Desorption and Sputtering on Solid Surfaces by Low-energy Multicharged Ions

Size: px
Start display at page:

Download "Desorption and Sputtering on Solid Surfaces by Low-energy Multicharged Ions"

Transcription

1 Desorption and Sputtering on Solid Surfaces by Low-energy Multicharged Ions K. Motohashi Department of Biomedical Engineering, Toyo University 1. Background Sputtering and desorption on solid surfaces induced by slow multicharged ions have been attracting attention because of 1. high sputtering yield and its strong charge state (or potential energy) dependence as well as weak kinetic energy dependence, and following 2. nanostructure formation in every ion impact.

2 1-1. Sputtering and desorption OES SIMS Quartz And also in here Bullets go in here Species Microbalance H* H + O + Ti + Si + (UO x ) + y Total Substrate Si(1)/H 2 Si(1) 1 1 H 1) Si(111) 1 1 H 2) Projectiles Xe q+ 6 q 22 Xe q+ 4 q 12 I q+ 17 q 53 SAM( MUD A and DDT) Ar q+ 4 q 1 TiO 2 (1) Si(111) 1 1 H 2) U LiF 3) NaCl 4) I q+ 25 q 51 I q+ 17 q 53 Au q+ 36 q 69 Xe q+ 17 q 52 SiO 2 3) Yield ~ q 2.8 ±.3 ~ q 5 ~ q 3.4 ~ q 5 ~ q 1.4 Authors Deiwiks (26) 1) Kuroki (23) 2) Tona (26) Flores (29) Tona (28) Tona (26) 3) Sporn (1997) 4) Varga (1997) 1-2. Nanostructure formation Bullets go in here Mica HOPG And also in here LiF KBr Si TiO CaF 2 2 shape Blister 1) or Hillock 2-5) Hillock 7) Pit 8) Crater 9) Caldera 1) Hilock 2) E P dep. of size V EP d q h q V E P (E P >14 kev) V E P Authors 1) Shneider (1993) 2) Parks (1998) 3) Minniti (21) 4) Hayderer (21) 5) Nakamura (25) 6) Tona (27) 7) El-Said (27) 8) Heller (28) 9) Tona (27) 1) Tona (28)

3 1-3. Nanostructuring and Sputtering Contribution of Potential Energy E P Contribution of Kinetic Energy E K Nanostructuring Sputtering Volume ~ E P (Diameter ~ q, Height ~ q) Coulomb Explosion Hydrogen Atoms/Molecules/Ions Yield ~ q n (3 n 5) Pair-wise Potential Sputtering Heavy Atoms/Molecules/Ions Yield ~ q m (1 m 2) Defect Mediated Potential Sputtering Independence or weak dependence of E K Coulomb Explosion Inelastic Thermal Spike Hydrogen Atoms/Molecules/Ions Negative dependence of E K Heavy Atoms/Molecules/Ions Weak dependence of E K Kinetically Assisted Potential Sputtering 2. Motivation Synergy between E P and E K? Roles of neutrals? Kinematics or dynamics Spectroscopic data

4 3. Objective To measure velocity or kinetic energy of particles participating in the collisions in order to investigate the kinematics of sputtering, desorption, and nanostructuring induced by slow multicharged ion collisions with solid surfaces. 4. Experimental Methods 4.1 TOF-SIMS studies D-momentum spectroscopy of secondary ions Simultaneous TOF-SIMS/LEIS analysis 4.2 OES study

5 4.1. TOF-SIMS study Secondary ions mass spectrometry (SIMS) measured in coincidence with scattered atoms or ions in off-normal incidence Coincidence SIMS Stop Start Secondary ions Scattered atoms /ions Multicharged ions eē Experimental setups of SIMS Secondary ions STOP TOF-SIMS with velocity-map imaging z Momentum distribution of y desorbing or sputtering ions x A q+ TOF-SIMS with 2D LEIS imaging Scattered neutral atoms START z y Secondary ions STOP x Kinetic energy distribution of scattered ions correlating with secondary ion emission Secondary electrons START Scattered ions START

6 4.2. OES study Optical emission spectroscopy (OES) of sputtered neutral atoms in normal incidence E V Z V Excited Atom Bulk Monochromator Doppler Broadening v λ = c 2λ Intensity decay as a function of Z = z I I exp v τ 6. Results and discussion 6.1. TOF-SIMS with velocity map imaging

7 Proton desorption from GaN surfaces 3D-momentum image of protons emitted from a GaN(1) surface interacting with Ar 8+ at glancing angle (.5 ) H + Ar 8+ GaN(1) Ar Ar 8+ beam K. Motohashi et al., NIMB 232 (25) Angular dependence of protons +9 Ar X Z H + Ar q+ α α = tan E k = Al surface Y 1( Py / Pz ) ( P + P + P )/( 2m) x Simulation (SIMION) y z This analyzer can detect all protons which have the kinetic energy less than 2eV. -9 K. Motohashi and S. Tsurubuchi, NIMB 264 (27) 15

8 6. Results and discussion 6.2. TOF-SIMS with 2D-LEIS imaging Velocity dispersion with E B filter z GaN(1) Ar 6+ (15. kev) Wien Filter (EB filter) 1 mm B Charge state separator v E CS E Ar (6-m)+ E CS (V/cm) Ar v + v y v - v x 2D-LEIS image Ar + Ar Ar + Ar

9 Energy calibration Ar 6+ (15.2 kev) 1 5 z (mm) Ar 6+ (15. kev) [ 1-2 ] z/ E = 5.2 mm/kev E = ±.3 kev Normalized intensity (arb. units) Result of LEIS Ar 6+ 2 (15 kev) GaN (1) 2 2 E f ( cosθ + A sin θ ) N/E :Ar + :Ar 6+ (Primary) N (2 nd layer) k = E i = Ga (1 st layer) ( 1+ A) E (kev)

10 Result of SIMS measured in coincidence with scattered ions Cou unts H + C 3 H (b) + C 2 H 2 C 4 H 4 T Ga + 1 N + T 2 (<< T 1 ) GaN z (m mm) (a) t 12 (1-6 s) 2 1 Ar +.66 Ar.23-1 Ar (c) 4 8 Counts Proton emission followed by elastic scattering between Ar and Ga or N T 1 = 4.65 µs +15. T 1 (Proton) z T 1 (Proton) z E (kev) Ga N T 2 = 1.87 µs T 2 = 1.95 µs T 2 = 1.87µs (14.6 kev) T 2 = 1.95µs (13.9 kev) t 12 (sec) Ar Ga N H [ 1-6 ]

11 6. Results and discussion 6.3. OES <v > of Al * (Previous study) <v > ( 1 4 m/ /s ) q+ v Ar v q+ Ar q+ (45 kev) :Al :Al 2 O q v v Al * Al and Al 2 O 3 surfaces There was no significant change of <v > among different charge states as well as between metal and insulator surfaces. K. Motohashi et al., Phys. Scr. T73 (1997) 329.

12 <v > of Ti * (in progress) I / I (a) Z (mm) Ti * (3d 2 4s4p x 3 G) τ = 1.6 ns <v > = (7±3) 1 4 m/s I / I 1 1 Z I = I k exp (b) τ v k k v Z (mm) Measurement of charge-state dependence of <v >isnow on going. Summary TOF-SIMS coincidence measurements on scattered atoms/ions and secondary ions, and OES measurements of sputtered neutral atoms were conducted to investigate the dynamics of desorption and sputtering due to electron capture by slow multicharged ions. Anisotropic distributions in the proton emissions for glancing-incidence collisions were observed. It was found in the simultaneous TOF-SIMS and LEIS measurement that potential sputtering of protons induced by electron capture is followed by elastic scattering between projectile ions and surface atoms in the first and second layers. The mean velocity, parallel to the surface, of sputtered substrate atoms were almost independent on charge state of incident ions. The measurements of mean velocity, perpendicular to the surface, of sputtered substrate atoms are now in progress.

13 Acknowledgements This work was supported by a Grant-in-Aid for Scientific Research (B) (193616) and Reimei Research project of Japan Atomic Energy Agency (JAEA). I would like to thank Prof. S. Tsurubuchi, Prof. Y. Yamazaki, Dr.Y.Kanai,Dr.M.Flores,Dr.Y.Saitoh,andDr.S.Kitazawa for fruitful discussion and assistance. Thank you for your attention.

Nanostructures induced by highly charged ions

Nanostructures induced by highly charged ions Nanostructures induced by highly charged ions R. Heller, R. Wilhelm, A. S. ElSaid, S. Facsko Institute for Ion Beam Physics and Materials Research in cooperation with: group of F. Aumayr: W. Meissl, G.

More information

POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER. Paul Coleman University of Bath

POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER. Paul Coleman University of Bath POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER Paul Coleman University of Bath THE FATE OF POSITRONS IN CONDENSED MATTER POSITRON-SURFACE INTERACTIONS positron backscattering BACKSCATTERED

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Rutherford Backscattering Spectrometry

Rutherford Backscattering Spectrometry Rutherford Backscattering Spectrometry EMSE-515 Fall 2005 F. Ernst 1 Bohr s Model of an Atom existence of central core established by single collision, large-angle scattering of alpha particles ( 4 He

More information

ECE Semiconductor Device and Material Characterization

ECE Semiconductor Device and Material Characterization ECE 4813 Semiconductor Device and Material Characterization Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology As with all of these lecture slides, I am indebted

More information

Electron Rutherford Backscattering, a versatile tool for the study of thin films

Electron Rutherford Backscattering, a versatile tool for the study of thin films Electron Rutherford Backscattering, a versatile tool for the study of thin films Maarten Vos Research School of Physics and Engineering Australian National University Canberra Australia Acknowledgements:

More information

Interaction of ion beams with matter

Interaction of ion beams with matter Interaction of ion beams with matter Introduction Nuclear and electronic energy loss Radiation damage process Displacements by nuclear stopping Defects by electronic energy loss Defect-free irradiation

More information

Depth Distribution Functions of Secondary Electron Production and Emission

Depth Distribution Functions of Secondary Electron Production and Emission Depth Distribution Functions of Secondary Electron Production and Emission Z.J. Ding*, Y.G. Li, R.G. Zeng, S.F. Mao, P. Zhang and Z.M. Zhang Hefei National Laboratory for Physical Sciences at Microscale

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

Electron Spectroscopy

Electron Spectroscopy Electron Spectroscopy Photoelectron spectroscopy is based upon a single photon in/electron out process. The energy of a photon is given by the Einstein relation : E = h ν where h - Planck constant ( 6.62

More information

Positron Annihilation Spectroscopy - A non-destructive method for material testing -

Positron Annihilation Spectroscopy - A non-destructive method for material testing - Maik Butterling Institute of Radiation Physics http://www.hzdr.de Positron Annihilation Spectroscopy - A non-destructive method for material testing - Maik Butterling Positron Annihilation Spectroscopy

More information

Study of semiconductors with positrons. Outlook:

Study of semiconductors with positrons. Outlook: Study of semiconductors with positrons V. Bondarenko, R. Krause-Rehberg Martin-Luther-University Halle-Wittenberg, Halle, Germany Introduction Positron trapping into defects Methods of positron annihilation

More information

Detekce a spektrometrie neutronů. neutron detection and spectroscopy

Detekce a spektrometrie neutronů. neutron detection and spectroscopy Detekce a spektrometrie neutronů neutron detection and spectroscopy 1. Slow neutrons 2. Fast neutrons 1 1. Slow neutrons neutron kinetic energy E a) charged particles are produced, protons, α particle,

More information

A.5. Ion-Surface Interactions A.5.1. Energy and Charge Dependence of the Sputtering Induced by Highly Charged Xe Ions T. Sekioka,* M. Terasawa,* T.

A.5. Ion-Surface Interactions A.5.1. Energy and Charge Dependence of the Sputtering Induced by Highly Charged Xe Ions T. Sekioka,* M. Terasawa,* T. A.5. Ion-Surface Interactions A.5.1. Energy and Charge Dependence of the Sputtering Induced by Highly Charged Xe Ions T. Sekioka,* M. Terasawa,* T. Mitamura,* M.P. Stöckli, U. Lehnert, and D. Fry The interaction

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

IV. Surface analysis for chemical state, chemical composition

IV. Surface analysis for chemical state, chemical composition IV. Surface analysis for chemical state, chemical composition Probe beam Detect XPS Photon (X-ray) Photoelectron(core level electron) UPS Photon (UV) Photoelectron(valence level electron) AES electron

More information

Excitation to kinetic energy transformation in colliding hydrogen and argon atoms

Excitation to kinetic energy transformation in colliding hydrogen and argon atoms Excitation to kinetic energy transformation in colliding hydrogen and argon atoms March 14, 2014 W. Schott 1, S. Paul 1, M. Berger 1, R. Emmerich 1, R. Engels 2, T. Faestermann 1, P. Fierlinger 3, M. Gabriel

More information

Auger Electron Spectroscopy

Auger Electron Spectroscopy Auger Electron Spectroscopy Auger Electron Spectroscopy is an analytical technique that provides compositional information on the top few monolayers of material. Detect all elements above He Detection

More information

Potential sputtering

Potential sputtering 1.198/rsta.23.13 Potential sputtering By Friedrich Aumayr and Hannspeter Winter Institut für Allgemeine Physik, Technische Universität Wien, Wiedner Hauptstrasse 8 1, 14 Vienna, Austria (aumayr@iap.tuwien.ac.at)

More information

Lewis 2.1, 2.2 and 2.3

Lewis 2.1, 2.2 and 2.3 Chapter 2(and 3) Cross-Sections TA Lewis 2.1, 2.2 and 2.3 Learning Objectives Understand different types of nuclear reactions Understand cross section behavior for different reactions Understand d resonance

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

Slowing down the neutrons

Slowing down the neutrons Slowing down the neutrons Clearly, an obvious way to make a reactor work, and to make use of this characteristic of the 3 U(n,f) cross-section, is to slow down the fast, fission neutrons. This can be accomplished,

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS)

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS) 5.16 Incident Ion Techniques for Surface Composition Analysis 5.16.1 Ion Scattering Spectroscopy (ISS) At moderate kinetic energies (few hundred ev to few kev) ion scattered from a surface in simple kinematic

More information

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky

Secondary Ion Mass Spectrometry (SIMS) Thomas Sky 1 Secondary Ion Mass Spectrometry (SIMS) Thomas Sky Depth (µm) 2 Characterization of solar cells 0,0 1E16 1E17 1E18 1E19 1E20 0,2 0,4 0,6 0,8 1,0 1,2 P Concentration (cm -3 ) Characterization Optimization

More information

Sunday Monday Thursday. Friday

Sunday Monday Thursday. Friday Nuclear Structure III experiment Sunday Monday Thursday Low-lying excited states Collectivity and the single-particle degrees of freedom Collectivity studied in Coulomb excitation Direct reactions to study

More information

Detector Array for Low Intensity radiation. DALI and DALI2. S.Takeuchi, T.Motobayashi. Heavy Ion Nuclear Physics Laboratory, RIKEN

Detector Array for Low Intensity radiation. DALI and DALI2. S.Takeuchi, T.Motobayashi. Heavy Ion Nuclear Physics Laboratory, RIKEN Detector Array for Low Intensity radiation DALI and DALI2 S.Takeuchi, T.Motobayashi Heavy Ion Nuclear Physics Laboratory, RIKEN H.Murakami, K.Demichi, H.Hasegawa, Y.Togano Department of Physics, Rikkyo

More information

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications Philip D. Rack,, Jason D. Fowlkes,, and Yuepeng Deng Department of Materials Science and Engineering University

More information

Physics 100 PIXE F06

Physics 100 PIXE F06 Introduction: Ion Target Interaction Elastic Atomic Collisions Very low energies, typically below a few kev Surface composition and structure Ion Scattering spectrometry (ISS) Inelastic Atomic Collisions

More information

PHYS 5012 Radiation Physics and Dosimetry

PHYS 5012 Radiation Physics and Dosimetry Radiative PHYS 5012 Radiation Physics and Dosimetry Mean Tuesday 24 March 2009 Radiative Mean Radiative Mean Collisions between two particles involve a projectile and a target. Types of targets: whole

More information

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321 Neutron Interactions Part I Rebecca M. Howell, Ph.D. Radiation Physics rhowell@mdanderson.org Y2.5321 Why do we as Medical Physicists care about neutrons? Neutrons in Radiation Therapy Neutron Therapy

More information

ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS

ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS 302 ABNORMAL X-RAY EMISSION FROM INSULATORS BOMBARDED WITH LOW ENERGY IONS M. Song 1, K. Mitsuishi 1, M. Takeguchi 1, K. Furuya 1, R. C. Birtcher 2 1 High Voltage Electron Microscopy Station, National

More information

QUESTIONS AND ANSWERS

QUESTIONS AND ANSWERS QUESTIONS AND ANSWERS (1) For a ground - state neutral atom with 13 protons, describe (a) Which element this is (b) The quantum numbers, n, and l of the inner two core electrons (c) The stationary state

More information

D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA

D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA L. Torrisi 1, M. Cutroneo, S. Cavallaro 1 and J. Ullschmied 3 1 Physics Department, Messina University, V.le S. D Alcontres

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) ELEC-L3211 Postgraduate Course in Micro and Nanosciences Department of Micro and Nanosciences Personal motivation and experience on SIMS Offers the possibility to

More information

IONTOF. Latest Developments in 2D and 3D TOF-SIMS Analysis. Surface Analysis Innovations and Solutions for Industry 2017 Coventry

IONTOF. Latest Developments in 2D and 3D TOF-SIMS Analysis. Surface Analysis Innovations and Solutions for Industry 2017 Coventry Latest Developments in 2D and 3D TOF-SIMS Analysis Surface Analysis Innovations and Solutions for Industry 2017 Coventry 12.10.2017 Matthias Kleine-Boymann Regional Sales Manager matthias.kleine-boymann@iontof.com

More information

Atomic Collisions and Backscattering Spectrometry

Atomic Collisions and Backscattering Spectrometry 2 Atomic Collisions and Backscattering Spectrometry 2.1 Introduction The model of the atom is that of a cloud of electrons surrounding a positively charged central core the nucleus that contains Z protons

More information

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) Secondary Ion Mass Spectroscopy (SIMS) Analyzing Inorganic Solids * = under special conditions ** = semiconductors only + = limited number of elements or groups Analyzing Organic Solids * = under special

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS. Byungha Shin Dept. of MSE, KAIST

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS. Byungha Shin Dept. of MSE, KAIST 2015 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-ray Photoelectron Spectroscopy Introduction Qualitative analysis Quantitative analysis Charging compensation Small area analysis and XPS imaging

More information

Institut für Experimentalphysik, Johannes Kepler Universität Linz, A-4040 Linz, Austria.

Institut für Experimentalphysik, Johannes Kepler Universität Linz, A-4040 Linz, Austria. On the Surface Sensitivity of Angular Scans in LEIS D. Primetzhofer a*, S.N. Markin a, R. Kolarova a, M. Draxler a R. Beikler b, E. Taglauer b and P. Bauer a a Institut für Experimentalphysik, Johannes

More information

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy Introduction Principles Instrumentation Qualitative analysis Quantitative analysis Depth profiling Mapping Examples The Auger

More information

Quantitative Low Energy Ion Scattering: achievements and challenges

Quantitative Low Energy Ion Scattering: achievements and challenges Quantitative Low Energy Ion Scattering: achievements and challenges Peter Bauer Institute for Experimental Physics Atomic Physics and Surface Science Johannes Kepler University Linz, Austria Intro Low

More information

Low Energy Nuclear Fusion Reactions in Solids

Low Energy Nuclear Fusion Reactions in Solids Kasagi, J., et al. Low Energy Nuclear Fusion Reactions in Solids. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna, Italy. Low Energy Nuclear

More information

Angular Distribution Measurements of Sputtered Particles at UCSD

Angular Distribution Measurements of Sputtered Particles at UCSD Angular Distribution Measurements of Sputtered Particles at UCSD Presented by Russ Doerner for Jonathan Yu, Edier Oyarzabal and Daisuke Nishijima QMS measurements in unmagnetized plasma Moly Carbon clusters

More information

The interaction of radiation with matter

The interaction of radiation with matter Basic Detection Techniques 2009-2010 http://www.astro.rug.nl/~peletier/detectiontechniques.html Detection of energetic particles and gamma rays The interaction of radiation with matter Peter Dendooven

More information

Basics and Means of Positron Annihilation

Basics and Means of Positron Annihilation Basics and Means of Positron Annihilation Positron history Means of positron annihilation positron lifetime spectroscopy angular correlation Doppler-broadening spectroscopy Near-surface positron experiments:

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

Fundamentals of Nanoscale Film Analysis

Fundamentals of Nanoscale Film Analysis Fundamentals of Nanoscale Film Analysis Terry L. Alford Arizona State University Tempe, AZ, USA Leonard C. Feldman Vanderbilt University Nashville, TN, USA James W. Mayer Arizona State University Tempe,

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

Light element IBA by Elastic Recoil Detection and Nuclear Reaction Analysis R. Heller

Light element IBA by Elastic Recoil Detection and Nuclear Reaction Analysis R. Heller Text optional: Institute Prof. Dr. Hans Mousterian www.fzd.de Mitglied der Leibniz-Gemeinschaft Light element IBA by Elastic Recoil Detection and Nuclear Reaction Analysis R. Heller IBA Techniques slide

More information

Inelastic soft x-ray scattering, fluorescence and elastic radiation

Inelastic soft x-ray scattering, fluorescence and elastic radiation Inelastic soft x-ray scattering, fluorescence and elastic radiation What happens to the emission (or fluorescence) when the energy of the exciting photons changes? The emission spectra (can) change. One

More information

Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis

Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis Birck Nanotechnology Center XPS: X-ray Photoelectron Spectroscopy ESCA: Electron Spectrometer for Chemical Analysis Dmitry Zemlyanov Birck Nanotechnology Center, Purdue University Outline Introduction

More information

ToF-SIMS or XPS? Xinqi Chen Keck-II

ToF-SIMS or XPS? Xinqi Chen Keck-II ToF-SIMS or XPS? Xinqi Chen Keck-II 1 Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) Not ToF MS (laser, solution) X-ray Photoelectron Spectroscopy (XPS) 2 3 Modes of SIMS 4 Secondary Ion Sputtering

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 2: UPS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Characterization of Secondary Emission Materials for Micro-Channel Plates. S. Jokela, I. Veryovkin, A. Zinovev

Characterization of Secondary Emission Materials for Micro-Channel Plates. S. Jokela, I. Veryovkin, A. Zinovev Characterization of Secondary Emission Materials for Micro-Channel Plates S. Jokela, I. Veryovkin, A. Zinovev Secondary Electron Yield Testing Technique We have incorporated XPS, UPS, Ar-ion sputtering,

More information

ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS

ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS 390 ELECTRIC FIELD INFLUENCE ON EMISSION OF CHARACTERISTIC X-RAY FROM Al 2 O 3 TARGETS BOMBARDED BY SLOW Xe + IONS J. C. Rao 1, 2 *, M. Song 2, K. Mitsuishi 2, M. Takeguchi 2, K. Furuya 2 1 Department

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) Lasse Vines 1 Secondary ion mass spectrometry O Zn 10000 O 2 Counts/sec 1000 100 Li Na K Cr ZnO 10 ZnO 2 1 0 20 40 60 80 100 Mass (AMU) 10 21 10 20 Si 07 Ge 0.3 Atomic

More information

PHYS 571 Radiation Physics

PHYS 571 Radiation Physics PHYS 571 Radiation Physics Prof. Gocha Khelashvili http://blackboard.iit.edu login Interaction of Electrons with Matter The Plan Interactions of Electrons with Matter Energy-Loss Mechanism Collisional

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

Towards surface experiments at HITRAP

Towards surface experiments at HITRAP Towards surface experiments at HITRAP Erwin Bodewits, H. Bekker, A.J. de Nijs, D.Winklehner, B.Daniel, G. Kowarik, K. Dobes, F. Aumayr and Ronnie Hoekstra atomic physics HITRAP - GSI Introduction Facility

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1 st excited state in 31 S

Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1 st excited state in 31 S Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1 st excited state in 31 S Clemens Herlitzius TU München (E12) Prof. Shawn Bishop Clemens Herlitzius,

More information

Stellar Astrophysics: The Interaction of Light and Matter

Stellar Astrophysics: The Interaction of Light and Matter Stellar Astrophysics: The Interaction of Light and Matter The Photoelectric Effect Methods of electron emission Thermionic emission: Application of heat allows electrons to gain enough energy to escape

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Plasma collisions and conductivity

Plasma collisions and conductivity e ion conductivity Plasma collisions and conductivity Collisions in weakly and fully ionized plasmas Electric conductivity in non-magnetized and magnetized plasmas Collision frequencies In weakly ionized

More information

1 The pion bump in the gamma reay flux

1 The pion bump in the gamma reay flux 1 The pion bump in the gamma reay flux Calculation of the gamma ray spectrum generated by an hadronic mechanism (that is by π decay). A pion of energy E π generated a flat spectrum between kinematical

More information

Fig 1: Auger Electron Generation (a) Step 1 and (b) Step 2

Fig 1: Auger Electron Generation (a) Step 1 and (b) Step 2 Auger Electron Spectroscopy (AES) Physics of AES: Auger Electrons were discovered in 1925 but were used in surface analysis technique in 1968. Auger Electron Spectroscopy (AES) is a very effective method

More information

Photon transport mode in Serpent 2

Photon transport mode in Serpent 2 Photon transport mode in Serpent 2 Toni Kaltiaisenaho VTT Technical Research Centre of Finland, LTD Serpent User Group Meeting, Knoxville, TN October 13 16, 215 October 14, 215 1/21 Outline Photon physics

More information

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002)

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002) The Compton Effect Martha Buckley MIT Department of Physics, Cambridge, MA 02139 marthab@mit.edu (Dated: November 26, 2002) We measured the angular dependence of the energies of 661.6 kev photons scattered

More information

Scattering of Xe from graphite. Abstract

Scattering of Xe from graphite. Abstract Scattering of Xe from graphite W. W. Hayes and J. R. Manson Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA (Dated: November 22, 2010) Abstract Recently a series of experimental

More information

Electron momentum spectroscopy of metals

Electron momentum spectroscopy of metals Electron momentum spectroscopy of metals M. Vos, A.S. Kheifets and E. Weigold Atomic and Molecular Physics Laboratories, Research School of Physical Sciences and Engineering, Australian, National University

More information

INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017

INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017 INTRODUCTION TO MEDICAL PHYSICS 1 Quiz #1 Solutions October 6, 2017 This is a closed book examination. Adequate information is provided you to solve all problems. Be sure to show all work, as partial credit

More information

Positron-Electron Annihilation

Positron-Electron Annihilation Positron-Electron Annihilation Carl Akerlof September 13, 008 1. Introduction This experiment attempts to explore several features of positron-electron annihilation. One of the attractive aspects of e

More information

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles Decays and Scattering Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles 1 Decay Rates There are THREE experimental probes of Elementary Particle Interactions - bound states

More information

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract This work was performed under the auspices of the U.S. Department of Energy by under contract DE-AC52-7NA27344. Lawrence Livermore National Security, LLC The ITER tokamak Tungsten (W) is attractive as

More information

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS

DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN THICK MATERIALS Copyright JCPDS - International Centre for Diffraction Data 2004, Advances in X-ray Analysis, Volume 47. 59 DEVELOPMENT OF A NEW POSITRON LIFETIME SPECTROSCOPY TECHNIQUE FOR DEFECT CHARACTERIZATION IN

More information

Quantum beat spectroscopy as a probe of angular momentum polarization in chemical processes. Mark Brouard

Quantum beat spectroscopy as a probe of angular momentum polarization in chemical processes. Mark Brouard Quantum beat spectroscopy as a probe of angular momentum polarization in chemical processes. Mark Brouard The Department of Chemistry Oxford University Gas Kinetics Meeting, Leeds, September 2007 The Pilling

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Application of positrons in materials research

Application of positrons in materials research Application of positrons in materials research Trapping of positrons at vacancy defects Using positrons, one can get defect information. R. Krause-Rehberg and H. S. Leipner, Positron annihilation in Semiconductors,

More information

Weak decay of hypernuclei with FINUDA. Alessandro Feliciello I.N.F.N. - Sezione di Torino

Weak decay of hypernuclei with FINUDA. Alessandro Feliciello I.N.F.N. - Sezione di Torino Weak decay of hypernuclei with FINUDA Alessandro Feliciello I.N.F.N. - Sezione di Torino 2 Outlook Introduction The FINUDA experiment Weak decay of hypernuclei mesonic nucleon stimulated rare decay channels

More information

ELECTRON IMPACT IONIZATION OF HELIUM [(e,2e) & (e,3e)] INVESTIGATED WITH COLD TARGET RECOIL-ION MOMENTUM SPECTROSCOPY

ELECTRON IMPACT IONIZATION OF HELIUM [(e,2e) & (e,3e)] INVESTIGATED WITH COLD TARGET RECOIL-ION MOMENTUM SPECTROSCOPY ELECTRON IMPACT IONIZATION OF HELIUM [(e,2e) & (e,3e)] INVESTIGATED WITH COLD TARGET RECOIL-ION MOMENTUM SPECTROSCOPY E. Erturk, 1 L. Spielberger, 1 M. Achler, 1 L. Schmidt, 1 R. Dorner, 1 Th. Weber, 1

More information

Today, I will present the first of two lectures on neutron interactions.

Today, I will present the first of two lectures on neutron interactions. Today, I will present the first of two lectures on neutron interactions. I first need to acknowledge that these two lectures were based on lectures presented previously in Med Phys I by Dr Howell. 1 Before

More information

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses 2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass Photonic Glass Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses Takumi FUJIWARA Tohoku University Department

More information

Nuclear Alpha-Particle Condensation

Nuclear Alpha-Particle Condensation Nuclear Alpha-Particle Condensation 40 Ca+ 12 C, 25 AMeV with CHIMERA First experimental evidence of alpha-particle condensation for the Hoyle state Ad. R. Raduta, B.Borderie, N. Le Neindre, E. Geraci,

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Simulation of the cathode surface damages in a HOPFED during ion bombardment

Simulation of the cathode surface damages in a HOPFED during ion bombardment Simulation of the cathode surface damages in a HOPFED during ion bombardment Hongping Zhao, Wei Lei, a Xiaobing Zhang, Xiaohua Li, and Qilong Wang Department of Electronic Engineering, Southeast University,

More information

HiRA: Science and Design Considerations

HiRA: Science and Design Considerations HiRA: Science and Design Considerations Scientific Program: Astrophysics: Transfer reactions Resonance spectroscopy Nuclear Structure: Inelastic scattering Transfer reactions Resonance spectroscopy Breakup

More information

Noncentral collisions

Noncentral collisions Noncentral collisions Projectile Target QT E* MRS QP E* MRS: L. Gingras et al., Phys. Rev. C 65, 061604(2002) Noncentral collisions The IVS source Velocity distributions (LAB) for the 40 Ca + 40 Ca reaction

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

nuclear states nuclear stability

nuclear states nuclear stability nuclear states 1 nuclear stability 2 1 nuclear chart 3 nuclear reactions Important concepts: projectile (A) target (B) residual nuclei (C+D) q-value of a reaction Notations for the reaction B(A,C)D A+B

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

Nonstatistical fluctuations for deep inelastic processes

Nonstatistical fluctuations for deep inelastic processes Nonstatistical fluctuations for deep inelastic processes in 27 Al + 27 Al collision Introduction Experimental procedures Cross section excitation functions (EFs) 1. Statistical analysis (a) Energy autocorrelation

More information

Overview of scattering, diffraction & imaging in the TEM

Overview of scattering, diffraction & imaging in the TEM Overview of scattering, diffraction & imaging in the TEM Eric A. Stach Purdue University Scattering Electrons, photons, neutrons Radiation Elastic Mean Free Path (Å)( Absorption Length (Å)( Minimum Probe

More information

EELS, Surface Plasmon and Adsorbate Vibrations

EELS, Surface Plasmon and Adsorbate Vibrations EELS, Surface Plasmon and Adsorbate Vibrations Ao Teng 2010.10.11 Outline I. Electron Energy Loss Spectroscopy(EELS) and High Resolution EELS (HREELS) II. Surface Plasmon III. Adsorbate Vibrations Surface

More information

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering .101 Applied Nuclear Physics (Fall 006) Lecture 19 (11//06) Gamma Interactions: Compton Scattering References: R. D. Evans, Atomic Nucleus (McGraw-Hill New York, 1955), Chaps 3 5.. W. E. Meyerhof, Elements

More information