Scintillation detectors

Size: px
Start display at page:

Download "Scintillation detectors"

Transcription

1 25 de dx Scintillation detectors excitation L25.pdf P627 YK 3/14/2012 detectable photons also by UV, or molecular collisions, chem. reactions, bubbles. etc. Detector building requirements (sometimes controversial): High conversion efficiency Linearity Transparency to own light collection efficiency Fast time response (pulse) Convenient material for custom applications: high/low Z, different sizes etc. Low radiation damage effect Matching with glass interface Non-organic, e.g. NaI(Tl) crystal (standard): ~ 25 ev/ e.g. BGO crystal (Bi 4 Ge 3 O 12 ) ~ 300 ev/ Organic, e.g. anthracene C 14 H 10 crystal (standard): ~ 61 ev/ Plastic e.g. based on polystyrene (or PMMA) ~ 100 ev/ Liquid Scint., Loaded Scint., etc. Classical book: J.B. Birks, The theory and practice of scintillation counting, Pergamon Press, Oxford 1964; See also PDG; G. Knoll, Chapter 8. 1

2 Luminescence-Phosphorescence-Fluorescence 2

3 t I I0e t Absorption/ emission Stokes shift ~ ns ~ ms larger Absorption / emission Stokes shift Stokes shift 3

4 Energy/excitation transfer Energy transfer in binary systems via molecular collisions, Forster mechanism. With sufficient number of fluor scintillator components wavelength shifting is possible 4

5 Energy/excitation transfer E.g. in KamLAND Liquid Scintillator: Dodecane 80% Pseudocumene 20% 1.5 g/l PPO Initial excitation Energy transferred by emission and reabsorption, and by molecular collisions Forster mechanism. Detectable PPO emission PPO excitation PPO emission KamLAND LS: Efficiency ~ 70% of anthracene; ~ 100 ev per detectable ; Emission components: ~60% with ~ few nsec ~30% with ~ 20 nsec ~10% with longer ~375 nm Scintillator emission spectrum 5

6 In scintillation detectors all kinds of de-excitations are possible leading to quenching Birks law: dl dx L 0 1 de k B dx de dx ; L light output kb Birks coefficient L 0 constant 6

7 (Visible Energy)/(Real Energy) Stopping Power, MeV/g/cm2 Birks k B in KamLAND scintillator SRIM: in KamLAND LS with H/C=1.969 and =0.78 g/cm electronic nuclear Energy, MeV 0.09 kb= Real Energy, MeV L 0 dl = ò ( kb ) dx E a de de dx 7

8 Measured -response in KamLAND is non-linear: Two sources of non-linearity: (a) Birks quenching (same k B for all particles e,, p, (?) (b) Emission of Cherenkov radiation that can be detected directly in the visible range or from UV range in a process of absorption - reemission Lvis = L int ( k ) + R * L E g real Sc B Cher can be calculated if n( ) is known 8

9 Properties of organic/plastic scintillators (from Knoll) 9

10 Timing properties of some fast plastic scintillators -t t -t t1 ( ) I = I e -e 0 1 -t t 0 ; t-decay, t -level population (8.10) I = I f( t) e (8.11) De-excitation timing can be different for different primary particles pulse-shape discrimination (PSD) methods used e.g. neutron/gamma discrimination Problem: propose the scheme of measurement and the procedure that would separate the neutrons and gammas by PSD in the scintillation detector 10

11 Light transport, total internal reflection, gluing, wrapping Due to Liouville's theorem, the total area of the cross-section along a light guide cannot be reduced without light losses. For changes in direction a maximum bending (minimal bending radius) should be chosen according to the relation ( ) 2 n 2-1 ³ d 2 r + 1 where: d diameter of fiber (or light guide), r bending radius, n relative refractive index. With a radius chosen according to the relation given above, all light entering the plane front surface of a light guide is transported due to total reflection. Superior reflector wrap: ESR (Enhanced Specular Reflector) VM2000 film by 3M [St. Paul, MN] Twisted guides PMT 11

12 in experiment D0 at Fermilab 12

13 Scintillating and wavelength shifting fibers (SF and WLSF) 13

14 WLS fibers use in NOvA experiment at Fermilab 14

15 Inorganic scintillators produced by industry 15

16 Inorganic scintillators (crystals) Scintillation mechanism is different since there is no big molecules with vibrational degrees of freedom. Crystals are dielectrics or insulators with quite large gap between valence and conducting bands. Usually large excitations are involved, e.g. 7 ev that corresponds to 170 nm UV light. NaI (crystal) is an excellent scintillator; but water solution of NaI is not a scintillator. 16

17 Inorganic Scintillation Properties: 17

18 Properties of inorganic scintillators (from Knoll) 18

19 PDG 19

20 Emission time of NaI(Tl) and BGO 20

21 NaI(Tl) detector performance 21

22 Temperature dependence of light yield for some inorganic crystals Noble gas scintillators Light emission of noble gases can be enhanced in the presence of electric filed! 22

SCINTILLATION DETECTORS AND PM TUBES

SCINTILLATION DETECTORS AND PM TUBES SCINTILLATION DETECTORS AND PM TUBES General Characteristics Introduction Luminescence Light emission without heat generation Scintillation Luminescence by radiation Scintillation detector Radiation detector

More information

05 - Scintillation detectors

05 - Scintillation detectors 05 - Scintillation detectors Jaroslav Adam Czech Technical University in Prague Version 2 Jaroslav Adam (CTU, Prague) DPD_05, Scintillation detectors Version 2 1 / 39 Scintillation detector principles

More information

Platinum resistance. also wirewound versions. eg

Platinum resistance. also wirewound versions. eg Platinum resistance Platinum resistance Very stable and reproducible, wide T range (~ -200 C to 1000 C) T coefficient ~ +0.4%/ C Bulky and expensive for some applications (~ 2-3) need wires (R) or local

More information

Week 6: Ch. 8 Scintillation Counters

Week 6: Ch. 8 Scintillation Counters Week 6: Ch. 8 cintillation Counters Proportional Counters Principles of cintillation Counters -- organic materials --- light production -- inorganic materials --- light production -- light output, collection

More information

Introduction to scintillators

Introduction to scintillators Introduction to scintillators M. Kobayashi (KEK) 17 November, 2003 1. Luminescence, fluorescence, scintillation, phosphorescence, etc. 2. Scintillation mechanism 3. Scintillation efficiency 4. Main characteristics

More information

Scintillation and Light Sensitive Detectors - I. Mark Chen Queen s University

Scintillation and Light Sensitive Detectors - I. Mark Chen Queen s University Scintillation and Light Sensitive Detectors - I Mark Chen Queen s University How Particles Produce Light charged particles can produce light in materials Čerenkov radiation scintillation in some materials

More information

Chapter 4 Scintillation Detectors

Chapter 4 Scintillation Detectors Med Phys 4RA3, 4RB3/6R03 Radioisotopes and Radiation Methodology 4-1 4.1. Basic principle of the scintillator Chapter 4 Scintillation Detectors Scintillator Light sensor Ionizing radiation Light (visible,

More information

Scintillators General Characteristics

Scintillators General Characteristics Scintillators General Characteristics Principle: de/dx converted into visible light Detection via photosensor [e.g. photomultiplier, human eye ] Main Features: Sensitivity to energy Fast time response

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors J.L. Tain Jose.Luis.Tain@ific.uv.es http://ific.uv.es/gamma/ Instituto de Física Corpuscular C.S.I.C - Univ. Valencia Scintillation detector: SCINTILLATION MATERIAL LIGHT-GUIDE

More information

Scintillation Detectors

Scintillation Detectors Radiation Measurement Systems Scintillation Detectors Ho Kyung Kim Pusan National University Scintillation detector = scintillator + light sensor Scintillators Inorganic alkali halide crystals Best light

More information

Survey of the performance of scintillation materials at low temperatures

Survey of the performance of scintillation materials at low temperatures Survey of the performance of scintillation materials at low temperatures Biswas Sharma University of Tennessee, Knoxville 4/5/2017 Particle Physics and Astro-Cosmology Seminar 1 Motivation Versatility

More information

Scintillators Definitions - 1!

Scintillators Definitions - 1! Scintillators! Scintillators Definitions - 1! Luminescence: Emission of photons (visible light, UV, X ray) after absorption of energy. Energy depostion in the material by! Light Photoluminescence! Heat

More information

Inorganic Scintillators

Inorganic Scintillators Inorganic Scintillators Inorganic scintillators are inorganic materials (usually crystals) that emit light in response to ionizing radiation NaI is the protypical example Scintillation mechanism is different

More information

Scintillation Detectors Particle Detection via Luminescence. Kolanoski, Wermes

Scintillation Detectors Particle Detection via Luminescence. Kolanoski, Wermes Scintillation Detectors Particle Detection via Luminescence Kolanoski, Wermes Scintillators General Characteristics Principle: de/dx converted into visible light Detection via photosensor [e.g. photomultiplier,

More information

Unit 2. Instrumentation. Experts Teaching from Practical Experience

Unit 2. Instrumentation. Experts Teaching from Practical Experience Unit 2 Instrumentation Experts Teaching from Practical Experience Gas-Filled Detectors Gas-filled detectors measure the charge released when radiation interacts with the gas Three types: Ion Chambers,

More information

Detector technology. Aim of this talk. Principle of a radiation detector. Interactions of gamma photons (gas) Gas-filled detectors: examples

Detector technology. Aim of this talk. Principle of a radiation detector. Interactions of gamma photons (gas) Gas-filled detectors: examples Aim of this tal Detector technology WMIC Educational Program Nuclear Imaging World Molecular Imaging Congress, Dublin, Ireland, Sep 5-8, 202 You can now the name of a bird in all the languages of the world,

More information

Scintillators. Detectors for Particle Physics Thomas Bergauer Institute of High Energy Physics, Vienna, Austria

Scintillators. Detectors for Particle Physics Thomas Bergauer Institute of High Energy Physics, Vienna, Austria Scintillators Detectors for Particle Physics Thomas Bergauer Institute of High Energy Physics, Vienna, Austria 5 Scintillators Content 5.1 General Introduction 5.2 Inorganic Scintillators 5.2.1 Inorganic

More information

Radionuclide Imaging MII Detection of Nuclear Emission

Radionuclide Imaging MII Detection of Nuclear Emission Radionuclide Imaging MII 3073 Detection of Nuclear Emission Nuclear radiation detectors Detectors that are commonly used in nuclear medicine: 1. Gas-filled detectors 2. Scintillation detectors 3. Semiconductor

More information

III. Energy Deposition in the Detector and Spectrum Formation

III. Energy Deposition in the Detector and Spectrum Formation 1 III. Energy Deposition in the Detector and Spectrum Formation a) charged particles Bethe-Bloch formula de 4πq 4 z2 e 2m v = NZ ( ) dx m v ln ln 1 0 2 β β I 0 2 2 2 z, v: atomic number and velocity of

More information

DETECTORS. I. Charged Particle Detectors

DETECTORS. I. Charged Particle Detectors DETECTORS I. Charged Particle Detectors A. Scintillators B. Gas Detectors 1. Ionization Chambers 2. Proportional Counters 3. Avalanche detectors 4. Geiger-Muller counters 5. Spark detectors C. Solid State

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

BSO Crystals for the HHCAL Detector Concept

BSO Crystals for the HHCAL Detector Concept BSO Crystals for the HHCAL Detector Concept Fan Yang 1, Hui Yuan 2, Liyuan Zhang 1, Ren-Yuan Zhu 1 1 California Institute of Technology 2 Shanghai Institute of Ceramics 1 Homogeneous Hadronic Calorimeter

More information

Gamma Spectroscopy. References: Objectives:

Gamma Spectroscopy. References: Objectives: Gamma Spectroscopy References: G.F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, New York, 2000) W. R. Leo, Techniques for Nuclear and Particle Physics Experiments: A How-to Approach,

More information

Study of absorption and re-emission processes in a ternary liquid scintillation system *

Study of absorption and re-emission processes in a ternary liquid scintillation system * CPC(HEP & NP), 2010, 34(11): 1724 1728 Chinese Physics C Vol. 34, No. 11, Nov., 2010 Study of absorption and re-emission processes in a ternary liquid scintillation system * XIAO Hua-Lin( ) 1;1) LI Xiao-Bo(

More information

Overview of Scintillation Systems

Overview of Scintillation Systems Overview of Scintillation Systems ANT 11 Daniel Bick October 11, 2011 Daniel Bick (Universität Hamburg) ANT 11 October 11, 2011 1 / 21 Outline 1 Motivation 2 Scintillator Requirements for LENA 3 Different

More information

Acronyms, Abbreviations, and Symbols Foreword to the First Edition Foreword to the Second Edition Preface to the First Edition Preface to the Second

Acronyms, Abbreviations, and Symbols Foreword to the First Edition Foreword to the Second Edition Preface to the First Edition Preface to the Second Contributors p. xxix Acronyms, Abbreviations, and Symbols p. xxxi Foreword to the First Edition p. xliii Foreword to the Second Edition p. xlv Preface to the First Edition p. xlvii Preface to the Second

More information

Liquid Scintillator Timing Property

Liquid Scintillator Timing Property Liquid Scintillator Timing Property Minfang Yeh Neutrino and Nuclear Chemistry, BNL MIT workshop, Dec 15, 2015 Main Neutrino Interactions in Scintillator + p ; KamLAND v e + 12 C e 12 B 12 C e v e v +

More information

PHYS 3446 Lecture #12

PHYS 3446 Lecture #12 PHYS 3446 Lecture #12 Wednesday, Oct. 18, 2006 Dr. 1. Particle Detection Ionization Detectors MWPC Scintillation Counters Time of Flight 1 Announcements Next LPCC Workshop Preparation work Each group to

More information

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung

Contents. Charged Particles. Coulomb Interactions Elastic Scattering. Coulomb Interactions - Inelastic Scattering. Bremsstrahlung Contents Marcel MiGLiERiNi Nuclear Medicine, Radiology and Their Metrological Aspects. Radiation in Medicine. Dosimetry 4. Diagnostics & Therapy 5. Accelerators in Medicine 6. Therapy Planning 7. Nuclear

More information

Non-proportionality of organic scintillators and BGO

Non-proportionality of organic scintillators and BGO Winston-Salem June 4, 2007 Non-proportionality of organic scintillators and BGO A. Nassalski, M. Moszyński, A. Syntfeld-Każuch, Ł. Świderski, T. Szczęśniak. The Soltan Institute for Nuclear Studies, PL

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement June 2008 Tom Lewellen Tkldog@u.washington.edu Types of radiation relevant to Nuclear Medicine Particle Symbol Mass (MeV/c 2 ) Charge Electron e-,! - 0.511-1 Positron

More information

Radiation Dose, Biology & Risk

Radiation Dose, Biology & Risk ENGG 167 MEDICAL IMAGING Lecture 2: Sept. 27 Radiation Dosimetry & Risk References: The Essential Physics of Medical Imaging, Bushberg et al, 2 nd ed. Radiation Detection and Measurement, Knoll, 2 nd Ed.

More information

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous? 2. Briefly discuss dead time in a detector. What factors are important

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 26 Radiation Detection & Measurement II Spiritual Thought 2 I would not hold the position in the Church I hold today had I not followed

More information

Chap. 19 Miscellaneous Detectors

Chap. 19 Miscellaneous Detectors Chap. 19 Miscellaneous Detectors Up to this point: Gas-filled detectors ion chambers, proportional counters, GM counters Scintillators organic, inorganic Semiconductor-based detectors Si or Ge Other possibilities:

More information

Lecture 16 Light transmission and optical detectors

Lecture 16 Light transmission and optical detectors Lecture 6 Light transmission and optical detectors Charged particle traversing through a material can generate signal in form of light via electromagnetic interactions with orbital electrons of the atoms

More information

Particle Detectors A brief introduction with emphasis on high energy physics applications

Particle Detectors A brief introduction with emphasis on high energy physics applications Particle Detectors A brief introduction with emphasis on high energy physics applications TRIUMF Summer Institute 2006 July 10-21 2006 Lecture I measurement of ionization and position Lecture II scintillation

More information

Scintillation Detector

Scintillation Detector Scintillation Detector Introduction The detection of ionizing radiation by the scintillation light produced in certain materials is one of the oldest techniques on record. In Geiger and Marsden s famous

More information

Test bench for measurements of NOvA scintillator properties at JINR D.S. Velikanova, 1 A.I. Antoshkin, 1 N.V. Anfimov, 1 O.B.

Test bench for measurements of NOvA scintillator properties at JINR D.S. Velikanova, 1 A.I. Antoshkin, 1 N.V. Anfimov, 1 O.B. Test bench for measurements of NOvA scintillator properties at JINR D.S. Velikanova, 1 A.I. Antoshkin, 1 N.V. Anfimov, 1 O.B. Samoylov 1 1 DLNP, JINR, Dubna, Russia ABSTRACT The NOvA experiment was built

More information

arxiv: v1 [physics.ins-det] 3 Feb 2011

arxiv: v1 [physics.ins-det] 3 Feb 2011 Nuclear Instruments and Methods in Physics Research A 00 (2018) 1 5 Alogo.pdf Nuclear Instruments and Methods in Physics Research A Scintillation decay time and pulse shape discrimination in oxygenated

More information

General Information. Individual Study Projects. Muon Lifetime Experiment. Today s Agenda. Wednesday: We have a few more slots to fill

General Information. Individual Study Projects. Muon Lifetime Experiment. Today s Agenda. Wednesday: We have a few more slots to fill General Information Individual Study Projects We have a few more slots to fill Muon Lifetime Experiment We can use the experiment until April 18 Monday, April 8 we will go over the setup and take a look

More information

Scintillators 1. YEAR, I. CYCLE. AUTHOR: BPhys. Manja Ščetinec ADVISOR/MENTOR: Prof. Boštjan Golob

Scintillators 1. YEAR, I. CYCLE. AUTHOR: BPhys. Manja Ščetinec ADVISOR/MENTOR: Prof. Boštjan Golob Scintillators SEMINAR 1. YEAR, I. CYCLE AUTHOR: BPhys. Manja Ščetinec ADVISOR/MENTOR: Prof. Boštjan Golob Faculty of Mathematics and Physics, University in Ljubljana Ljubljana, October 2017 Abstract In

More information

Synthesis of plastic scintillator. Ildefonso León Monzón Universidad Autónoma de Sinaloa

Synthesis of plastic scintillator. Ildefonso León Monzón Universidad Autónoma de Sinaloa Synthesis of plastic scintillator Ildefonso León Monzón Universidad Autónoma de Sinaloa MUON BUNDLE triggered by plastic scintillator modules from ACORDE Plastic Scintillator how does it work? Excitation

More information

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors

Radiation Detectors. How do we detect ionizing radiation? What are these effects? Types of Ionizing Radiation Detectors Radiation Detectors 1 How do we detect ionizing radiation? Indirectly, by its effects as it traverses matter? What are these effects? Ionization and excitation of the atoms and molecules Heat 2 Types of

More information

The DarkSide-50 Outer Detectors

The DarkSide-50 Outer Detectors The DarkSide-50 Outer Detectors Shawn Westerdale Princeton University (for the DarkSide Collaboration) TAUP 2015 Torino Thursday, Sept 10, 2015 The DarkSide-50 Experiment Located in Hall C of Laboratori

More information

Scintillation Detectors Particle Detection via Luminescence

Scintillation Detectors Particle Detection via Luminescence Scintillation Detectors Particle Detection via Luminescence Scintillators General Characteristics Principle: de/dx converted into visible light Detection via photosensor [e.g. photomultiplier, human eye...]

More information

Calibration and Monitoring for Crystal Calorimetry

Calibration and Monitoring for Crystal Calorimetry Calibration and Monitoring for Crystal Calorimetry CsI(Tl) Ren-yuan Zhu CALTECH BGO PWO SCINT03 Valencia, Spain Properties of Crystal Scintillators Crystal NaI(Tl) CsI(Tl) CsI BaF 2 BGO PbWO 4 LSO(Ce)

More information

Time-Resolved Liquid Scintillation Counting

Time-Resolved Liquid Scintillation Counting CHAPTER 44 Time-Resolved Liquid Scintillation Counting Norbert Roessler, Robert J. Valenta, and Stat van Cauter ABSTRACT A comparison is made between standard, two-tube coincidence liquid scintillation

More information

LENA Scintillator Development

LENA Scintillator Development LENA Scintillator Development ANT 09 University of Hawaii, Manoa August 14, 2009 Michael Wurm Outline Laboratory Measurements Light Emission Large-Scale Propagation Solvent/Solute Candidates Detector Performance

More information

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST /$ IEEE

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST /$ IEEE IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST 2008 2425 Optical and Scintillation Properties of Inorganic Scintillators in High Energy Physics Rihua Mao, Member, IEEE, Liyuan Zhang, Member,

More information

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002 More Quantum Physics We know now how to detect light (or photons) One possibility to detect

More information

So, you want to build a neutrino detector?

So, you want to build a neutrino detector? Neutrino Detectors So, you want to build a neutrino detector? How many events do you need to do the physics? Determines detector mass Determines the target type What kind of interaction? e,, CC, NC? What

More information

ZICOS - New project for neutrinoless double beta decay experiment using zirconium complex in liquid scintillator -

ZICOS - New project for neutrinoless double beta decay experiment using zirconium complex in liquid scintillator - ZICOS - New project for neutrinoless double beta decay experiment using zirconium complex in liquid scintillator - Yoshiyuki Fukuda Department of Physics, Faculty of Education, Miyagi University of Education,

More information

PHY492: Nuclear & Particle Physics. Lecture 25. Particle Detectors

PHY492: Nuclear & Particle Physics. Lecture 25. Particle Detectors PHY492: Nuclear & Particle Physics Lecture 25 Particle Detectors http://pdg.lbl.gov/2006/reviews/contents_sports.html S(T ) = dt dx nz = ρa 0 Units for energy loss Minimum ionization in thin solids Z/A

More information

Lecture # 3. Muhammad Irfan Asghar National Centre for Physics. First School on LHC physics

Lecture # 3. Muhammad Irfan Asghar National Centre for Physics. First School on LHC physics Lecture # 3 Muhammad Irfan Asghar National Centre for Physics Introduction Gaseous detectors Greater mobility of electrons Obvious medium Charged particles detection Particle information easily transformed

More information

Radioactivity. Lecture 6 Detectors and Instrumentation

Radioactivity. Lecture 6 Detectors and Instrumentation Radioactivity Lecture 6 Detectors and Instrumentation The human organs Neither humans nor animals have an organ for detecting radiation from radioactive decay! We can not hear it, smell it, feel it or

More information

3342 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 43, NO. 6, DECEMBER 1996

3342 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 43, NO. 6, DECEMBER 1996 3342 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 43, NO. 6, DECEMBER 1996 Characterization of Fluor Concentration and Geometry in Organic Scintillators for in Situ Beta Imaging Martin P. Tornai, Edward

More information

Chapter 6 Photoluminescence Spectroscopy

Chapter 6 Photoluminescence Spectroscopy Chapter 6 Photoluminescence Spectroscopy Course Code: SSCP 4473 Course Name: Spectroscopy & Materials Analysis Sib Krishna Ghoshal (PhD) Advanced Optical Materials Research Group Physics Department, Faculty

More information

Wavelength Shifters as (new) light sensors

Wavelength Shifters as (new) light sensors Wavelength Shifters as (new) light sensors Markus Voge, Marek Kowalski, Sebastian Böser (Bonn University, Bonn, Germany) PINGU workshop, Amsterdam, March 2011 The Goal Detection of (extra-galactic) supernova

More information

Radiation Detection. 15 th Annual OSC Readiness Training Program.

Radiation Detection. 15 th Annual OSC Readiness Training Program. Radiation Detection 15 th Annual OSC Readiness Training Program www.oscreadiness.org GM Detectors 15 th Annual OSC Readiness Training Program www.oscreadiness.org 1 A closer look 15 th Annual OSC Readiness

More information

arxiv: v1 [physics.ins-det] 17 Aug 2016

arxiv: v1 [physics.ins-det] 17 Aug 2016 Metal-loaded organic scintillators for neutrino physics arxiv:1608.04897v1 [physics.ins-det] 17 Aug 2016 Christian Buck Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany Minfang Yeh Brookhaven

More information

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7 Lecture 7 Chapter 3 Electromagnetic Theory, Photons. and Light Sources of light Emission of light by atoms The electromagnetic spectrum see supplementary material posted on the course website Electric

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors Lecture 2 2nd May 2014 Fergus Wilson, RAL 1/31 How do we detect particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

Week 7: Ch. 10 Spec. w/ Scintillation Ctrs. Photomultiplier Devices

Week 7: Ch. 10 Spec. w/ Scintillation Ctrs. Photomultiplier Devices Week 7: Ch. 0 Spec. w/ Scintillation Ctrs. multiplier Devices Spectroscopy with Scint. Counters -- gamma-ray interactions, reprise -- observed spectra --- spectral components, backscatter --- summing --

More information

Overview about the Work with Liquid Scintillators

Overview about the Work with Liquid Scintillators Overview about the Work with Liquid Scintillators Today: Experimental Setups to determine the properties of liquid scintillators Patrick Pfahler Research visit,rio de Janeiro 2007 Institute for astroparticle

More information

Inorganic scintillators. Geometries and readout

Inorganic scintillators. Geometries and readout Topics of this lecture K K Inorganic scintillators Organic scintillators K Geometries and readout K Fiber tracking K Photo detectors Particle Detectors Christian Joram III/1 Scintillation Scintillation

More information

Large Size LYSO Crystals for Future High Energy Physics Experiments

Large Size LYSO Crystals for Future High Energy Physics Experiments Large Size LYSO Crystals for Future High Energy Physics Experiments Jianming Chen, Liyuan Zhang, Ren-Yuan Zhu California Institute of Technology October 18, 2004 IEEE NSS04, Rome 1 Scintillating Crystals

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2006 Detector/Computer Summer Lecture Series Experiment

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors Introduction Components Scintillator Light Guides Photomultiplier Tubes Formalism/Electronics Timing Resolution Elton Smith JLab 2009 Detecto Summer Lecture Series Experiment basics

More information

Plastic Scintillation Detectors: Principle and Application to Radiosurgery

Plastic Scintillation Detectors: Principle and Application to Radiosurgery Plastic Scintillation Detectors: Principle and Application to Radiosurgery Luc Beaulieu Professor, Department of Physics, Université Laval Medical Physicist and Head of Research, Department of Radiation

More information

Simulation of optical processes in GEANT4. Ralph Dollan DESY - ZEUTHEN

Simulation of optical processes in GEANT4. Ralph Dollan DESY - ZEUTHEN Simulation of optical processes in GEANT4 Ralph Dollan DESY - ZEUTHEN Outline First part Results of experiments to measure the lightyield of two different material samples Second part Simulations of the

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

Nuclear Physics Laboratory. Gamma spectroscopy with scintillation detectors. M. Makek Faculty of Science Department of Physics

Nuclear Physics Laboratory. Gamma spectroscopy with scintillation detectors. M. Makek Faculty of Science Department of Physics Nuclear Physics Laboratory Gamma spectroscopy with scintillation detectors M. Makek Faculty of Science Department of Physics Zagreb, 2015 1 1 Introduction The goal of this excercise is to familiarize with

More information

Oddities of light production in the noble elements. James Nikkel

Oddities of light production in the noble elements. James Nikkel Oddities of light production in the noble elements James Nikkel 1 2 What is a scintillator? Particle with Energy Photons Stuff 3 What is a scintillator? We would like: Nphotons = Y Eincoming With Y as

More information

Studies of Hadron Calorimeter

Studies of Hadron Calorimeter Studies of Hadron Calorimeter Zhigang Wang Institute of High Energy Physics 2012.10.17 in IHEP Outline 1,The Dark Matter Calorimeter 2,The Hadron Calorimeter(HCAL) 3, Summary 1,Dark Matter Calorimeter

More information

Chemistry Instrumental Analysis Lecture 3. Chem 4631

Chemistry Instrumental Analysis Lecture 3. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 3 Quantum Transitions The energy of a photon can also be transferred to an elementary particle by adsorption if the energy of the photon exactly matches the

More information

2nd-Meeting. Ionization energy loss. Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers

2nd-Meeting. Ionization energy loss. Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers 2nd-Meeting Ionization energy loss Multiple Coulomb scattering (plural and single scattering, too) Tracking chambers #2 -Particle Physics Experiments at High Energy Colliders John Hauptman, Kyungpook National

More information

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY ABSORBED DOSE: The amount of energy absorbed, as a result of radiation passing through a material, per unit mass of material. Measured in rads (1 rad

More information

Geant4 simulations of the lead fluoride calorimeter

Geant4 simulations of the lead fluoride calorimeter Geant4 simulations of the lead fluoride calorimeter A.A. Savchenko a, *, A.A. Tishchenko a, S.B. Dabagov a,b, A. Anastasi b,c, G. Venanzoni b, M.N. Strikhanov a (et al.) a National Research Nuclear University

More information

Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration. Dark Matter 2016 UCLA 17th - 19th February 2016

Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration. Dark Matter 2016 UCLA 17th - 19th February 2016 Paolo Agnes Laboratoire APC, Université Paris 7 on behalf of the DarkSide Collaboration Dark Matter 2016 UCLA 17th - 19th February 2016 The DarkSide program 2 Double Phase Liquid Argon TPC, a staged approach:

More information

List of Nuclear Medicine Radionuclides. Nuclear Medicine Imaging Systems: The Scintillation Camera. Crystal and light guide

List of Nuclear Medicine Radionuclides. Nuclear Medicine Imaging Systems: The Scintillation Camera. Crystal and light guide Nuclear Medicine Imaging Systems: The Scintillation Camera List of Nuclear Medicine Radionuclides Tc99m 140.5 kev 6.03 hours I-131 364, 637 kev 8.06 days I-123 159 kev 13.0 hours I-125 35 kev 60.2 days

More information

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber CYRIC Annual Report 2001 V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber Kawata N. Baba M. Kato M.*, Miura T.**, and Yamadera A.***, Cyclotron and Radioisotope Center, Tohoku

More information

INORGANIC crystal scintillators are widely used in high

INORGANIC crystal scintillators are widely used in high 29 IEEE Nuclear Science Symposium Conference Record N32-5 Gamma Ray Induced Radiation Damage in and LSO/LYSO Crystals Rihua Mao, Member, IEEE, Liyuan Zhang, Member, IEEE, and Ren-Yuan Zhu, Senior Member,

More information

Calorimetry I Electromagnetic Calorimeters

Calorimetry I Electromagnetic Calorimeters Calorimetry I Electromagnetic Calorimeters Introduction Calorimeter: Detector for energy measurement via total absorption of particles... Also: most calorimeters are position sensitive to measure energy

More information

Seminar talks. Overall description of CLAS12 (Jefferson Lab) MAPS. Talks on Feb. 6 th, (Contact JR) (Contact TS)

Seminar talks. Overall description of CLAS12 (Jefferson Lab) MAPS. Talks on Feb. 6 th, (Contact JR) (Contact TS) Seminar talks Overall description of CLAS12 (Jefferson Lab) (Contact JR) MAPS (Contact TS) Talks on Feb. 6 th, 2015 Review old ionization detectors: Emulsion, Cloud chambers, Ionization chambers, Spark

More information

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p Introduction to Spectroscopy (Chapter 6) Electromagnetic radiation (wave) description: Wavelength λ Velocity v Electric Field Strength 0 Amplitude A Time t or Distance x Period p Frequency ν time for 1

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors 20th February 2007 Fergus Wilson, RAL 1 How do we detect Particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

Lectures Overview. Particle Detectors Detectors

Lectures Overview. Particle Detectors Detectors Lectures 12 Particle Detectors Dec 2006, Lecture 12 Nuclear Physics Lectures, Dr. Armin Reichold 1 11.1 Detectors For photons only 11.0 Overview Photomultiplier and APD For charged particles and photons

More information

PHYSICS nd TERM Outline Notes (continued)

PHYSICS nd TERM Outline Notes (continued) PHYSICS 2800 2 nd TERM Outline Notes (continued) Section 6. Optical Properties (see also textbook, chapter 15) This section will be concerned with how electromagnetic radiation (visible light, in particular)

More information

Radiation (Particle) Detection and Measurement

Radiation (Particle) Detection and Measurement Radiation (Particle) Detection and Measurement Radiation detection implies that the radiation interacts (e.g. leaves at least part of its energy) in the material. A specific material is chosen, because

More information

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold Jingke Xu, Princeton (now @LLNL) Sept 24, 2015 2015 LowECal Workshop, Chicago, IL Outline 1. Overview

More information

Quenchings in crystals!

Quenchings in crystals! Quenchings in crystals! Why are they important? Some Models Light Quenching (few comments) Ionization Quenching Measurements Jules Gascon! (IPNLyon, Université Lyon 1 + CNRS/IN2P3)! Quenching! Background

More information

The Mössbauer Effect

The Mössbauer Effect Experimental Physics V85.0112/G85.2075 The Mössbauer Effect Spring, 2005 Tycho Sleator, David Windt, and Burton Budick Goals The main goal of this experiment is to exploit the Mössbauer effect to measure

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors Lecture 2 17th February 2010 Fergus Wilson, RAL 1/31 How do we detect particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

Jerde, Peterson and Stein (1967) indicated that high-energy radiation

Jerde, Peterson and Stein (1967) indicated that high-energy radiation [RADIOCARBON, VOL 31, No. 3, 1989, P 332-341] LOW BACKGROUND LIQUID SCINTILLATION COUNTING USING AN ACTIVE SAMPLE HOLDER AND PULSE DISCRIMINATION ELECTRONICS JOHN E NOAKES Center for Applied Isotope Studies

More information

ORGANIC SCINTILLATORS

ORGANIC SCINTILLATORS RGANIC SCINTILLATRS Igor Nemchenok Contents 1. Scintillation method of the radiation and particles detection. 2. rganic scintillators. 2.1. Brief characteristic. 2.2. The nature of the molecular excited

More information

The 46g BGO bolometer

The 46g BGO bolometer Nature, 3 The g BGO bolometer 1 Photograph of the heat [g BGO] and light [Ge; =5 mm] bolometers: see Fig. 1c for description Current events: Amplification gains: 8, (heat channel) &, (light channel). The

More information

M.J. CIESLAK, K.A.A. GAMAGE Department of Engineering, Lancaster University Lancaster, LA1 4YW United Kingdom ABSTRACT

M.J. CIESLAK, K.A.A. GAMAGE Department of Engineering, Lancaster University Lancaster, LA1 4YW United Kingdom ABSTRACT PULSE SHAPE DISCRIMINATION CHARACTERISTICS OF STILBENE CRYSTAL, EJ-299-33 AND 6 Li LOADED PLASTIC SCINTILLATORS FOR A HIGH RESOLUTION CODED-APERTURE NEUTRON IMAGER M.J. CIESLAK, K.A.A. GAMAGE Department

More information

Particle Interactions in Detectors

Particle Interactions in Detectors Particle Interactions in Detectors Dr Peter R Hobson C.Phys M.Inst.P. Department of Electronic and Computer Engineering Brunel University, Uxbridge Peter.Hobson@brunel.ac.uk http://www.brunel.ac.uk/~eestprh/

More information

Scintillating Crystals and their Applications in Particle and Nuclear Physics November 17-18, 2003

Scintillating Crystals and their Applications in Particle and Nuclear Physics November 17-18, 2003 Scintillating Crystals and their Applications in Particle and Nuclear Physics November 17-18, 2003 Takayuki Yanagida, Hiromitsu Takahashi, Daisuke Kasama, Takeshi Ito, Hisako Niko, Motohide Kokubun, and

More information