as SPM (Scanning Probe Microscope). These microscopes work in this way: the surface of the object is scanned by the help of thin mechanical probe, which is proceeding very close to the surface and the signal acquired from particular point forms subsequently whole picture of the object (Kala 2004). The carrier of the information can be electric flow or voltage. STM uses a tunnel effect, which is coming up when an electric charge breaches the air barrier. The electric charge breaches the barrier even if the distance sample-tip is very low (a few nm). Therefore we need to place the probe very close to the object. When electric current gets through the barrier the magnitude of this current can be read and compile one point of the image. Tunnel effect STM method uses an effect known as a tunnel effect for testing procedure. This phenomenon is one of the headstones of quantum theory. And for STM study is necessary to understand its principle (Magonov et al. 1996). Therefore is first part of the paper focused on this problem.

2 One-Dimensional Tunneling XXX. ASR '2005 Seminar, Instruments and Control, Ostrava, April 29, Figure 1 shows an energy level diagram for the system consisting of the sample and tip that are separated by a vacuum. Here, the tip is considered to be a metal with a constant density of states, while the sample also contains a distribution of surface states as shown. When the sample and tip are independent, their vacuum levels are considered to be equal, as in Fig.1a, and their respective Fermi energies (or levels), E f, lie below the vacuum level by their respective work functions Φ s and Φ t. The quantum-mechanical wave functions of the electrons are periodic in the solid and decay exponentially into the vacuum region like Z Ψ = A exp( 2 2m( E), h where Z is the distance perpendicular to the surface plane and E is the energy measured with respect to the Fermi level. This energydepend decay of the functions wave functions is (a) also illustrated in Fig.1a, for different states of the tip. More strongly bound electrons have large negatives values for E and so decay quickly into the vacuum, while high energy states lying close to the vacuum level decay very slowly. The exponential decay of the wave (b) functions onto the vacuum is often written in terms of a inverse decay length K as Ψ = A exp 1 (-KZ), where K = 2h H 2m( E). If the sample and tip are in thermodynamic equilibrium, their Fermi levels must be equal, as illustrated in Fig.1b. Electrons at tempting to pass from sample to tip (or vice versa) encounter a potential barrier, which is (c) approximately trapezoidal in shape, but electrons can tunnel through, if the barrier is sufficiently narrow (Bonnell, 1993). Fig. 1: (d) Energy level diagram of sample and tip When a voltage V is applied to the sample, its energy levels will be rigidly shifted upward or downward in energy by the amount ev, depending on whether the polarity is negative or positive, respectively. At positive sample bias, the net tunneling current arises from electrons that tunnel from the occupied states of the tip into unoccupied states of the sample, as shown in Fig.1c. At negative sample bias the situation is reserved, and electrons tunnel from occupied states of the sample into unoccupied states of the tip, as in Fig.1d. Since states with the highest energy have the longest decay lengths into the vacuum, most of the tunneling current arises from electrons lying near Fermi level of the negative-biased electrode. For any given lateral position of the tip above the sample, the tunneling current (I) is

3 XXX. ASR '2005 Seminar, Instruments and Control, Ostrava, April 29, determined by the sample-tip separation (Z), the applied voltage (V), and the electronic structure of the sample and tip which is quantitatively described by their respective density of states. Information relies on changing the voltage V, but it can be obtained in a number of ways depending on which of the other variables are held constant and which are measured. STM The main particle of STM is its head. The head contains a scanner and a microscope stage, which hold metallic tip and a sample. In our alternative the tip position is fixed and the sample is placed on the scanner. The operation of scanning tunnelling microscope is controlled by the tunnelling parameters, the set-point current and the bias voltage. Bias voltage The bias voltage V bias determines which levels of the sample electronic states will participate in the tip-sample electron transfer and is therefore an important experimental parameter in STM. The V bias are typically in the 0,001-5V range. In STM electrons flow from the tip to the sample when the bias voltage is positive, but from the sample to the tip when the bias voltage is negative Fig. 2: Electron transfer in STM Thus, tip-sample electron transfer involves the lowest unoccupied levels of the sample when V bias > 0, but the highest occupied levels of the sample when V bias < 0 (with the tip grounded). The highest occupied levels and the lowest occupied levels are similar in nature for metals and magnetic semiconductors, so the characteristics of their STM images do not depend on the polarity of the bias voltage. Operation Principles and Main Components In a scanning probe microscope, the sample surface is scanned with the sharp probe at a distance of less than a few nanometers, or in mechanical contact. For scanning, either the tip moves against the fixed sample, or the sample moves against the fixed tip. The common parts of the scanning probe microscope are the piezoceramic scanner, on which the moving element is mounted, and the coarse mechanism by which the tip and sample are brought closer together so that the probing interactions can be measured with an appropriate detector. The detector signal is used for feedback control to adjust the tip-sample distance during the

4 XXX. ASR '2005 Seminar, Instruments and Control, Ostrava, April 29, scanning. The main components of scanning tunneling microscopes are shown on fig. 2. Fig. 3: Scheme of the STM The microscope head contains the scanner, the coarse mechanism, the probing tip, and the detector. Instrument operations are performed through the electronic unit controlled by the computer station. The software allows one monitor the tip-sample approach, record the strength of the probing interaction as a function of the tip position, convert the collected information into the image on the screen, and store the data in the computer. Tip-Sample Approach an Electronic Feedback The strength of the local probing interactions between the tip and the sample (i.e., the tunneling current in STM and the repulsive force in contact mode AFM) becomes measurable only when tip is positioned close enough to the sample surface (Tománek 2000). To prevent any possible damage of the sample by a tip-sample contact, the approach of the tip to the sample should be delicate. Initially the tip and sample are put close to each other by manually rotating the high-precision mechanical screws which are incorporated into the microscope stage. This procedure is facilitated by an optical control, when a scanning probe microscope is combined with an optical microscope or optical camera system. Closer approach is performed by the stepper motor, which brings the tip to the sample at separations that can be controlled by the scanner. The final adjustment of the tip-sample separation, to the value at which the probing interaction reaches the set-point level determined by the user, is performed by the scanner. After this engagement, the lateral scanning is activated. The scanning tip can crash into the sample surface because of surface roughness and imperfect tip-sample alignment, unless the scanning is performed with a feedback mechanism. The difference between the actual and the set-point values of the probing interaction is used for the feedback control. The

5 XXX. ASR '2005 Seminar, Instruments and Control, Ostrava, April 29, electronic feedback system generates the response to the scanner, to adjust the vertical position to eliminate the difference. Different types of feedback function (e.g., linear and logarithmic) can be used, depending upon the known or presumed relationship between the probing interaction and the tip-sample separation. The accuracy of imaging is strongly influenced by the feedback gain parameters. Use of very low gains keeps the tip position constant, whereas use of very high gains renders unstable the electronic circuit controlling the feedback, because the piezodrive and the current amplifier cannot respond instantaneously. Therefore the scanning should be performed with moderate gain parameters, which are commonly adjusted by the user. TS 3130 Example of the STM microscopes is instrument made by TESCAN Company. Its name is TS This instrument is without vacuum chest and operates with air barrier. In this instrument the tip position is fixed and the sample is placed on the scanner (Tománek, 2002). Fig. 4: STM probe-sample system TS 3130 can operate in two modes, constant current mode and constant height mode. Constant height mode The value of the tunnel current, which is thorough the air barrier is very depend on the distance between the probe and the sample. If a probe of the microscope is kept in constant height Z above the object, which is not ideally smooth, the electric current is changing in dependence on thin of the air barrier. If the size of the passing current is known, the relief of the sample can be reconstructed. Figure 2 shows a model of the probe-sample system during scanning the metal material. Constant current mode In this mode, the current is scanned, modified and fetched to the input of the

6 XXX. ASR '2005 Seminar, Instruments and Control, Ostrava, April 29, nanomanipulator, whereby is kept constant distance between probe of the STM and tested sample. To construct the image is necessary to scan movement of the manipulator. Nanomanipulator In this case the instrument made by Physik Instrumente is used. Manipulator is controlled by control unit PZT. In the input of PZT a signal in range from -2V to + 10V of DCV can be fetched. Usually, we test this instrument in three different frequencies, e.g. for STM the frequencies until 50 Hz are used. But, how one can see from the following, the manipulator is much better than this limit. The signal with various frequencies is fetched to the input of the oscilloscope and to the PZT-servo controller E-5509.C3A, too. The reaction of the capacitive sensors of mouvement of the sample is displayed as output from PZT. In Out Fig. 5: In/Out from PZT-servo controller, E-5509.C3A by 10 Hz In Out Fig. 6: In/Out from PZT-servo controller, E-5509.C3A by 100 Hz In Out Fig. 7: In/Out from PZT-servo controller, E-5509.C3A by 200 Hz

7 XXX. ASR '2005 Seminar, Instruments and Control, Ostrava, April 29, Conclusion In present, there is a running project in our department, which object is to join STM and SNOM (Scanning Near-field Optical Microscopy) method (Tománek, 2002). Despite of similarity of these two methods, the connection of both will be quite difficult, but not impossible. It is necessary to know very well possibilities of SNOM and STM probes and problems of their movements to complete this task. Main problems of probe movement were described (Kala, 2004) and some realisations from STM and SNOM topics were also published (e.g., Tománek, 2000). In the first stage of the work, we focused our effort on the theory of the electron and photon tunnel effects. This information is necessary to understand STM and SNOM principle. In the last part of the paper we were inquired into nanomanipulator made by Physik Instrumente. We measured its response to the input signal. The experimental results show that the instrument is efficient up to 200 Hz, what is more better than we can use by scanning process in STM or SNOM methods. Acknowledgement This paper is based on the research supported by the Research project MSM References BONNELL, D.A 1993.: Scanning Tunneling Microscopy and Spectroscopy, VCH Publishers, New York, 1993, ISBN X. KALA, J.: Scanning Tunnelling Microscopy 2004, Workshop NDT 2004, Brno University of Technology, p , ISBN MAGONOV, S.N., WHANGBO. M Surface Analysis with STM and AFM Weinheim. ISBN TOMÁNEK, P Nanotechnologie a optická nanometrologie, VUT Brno, ISBN TOMÁNEK,P Optická tunelová mikroskopie s lokální sondou, In FRANK, L., KRÁL, J., (Eds) Metody analýzy povrchu: iontové, sondové a speciální metody, Academia Praha, ISBN

STM: Scanning Tunneling Microscope

STM: Scanning Tunneling Microscope STM: Scanning Tunneling Microscope Basic idea STM working principle Schematic representation of the sample-tip tunnel barrier Assume tip and sample described by two infinite plate electrodes Φ t +Φ s =

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

Scanning Probe Microscopy

Scanning Probe Microscopy 1 Scanning Probe Microscopy Dr. Benjamin Dwir Laboratory of Physics of Nanostructures (LPN) Benjamin.dwir@epfl.ch PH.D3.344 Outline: Introduction: What is SPM, history STM AFM Image treatment Advanced

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Scanning Probe Microscopy. EMSE-515 F. Ernst

Scanning Probe Microscopy. EMSE-515 F. Ernst Scanning Probe Microscopy EMSE-515 F. Ernst 1 Literature 2 3 Scanning Probe Microscopy: The Lab on a Tip by Ernst Meyer,Ans Josef Hug,Roland Bennewitz 4 Scanning Probe Microscopy and Spectroscopy : Theory,

More information

REPORT ON SCANNING TUNNELING MICROSCOPE. Course ME-228 Materials and Structural Property Correlations Course Instructor Prof. M. S.

REPORT ON SCANNING TUNNELING MICROSCOPE. Course ME-228 Materials and Structural Property Correlations Course Instructor Prof. M. S. REPORT ON SCANNING TUNNELING MICROSCOPE Course ME-228 Materials and Structural Property Correlations Course Instructor Prof. M. S. Bobji Submitted by Ankush Kumar Jaiswal (09371) Abhay Nandan (09301) Sunil

More information

Scanning Tunneling Microscopy Studies of the Ge(111) Surface

Scanning Tunneling Microscopy Studies of the Ge(111) Surface VC Scanning Tunneling Microscopy Studies of the Ge(111) Surface Anna Rosen University of California, Berkeley Advisor: Dr. Shirley Chiang University of California, Davis August 24, 2007 Abstract: This

More information

Scanning Force Microscopy

Scanning Force Microscopy Scanning Force Microscopy Roland Bennewitz Rutherford Physics Building 405 Phone 398-3058 roland.bennewitz@mcgill.ca Scanning Probe is moved along scan lines over a sample surface 1 Force Microscopy Data

More information

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and

tip of a current tip and the sample. Components: 3. Coarse sample-to-tip isolation system, and SCANNING TUNNELING MICROSCOPE Brief history: Heinrich Rohrer and Gerd K. Binnig, scientists at IBM's Zurich Research Laboratory in Switzerland, are awarded the 1986 Nobel Prize in physicss for their work

More information

Quantum Condensed Matter Physics Lecture 12

Quantum Condensed Matter Physics Lecture 12 Quantum Condensed Matter Physics Lecture 12 David Ritchie QCMP Lent/Easter 2016 http://www.sp.phy.cam.ac.uk/drp2/home 12.1 QCMP Course Contents 1. Classical models for electrons in solids 2. Sommerfeld

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

(Scanning Probe Microscopy)

(Scanning Probe Microscopy) (Scanning Probe Microscopy) Ing-Shouh Hwang (ishwang@phys.sinica.edu.tw) Institute of Physics, Academia Sinica, Taipei, Taiwan References 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett.

More information

And Manipulation by Scanning Probe Microscope

And Manipulation by Scanning Probe Microscope Basic 15 Nanometer Scale Measurement And Manipulation by Scanning Probe Microscope Prof. K. Fukuzawa Dept. of Micro/Nano Systems Engineering Nagoya University I. Basics of scanning probe microscope Basic

More information

SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]

SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM] G01Q SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM] Scanning probes, i.e. devices having at least a tip of nanometre sized dimensions

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy A scanning tunneling microscope (STM) is an instrument for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) CHEM53200: Lecture 9 Scanning Probe Microscopy (SPM) Major reference: 1. Scanning Probe Microscopy and Spectroscopy Edited by D. Bonnell (2001). 2. A practical guide to scanning probe microscopy by Park

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

NIS: what can it be used for?

NIS: what can it be used for? AFM @ NIS: what can it be used for? Chiara Manfredotti 011 670 8382/8388/7879 chiara.manfredotti@to.infn.it Skype: khiaram 1 AFM: block scheme In an Atomic Force Microscope (AFM) a micrometric tip attached

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high?

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high? STM STM With a scanning tunneling microscope, images of surfaces with atomic resolution can be readily obtained. An STM uses quantum tunneling of electrons to map the density of electrons on the surface

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Scanning Tunneling Microscopy (STM)

Scanning Tunneling Microscopy (STM) Page 1 of 8 Scanning Tunneling Microscopy (STM) This is the fastest growing surface analytical technique, which is replacing LEED as the surface imaging tool (certainly in UHV, air and liquid). STM has

More information

Nanoscale work function measurements by Scanning Tunneling Spectroscopy

Nanoscale work function measurements by Scanning Tunneling Spectroscopy Related Topics Tunneling effect, Defects, Scanning Tunneling Microscopy (STM), (STS), Local Density of States (LDOS), Work function, Surface activation, Catalysis Principle Scanning tunneling microscopy

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

Towards Automatic Nanomanipulation at the Atomic Scale

Towards Automatic Nanomanipulation at the Atomic Scale Towards Automatic Nanomanipulation at the Atomic Scale Bernd Schütz Department of Computer Science University of Hamburg, Germany Department of Computer Science Outline Introduction System Overview Workpackages

More information

Understanding the properties and behavior of groups of interacting atoms more than simple molecules

Understanding the properties and behavior of groups of interacting atoms more than simple molecules Condensed Matter Physics Scratching the Surface Understanding the properties and behavior of groups of interacting atoms more than simple molecules Solids and fluids in ordinary and exotic states low energy

More information

Scanning tunneling microscopy

Scanning tunneling microscopy IFM The Department of Physics, Chemistry and Biology Lab 72 in TFFM08 Scanning tunneling microscopy NAME PERS. - NUMBER DATE APPROVED Rev. Dec 2006 Ivy Razado Aug 2014 Tuomas Hänninen Contents 1 Introduction

More information

Experimental methods in physics. Local probe microscopies I

Experimental methods in physics. Local probe microscopies I Experimental methods in physics Local probe microscopies I Scanning tunnelling microscopy (STM) Jean-Marc Bonard Academic year 09-10 1. Scanning Tunneling Microscopy 1.1. Introduction Image of surface

More information

Introduction to Scanning Probe Microscopy Zhe Fei

Introduction to Scanning Probe Microscopy Zhe Fei Introduction to Scanning Probe Microscopy Zhe Fei Phys 590B, Apr. 2019 1 Outline Part 1 SPM Overview Part 2 Scanning tunneling microscopy Part 3 Atomic force microscopy Part 4 Electric & Magnetic force

More information

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Chapter 12. Nanometrology. Oxford University Press All rights reserved. Chapter 12 Nanometrology Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands in relation to a meter and sub divisions of meter. Nanometrology

More information

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools 1. Introduction Solid Surfaces Analysis Group, Institute of Physics, Chemnitz University of Technology, Germany 2. Limitations of Conventional Optical Microscopy 3. Electron Microscopies Transmission Electron

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

Citation for published version (APA): Mendoza, S. M. (2007). Exploiting molecular machines on surfaces s.n.

Citation for published version (APA): Mendoza, S. M. (2007). Exploiting molecular machines on surfaces s.n. University of Groningen Exploiting molecular machines on surfaces Mendoza, Sandra M IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

The most versatile AFM platform for your nanoscale microscopy needs

The most versatile AFM platform for your nanoscale microscopy needs The most versatile AFM platform for your nanoscale microscopy needs Atomic Force Microscopy (AFM) for nanometer resolution imaging with electrical, magnetic, thermal, and mechanical property measurement

More information

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY SECOND EDITION C. JULIAN CHEN Department of Applied Physics and Applied Mathematics, Columbia University, New York OXFORD UNIVERSITY PRESS Contents Preface

More information

Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100)

Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100) Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100) Adrian Radocea,, Tao Sun,, Timothy H. Vo, Alexander Sinitskii,,# Narayana R. Aluru,, and Joseph

More information

Low Temperature Physics Measurement Systems

Low Temperature Physics Measurement Systems PAGE 6 & 2008 2007 PRODUCT CATALOG Accelerate your Semiconductor Research & Developments towards Nanoscale Products. Experience your new working horse in the emerging field of semiconductor research for

More information

Scanning Tunneling Microscopy/Spectroscopy

Scanning Tunneling Microscopy/Spectroscopy Scanning Tunneling Microscopy/Spectroscopy 0 Scanning Tunneling Microscope 1 Scanning Tunneling Microscope 2 Scanning Tunneling Microscope 3 Typical STM talk or paper... The differential conductance di/dv

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

Introduction to the Scanning Tunneling Microscope

Introduction to the Scanning Tunneling Microscope Introduction to the Scanning Tunneling Microscope A.C. Perrella M.J. Plisch Center for Nanoscale Systems Cornell University, Ithaca NY Measurement I. Theory of Operation The scanning tunneling microscope

More information

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman General concept and defining characteristics of AFM Dina Kudasheva Advisor: Prof. Mary K. Cowman Overview Introduction History of the SPM invention Technical Capabilities Principles of operation Examples

More information

PY5020 Nanoscience Scanning probe microscopy

PY5020 Nanoscience Scanning probe microscopy PY500 Nanoscience Scanning probe microscopy Outline Scanning tunnelling microscopy (STM) - Quantum tunnelling - STM tool - Main modes of STM Contact probes V bias Use the point probes to measure the local

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) http://ww2.sljus.lu.se/staff/rainer/spm.htm Scanning Probe Microscopy (FYST42 / FAFN30) Scanning Probe Microscopy (SPM) overview & general principles March 23 th, 2018 Jan Knudsen, room K522, jan.knudsen@sljus.lu.se

More information

Module 40: Tunneling Lecture 40: Step potentials

Module 40: Tunneling Lecture 40: Step potentials Module 40: Tunneling Lecture 40: Step potentials V E I II III 0 x a Figure 40.1: A particle of energy E is incident on a step potential of hight V > E as shown in Figure 40.1. The step potential extends

More information

CHARACTERIZATION AND FIELD EMISSION PROPERTIES OF FIELDS OF NANOTUBES

CHARACTERIZATION AND FIELD EMISSION PROPERTIES OF FIELDS OF NANOTUBES CHARACTERIZATION AND FIELD EMISSION PROPERTIES OF FIELDS OF NANOTUBES Martin MAGÁT a, Jan PEKÁREK, Radimír VRBA a Department of microelectronics, The Faculty of Electrical Engineeering and Communication,

More information

Scanning Probe Microscopy: Atomic Force Microscopy And Scanning Tunneling Microscopy (NanoScience And Technology) [Kindle Edition] By Bert Voigtl

Scanning Probe Microscopy: Atomic Force Microscopy And Scanning Tunneling Microscopy (NanoScience And Technology) [Kindle Edition] By Bert Voigtl Scanning Probe Microscopy: Atomic Force Microscopy And Scanning Tunneling Microscopy (NanoScience And Technology) [Kindle Edition] By Bert Voigtl READ ONLINE If searched for a book Scanning Probe Microscopy:

More information

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM Module 26: Atomic Force Microscopy Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM 1 The AFM apart from generating the information about the topography of the sample features can be used

More information

Microscopie a stilo: principi ed esempi di applicazione

Microscopie a stilo: principi ed esempi di applicazione Microscopie a stilo: principi ed esempi di applicazione Adele Sassella Dipartimento di Scienza dei Materiali Università degli Studi di Milano Bicocca adele.sassella@unimib.it Pavia, 22 aprile 2009 SCANNING

More information

3.1 Electron tunneling theory

3.1 Electron tunneling theory Scanning Tunneling Microscope (STM) was invented in the 80s by two physicists: G. Binnig and H. Rorher. They got the Nobel Prize a few years later. This invention paved the way for new possibilities in

More information

Quantum Physics Lecture 9

Quantum Physics Lecture 9 Quantum Physics Lecture 9 Potential barriers and tunnelling Examples E < U o Scanning Tunelling Microscope E > U o Ramsauer-Townsend Effect Angular Momentum - Orbital - Spin Pauli exclusion principle potential

More information

SOLID STATE PHYSICS PHY F341. Dr. Manjuladevi.V Associate Professor Department of Physics BITS Pilani

SOLID STATE PHYSICS PHY F341. Dr. Manjuladevi.V Associate Professor Department of Physics BITS Pilani SOLID STATE PHYSICS PHY F341 Dr. Manjuladevi.V Associate Professor Department of Physics BITS Pilani 333031 manjula@bits-pilani.ac.in Characterization techniques SEM AFM STM BAM Outline What can we use

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Supplementary Materials to Addressable Photo-Charging of Single Quantum Dots Assisted with Atomic Force Microscopy Probe

Supplementary Materials to Addressable Photo-Charging of Single Quantum Dots Assisted with Atomic Force Microscopy Probe Supplementary Materials to Addressable Photo-Charging of Single Quantum Dots Assisted with Atomic Force Microscopy Probe M. Dokukin 1, R. Olac-Vaw 2, N. Guz 1, V. Mitin 2, and I. Sokolov 1,* 1 Dept. of

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures.

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 15 Excess Carriers This is the 15th lecture of this course

More information

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see?

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see? Scanning Tunneling Microscopy how does STM work? the quantum mechanical picture example of images how can we understand what we see? Observation of adatom diffusion with a field ion microscope Scanning

More information

23.0 Review Introduction

23.0 Review Introduction EE650R: Reliability Physics of Nanoelectronic Devices Lecture 23: TDDB: Measurement of bulk trap density Date: Nov 13 2006 Classnotes: Dhanoop Varghese Review: Nauman Z Butt 23.0 Review In the last few

More information

Scanning Tunneling Microscopy and Single Molecule Conductance

Scanning Tunneling Microscopy and Single Molecule Conductance Scanning Tunneling Microscopy and Single Molecule Conductance Erin V. Iski, Mahnaz El-Kouedi, and E. Charles H. Sykes Department of Chemistry, Tufts University, Medford, Massachusetts 02155-5813 Pre-Lab

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Clark Atlanta University Center for Surface Chemistry and Catalysis Instrument Capabilities

Clark Atlanta University Center for Surface Chemistry and Catalysis Instrument Capabilities Center for Surface Chemistry and Catalysis Instrument Capabilities For information contact: Dr. Eric Mintz Research Center for Science and Technology Clark Atlanta University Atlanta, Georgia 30314 Phone:

More information

Nanoscale characteristics by Scanning Tunneling Spectroscopy

Nanoscale characteristics by Scanning Tunneling Spectroscopy Related Topics Tunneling effect, Scanning Tunneling Microscopy (STM), (STS), Local Density of States (LDOS), Band structure, Band Gap, k-space, Brioullin Zone, Metal, Semi-Metal, Semiconductor Principle

More information

Lecture 3: Electron statistics in a solid

Lecture 3: Electron statistics in a solid Lecture 3: Electron statistics in a solid Contents Density of states. DOS in a 3D uniform solid.................... 3.2 DOS for a 2D solid........................ 4.3 DOS for a D solid........................

More information

Final Exam: Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall.

Final Exam: Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Final Exam: Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Chapter 38 Quantum Mechanics Units of Chapter 38 38-1 Quantum Mechanics A New Theory 37-2 The Wave Function and Its Interpretation; the

More information

672 Advanced Solid State Physics. Scanning Tunneling Microscopy

672 Advanced Solid State Physics. Scanning Tunneling Microscopy 672 Advanced Solid State Physics Scanning Tunneling Microscopy Biao Hu Outline: 1. Introduction to STM 2. STM principle & working modes 3. STM application & extension 4. STM in our group 1. Introduction

More information

Nanoscale Surface Physics PHY 5XXX

Nanoscale Surface Physics PHY 5XXX SYLLABUS Nanoscale Surface Physics PHY 5XXX Spring Semester, 2006 Instructor: Dr. Beatriz Roldán-Cuenya Time: Tuesday and Thursday 4:00 to 5:45 pm Location: Theory: MAP 306, Laboratory: MAP 148 Office

More information

High-resolution Magnetic Force Microscope

High-resolution Magnetic Force Microscope High-resolution Magnetic Force Microscope hr-mfm Gigasteps on a nanoscale hr-mfm the key instrument for research and development of high-density magnetic media. 1 nm magnetic resolution guaranteed. Winner

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

Metal Semiconductor Contacts

Metal Semiconductor Contacts Metal Semiconductor Contacts The investigation of rectification in metal-semiconductor contacts was first described by Braun [33-35], who discovered in 1874 the asymmetric nature of electrical conduction

More information

Scanning Probe Microscopies (SPM)

Scanning Probe Microscopies (SPM) Scanning Probe Microscopies (SPM) Nanoscale resolution af objects at solid surfaces can be reached with scanning probe microscopes. They allow to record an image of the surface atomic arrangement in direct

More information

Sensors of Structure. debroglie. Wave-Particle duality. Bragg reflection. Electron Diffraction. Heisenberg Uncertantity Principle

Sensors of Structure. debroglie. Wave-Particle duality. Bragg reflection. Electron Diffraction. Heisenberg Uncertantity Principle Sensors of Structure Matter Waves and the debroglie wavelength Heisenberg uncertainty principle Electron diffraction Transmission electron microscopy Atomic-resolution sensors debroglie Postulated that

More information

Lecture 13: Barrier Penetration and Tunneling

Lecture 13: Barrier Penetration and Tunneling Lecture 13: Barrier Penetration and Tunneling nucleus x U(x) U(x) U 0 E A B C B A 0 L x 0 x Lecture 13, p 1 Today Tunneling of quantum particles Scanning Tunneling Microscope (STM) Nuclear Decay Solar

More information

Introduction to Scanning Tunneling Microscopy

Introduction to Scanning Tunneling Microscopy Introduction to Scanning Tunneling Microscopy C. JULIAN CHEN IBM Research Division Thomas J. Watson Research Center Yorktown Heights, New York New York Oxford OXFORD UNIVERSITY PRESS 1993 CONTENTS List

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

The molecules that will be studied with this device will have an overall charge of

The molecules that will be studied with this device will have an overall charge of The Basics of the Rotation of Polarized Light The molecules that will be studied with this device will have an overall charge of zero but will have localized polarities that can be used to orient the molecule.

More information

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Contents What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Figure1: 2004 Seth Copen Goldstein What is AFM? A type of Scanning Probe Microscopy

More information

Electronic states on the surface of graphite

Electronic states on the surface of graphite Electronic states on the surface of graphite Guohong Li, Adina Luican, Eva Y. Andrei * Department of Physics and Astronomy, Rutgers Univsersity, Piscataway, NJ 08854, USA Elsevier use only: Received date

More information

New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep

New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 71, NUMBER 9 SEPTEMBER 2000 New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep Hewon Jung, Jong Youp Shim, and DaeGab Gweon

More information

Chapter 2 Scanning Probe Microscopy Principle of Operation, Instrumentation, and Probes

Chapter 2 Scanning Probe Microscopy Principle of Operation, Instrumentation, and Probes Chapter 2 Scanning Probe Microscopy Principle of Operation, Instrumentation, and Probes Bharat Bhushan and Othmar Marti Abstract Since the introduction of the STM in 1981 and the AFM in 1985, many variations

More information

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets Chapter 2 Theoretical background The first part of this chapter gives an overview of the main static magnetic behavior of itinerant ferromagnetic and antiferromagnetic materials. The formation of the magnetic

More information

Single Photon detectors

Single Photon detectors Single Photon detectors Outline Motivation for single photon detection Semiconductor; general knowledge and important background Photon detectors: internal and external photoeffect Properties of semiconductor

More information

Bringing optics into the nanoscale a double-scanner AFM brings advanced optical experiments within reach

Bringing optics into the nanoscale a double-scanner AFM brings advanced optical experiments within reach Bringing optics into the nanoscale a double-scanner AFM brings advanced optical experiments within reach Beyond the diffraction limit The resolution of optical microscopy is generally limited by the diffraction

More information

Practical 1P4 Energy Levels and Band Gaps

Practical 1P4 Energy Levels and Band Gaps Practical 1P4 Energy Levels and Band Gaps What you should learn from this practical Science This practical illustrates some of the points from the lecture course on Elementary Quantum Mechanics and Bonding

More information

Atomic Force Microscopy

Atomic Force Microscopy Journal of the Advanced Undergraduate Physics Laboratory Investigation Volume 0 Issue 0 Premiere Issue Article 2 6-6-2012 Atomic Force Microscopy Tyler Lane Minnesota State University - Moorhead, lanety@mnstate.edu

More information

Chapter 8 Chapter 8 Quantum Theory: Techniques and Applications (Part II)

Chapter 8 Chapter 8 Quantum Theory: Techniques and Applications (Part II) Chapter 8 Chapter 8 Quantum Theory: Techniques and Applications (Part II) The Particle in the Box and the Real World, Phys. Chem. nd Ed. T. Engel, P. Reid (Ch.16) Objectives Importance of the concept for

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

Practical 1P4 Energy Levels and Band Gaps

Practical 1P4 Energy Levels and Band Gaps Practical 1P4 Energy Levels and Band Gaps What you should learn from this practical Science This practical illustrates some of the points from the lecture course on Elementary Quantum Mechanics and Bonding

More information

Atomic Force Microscopy imaging and beyond

Atomic Force Microscopy imaging and beyond Atomic Force Microscopy imaging and beyond Arif Mumtaz Magnetism and Magnetic Materials Group Department of Physics, QAU Coworkers: Prof. Dr. S.K.Hasanain M. Tariq Khan Alam Imaging and beyond Scanning

More information

The Franck-Hertz Experiment Physics 2150 Experiment No. 9 University of Colorado

The Franck-Hertz Experiment Physics 2150 Experiment No. 9 University of Colorado Experiment 9 1 Introduction The Franck-Hertz Experiment Physics 2150 Experiment No. 9 University of Colorado During the late nineteenth century, a great deal of evidence accumulated indicating that radiation

More information

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities Kavli Workshop for Journalists June 13th, 2007 CNF Cleanroom Activities Seeing nm-sized Objects with an SEM Lab experience: Scanning Electron Microscopy Equipment: Zeiss Supra 55VP Scanning electron microscopes

More information

MAGNETIC FORCE MICROSCOPY

MAGNETIC FORCE MICROSCOPY University of Ljubljana Faculty of Mathematics and Physics Department of Physics SEMINAR MAGNETIC FORCE MICROSCOPY Author: Blaž Zupančič Supervisor: dr. Igor Muševič February 2003 Contents 1 Abstract 3

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Simultaneous and coordinated rotational switching of all molecular rotors in a network Y. Zhang, H. Kersell, R. Stefak, J. Echeverria, V. Iancu, U. G. E. Perera, Y. Li, A. Deshpande, K.-F. Braun, C. Joachim,

More information

Electrical Characterization with SPM Application Modules

Electrical Characterization with SPM Application Modules Electrical Characterization with SPM Application Modules Metrology, Characterization, Failure Analysis: Data Storage Magnetoresistive (MR) read-write heads Semiconductor Transistors Interconnect Ferroelectric

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices The pn Junction 1) Charge carriers crossing the junction. 3) Barrier potential Semiconductor Physics and Devices Chapter 8. The pn Junction Diode 2) Formation of positive and negative ions. 4) Formation

More information

Nitride HFETs applications: Conductance DLTS

Nitride HFETs applications: Conductance DLTS Nitride HFETs applications: Conductance DLTS The capacitance DLTS cannot be used for device trap profiling as the capacitance for the gate will be very small Conductance DLTS is similar to capacitance

More information

CBSE PHYSICS QUESTION PAPER (2005)

CBSE PHYSICS QUESTION PAPER (2005) CBSE PHYSICS QUESTION PAPER (2005) (i) (ii) All questions are compulsory. There are 30 questions in total. Questions 1 to 8 carry one mark each, Questions 9 to 18 carry two marks each, Question 19 to 27

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

Lecture 26 MNS 102: Techniques for Materials and Nano Sciences

Lecture 26 MNS 102: Techniques for Materials and Nano Sciences Lecture 26 MNS 102: Techniques for Materials and Nano Sciences Reference: #1 C. R. Brundle, C. A. Evans, S. Wilson, "Encyclopedia of Materials Characterization", Butterworth-Heinemann, Toronto (1992),

More information

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R.

There is light at the end of the tunnel. -- proverb. The light at the end of the tunnel is just the light of an oncoming train. --R. A vast time bubble has been projected into the future to the precise moment of the end of the universe. This is, of course, impossible. --D. Adams, The Hitchhiker s Guide to the Galaxy There is light at

More information

Quantized Electrical Conductance of Carbon nanotubes(cnts)

Quantized Electrical Conductance of Carbon nanotubes(cnts) Quantized Electrical Conductance of Carbon nanotubes(cnts) By Boxiao Chen PH 464: Applied Optics Instructor: Andres L arosa Abstract One of the main factors that impacts the efficiency of solar cells is

More information