COMPARISON OF ATOMIZERS

Size: px
Start display at page:

Download "COMPARISON OF ATOMIZERS"

Transcription

1 COMPARISON OF ATOMIZERS FOR ATOMIC ABSORPTION SPECTROSCOPY Introduction Atomic spectroscopic methods are all based on the interaction of light and analyte atoms in the gas phase. Thus, a common component of instruments used in atomic spectroscopy is the atomizer, which converts the analyte in the sample to vapor-phase free atoms that can interact with a light beam. The properties and efficiency of the atomizer is crucial in determining the characteristics of a atomic spectroscopic method. In this experiment, you will compare two methods based on atomic absorption in the gas phase: flame atomic absorption spectroscopy (FAAS) and graphite furnace atomic absorption spectroscopy (GFAAS). Specifically, you will compare the detection power (i.e., the ability to detect trace concentrations of analyte), the linear dynamic range and the measurement precision of these two techniques. You will also analyze the copper concentration in the laboratory tap water using both methods. Atomizers Most atomizers require that the sample be in the form of a solution; introduction of the solution into the atomizer is usually accomplished by a nebulizer, which converts the solution into a fine mist of small droplets. Vaporization of the sample requires thermal energy, so that the atomizer is essentially a reservoir where rapid and high-energy collisions occur between gaseous species. The following are the atomizers that have been used most commonly in atomic spectroscopy. combustion flame atomizers, in which a fuel is burned in the presence of an oxidant. The exothermic nature of the combustion reaction supplies the thermal energy needed to vaporize the solution droplets that are introduced by the nebulizer into the flame. Flame atomizers are used for both atomic absorption and emission spectroscopies, although the former application is more common. electrothermal atomizers. In this type of atomizer, the atomizer is a resistive element that is heated by the passage of a large current. The most common electrothermal atomizer by far is the graphite furnace atomizer, in which the heating element is a graphite tube. The sample is introduced directly (usually as a solution) into the graphite tube. Electrothermal atomizers are used almost exclusively for atomic absorption spectroscopy. plasma atomizers. A plasma can be defined simply as a hot gas that contains a significant number of ions. The mechanism of plasma generation varies, and will be discussed in class. The most common plasma atomizer is the inductively coupled plasma, but the direct current plasma and the microwave plasma have also seen some application in atomic spectroscopy. Sample introduction into the plasma is by nebulization of a solution. Plasma atomizers are the most widely used atomizer in atomic emission spectroscopy. Page 1

2 arc and spark atomizers vaporize the sample through the creation of an electrical discharge between two electrodes. Arcs and sparks have historically been used as atomizers in atomic emission spectroscopy, but have been largely replaced by plasma atomizers. Arcs and sparks can be easily used for the analysis of solid samples, unlike plasmas, and so they still find some limited use for samples that are not conveniently dissolved. The two most common atomizers in atomic absorption spectroscopy are combustion flames and graphite furnaces. We will now discuss in a little more detail the mechanism by which these atomizers work. Combustion Flame Atomizers The following figure gives some idea of the most common type of flame atomizer, complete with the nebulizer and spray chamber. combustion flame fuel spray chamber small droplets oxidant spoilers sample solution auxiliary oxidant drain The fuel and oxidant mix in the spray chamber; small droplets of the sample solution are carried along by this mixture into the combustion region of the flame. The most common fuel is acetylene, C 2 H 2, and the two most common oxidants are air and nitrous oxide, N 2 O. The hottest part of the acetylene-air flame may be about 2200 C, while the temperature of the N 2 O-C 2 H 2 flame can get as hot as 3100 C. It is possible to adjust the temperature of a flame by changing the fuel:oxidant ratio. A stoichiometric flame mixture is one in which, theoretically, neither the fuel nor oxidant are present in excess; stoichiometric flames are generally pretty close to their maximum temperature. A rich (or fuel-rich) flame is one in which the fuel is present in excess, while a lean flame contains an excess of oxidant. Page 2

3 The mechanism of combustion is not fully understood, but there are many species in a flame: reactive radicals, ions, small molecules, and free electrons. The following figure delineates the main regions of the flame: secondary combustion zone combustion flame interzonal region primary combustion zone fuel/oxidant mix The mixed gases flow rapidly through the burner and are ignited at the top of the burner. The reaction between fuel and oxidant takes place largely in the primary combustion zone; vaporization of solvent and dissociation of analyte species also occurs in this region. By the time the gases reach the interzonal region, the combustion reaction is more or less completed; this is the hottest region of the flame, and the one used for many spectroscopic measurements. The rapidly rising gases entrain the surrounding air, and create a secondary combustion zone on the outside of the flame, a region that is chemically oxidizing in nature. The chemical environment of the flame is complex and, by its very nature, reactive - after all, the thermal energy of the atomizer is sustained by the chemical reaction between the fuel and oxidant. The analyte atoms, after volatilization, can undergo a number of reactions, such as ionization and oxidation. Indeed, some analytes (such as alkali metals) exhibit a significant degree of ionization, while some others (such as Al, Ba and Sn) form very stable oxides, called refractory oxides. Analytes that form species that are difficult to dissociate in the flame are sometimes called refractory elements; these generally benefit from using the hotter N 2 O flames, and/or from fuel-rich flames, which create a more reducing chemical environment. Electrothermal Atomizers An electrothermal atomizer is constructed using a heating element through which a large current is passed. The sample is placed on, or in, the atomizer. The temperature of the element can be set by controlling the current, which is generally increased in a programmed series of steps called a temperature program. There are usually at least four steps: Page 3

4 1. a solvent vaporization step; 2. a pretreatment step (sometimes called a charring or ashing step), where organic components of the matrix are oxidized and the more volatile matrix components are lost; 3. an atomization step, where the analyte (and presumably the rest of the sample) is vaporized; and 4. a cleaning step, where the last remains of the sample are (hopefully) removed. The ability to control the temperature of an electrothermal atomizer by regulating the current is a big asset, since we don t have to evaporate the solvent, vaporize the sample matrix and atomize the analyte all at once. By far the most common heating element in electrothermal atomizers is a tube of graphite, into which the sample solution is deposited. The maximum temperature of these graphite furnace atomizers is about 3000 C or so. The following figure gives some indication of how the furnace atomizer is used. argon gas inject sample here water in graphite tube from light source water out sample solution insulator A small volume (20 40 µl, usually) is deposited into the graphite tube, which is constantly bathed with an inert gas such as argon. The purpose of the inert gas is twofold: (a) to protect the graphite from oxidation during atomization, and (b) to provide a chemically inert environment for analyte atomization, greatly reducing the formation of refractory oxides of the analyte. Comparison of Atomizer Characteristics The atomization efficiency is an important property of the atomizer used in atomic spectroscopy. It is defined as the fraction of analyte species in the sample that will be converted to free atoms in the atomizer. An atomization efficiency of 1 (or 100%) means that every analyte species in the sample can be converted into free atoms. The atomization efficiencies of graphite furnaces almost always exceed that of flames for the following reasons: Page 4

5 sample introduction is far more efficient for furnaces than for flames. The nebulizers used with flame atomizers are quite wasteful: about 95% of the aspirated sample solution goes down the drain, while the fine mist that actually gets carried into the flame only constitutes about 5% of the aspirated solution. Furnace atomizers have no need of a nebulizer. the solution droplets only spend a short amount of time (on the order of milliseconds) in the flame, during which time the flame must evaporate the solvent and dissociate the analyte salt. Less is demanded of the furnace, since the temperature program usually takes about 2 minutes, and occurs in steps, leading to greater efficiency. after formation of free analyte atoms, the residence time of the analyte in the flame is much shorter (milliseconds) than for the furnace (1-2 seconds). This means that the analyte atoms in the furnace can absorb more photons, increasing the absorption signal, than analyte atoms in flames. the relatively inert chemical environment of the furnace is less likely to lead to the formation of stable analyte species than is the case in flame atomizers. The atomization efficiency in any atomizer cannot be any better than the efficiency of introducing the sample into the atomizer, so the maximum atomization efficiencies achievable in flames is about 5-10%, and it is frequently less than this value. Of course, the actual efficiency will depend on the nature of the analyte and on the choice of fuel and oxidant (and, to a lesser extent, on their mixing ratios). Atomization efficiencies from clean aqueous samples can often approach 100% in graphite furnaces; efficiencies for more complicated sample matrices are often considerably less than 100%. In summary, furnaces have a number of advantages over flames for sample atomization in atomic absorption spectroscopy. There are, however, also some disadvantages. Can you think of them? Figures of Merit Analytical figures of merit (FOM s) are commonly used to compare the characteristics different techniques. Imagine that you are out shopping for a new car: you will probably spend a lot of time comparing different makes and models before the actual purchase. In making a final decision, you might be influenced by factors such as price, maintenance, fuel economy, handling, buyer satisfaction, appearance, etc. There may be a number of distinct instrumental methods that can be used in the analysis of any particular chemical species, and many minor variations can exists for each of these methods. Figures of merit characterize an analytical method so that you can make an informed decision in choosing a method for a particular application. They can also be used to evaluate the effects of technique modifications. Three very important characteristics of any analytical method are detection power: the ability of the technique to detect small concentrations of analyte in a sample. dynamic range: the range of concentrations over which the technique is useful. measurement precision, which characterizes the between-measurement variability of the method. Page 5

6 Detection Power The most common FOM used to describe the detection capability of a technique is the limit of detection, LOD, (sometimes called the detection limit) which is defined by IUPAC as LOD = 3s b b 1 where s b is the standard deviation of measurements on the blank, and b 1 is the slope of the (linear) calibration curve (the sensitivity, which is another FOM). The LOD is the concentration that corresponds to a signal that is just detectable above the random noise of the blank measurements. A sample that contains the analyte at exactly the detection limit will have (approximately) a 50% probability of being detected above the blank noise. The LOD is a nice figure of merit, even if it is a little abstract (at least, to those who have no background in statistics - unlike the students of CHM301 at the University of Richmond). There are, however, two problems with it: 1. The detection limit usually gives an overly optimistic idea of the concentrations that can be reliably detected; this is usually because the estimate of the blank noise generally does not include a number of important sources of error, such as sampling error, sample treatment error, and calibration error. 2. IUPAC recommends that 16 measurements of the blank be used to calculate s b ; in fact, to be strictly proper, 16 different blanks should be prepared and analyzed. This process can be quite time-consuming; many people estimate the LOD using fewer blank measurements. In absorption spectroscopy, an alternate measure of detection capability is frequently used: the characteristic concentration 1 (or the characteristic mass, if appropriate). The characteristic concentration is the concentration of analyte in the sample that will cause an absorption of 1% of the incident light (i.e., a transmittance of 0.99). This corresponds to an absorbance value of A = , so that the characteristic concentration can be calculated by dividing this value by the sensitivity of the absorption method: characteristic concentration [] char = b 1 where b 1 is the sensitivity (i.e., the slope of the calibration curve). The characteristic concentration is generally significantly larger than the detection limit, and is usually a more realistic assessment of the lower concentrations of analyte that can be analyzed with some degree of precision. It is also fairly easy to obtain, since one usually must construct a calibration curve during the course of an analysis. The principal disadvantage it has as a figure of merit is that it can only be used to describe absorption-based analytical methods. The detection capability of graphite furnace AAS is better described in terms of analyte masses rather than concentrations. The characteristic mass is the analyte mass that, when deposited in the furnace, will give a signal of AU. Since a discrete volume of sample is analyzed in the furnace, and the characteristic concentration will depend on the actual sample volume being used (a disadvantage). The characteristic mass, however, will not depend on the concentration. 1 confusingly, the characteristic concentration is often called the sensitivity, whereas IUPAC defines the sensitivity as the slope of the calibration curve. [1] Page 6

7 Dynamic Range The dynamic range is the range of concentrations over which there is a measurable change in instrument response. It is advantageous to have a linear calibration curve, and so the linear dynamic range (LDR) is usually of interest. As you might guess, the LDR provides the range of concentrations over which the instrument response is linearly dependent on the analyte concentration. In this experiment, we will consider the characteristic concentration as the lower limit of the LDR, so all that is left is to find the upper limit of the LDR. Commonly, this value is defined as the value at which the instrument response loses 10% of the value that it would have if it were truly linear. The following figure illustrates: signal concentration In the figure, the larger double arrow gives the net response if the calibration curve remains linear. The smaller arrows show the difference between the actual and the projected linear response. When the ratio of the smaller to larger arrows is 10% (i.e., when there is a 10% drop-off from a theoretical linear response), then we have reached the upper limit of the LDR. Measurement Precision The random error in a measurement is characterized by its standard deviation. The relative standard deviation, RSD, is a convenient way to compare the variability in the measurements when using a particular analytical method. Another common method used to compare measurement precision is the signal-to-noise ratio, S/N. As the name might imply, the S/N is simply the inverse of the RSD: S/N = RSD 1 = x/σ x Both S/N and RSD are widely used to indicate the magnitude of measurement precision. Better precision is indicated by a larger S/N or a smaller RSD. The RSD is frequently given as a percentage value. Generally, RSD and S/N will depend on concentration, so it is desirable to specify the concentration (or concentration range) when reporting the measurement precision. Page 7

8 References Skoog 8-9 (esp 8B & 9A) Harris 22 (esp 22.2) Page 8

9 ATOMIZER COMPARISON: PROCEDURE Part I: Graphite Furnace Atomic Absorption Check that the furnace atomizer unit is installed on the Perkin Elmer atomic absorption instrument (ask your lab instructor or TA). You will need to prepare eight calibration standards of the following concentrations: 5, 20, 35, 50, 100, 150, 200, and 250 ppb copper. Use deionized water for your blank and in all dilutions. In addition, you should collect a small sample of tap water in a clean beaker. Important: before actually performing the dilutions, have your instructor check your calculations. The furnace can be damaged if the standards are too concentrated. Once you have made your solutions, you will use the autosampler to measure the standards. You will need to ask your instructor for help in operating the instrument. You should obtain three measurements for each standard, and you are to inject 30 µl volumes into the furnace. Part II: Flame Atomic Absorption For this portion of the experiment, you will be using an air-acetylene flame atomizer. Prepare 100 ml standards of the following concentrations: 5, 10, 15, 20, 30, 40, 50, 60 ppm copper. You will obtain one measurement on each of these using flame atomic absorption spectroscopy; ask your instructor to show you how this is done on the Perkin-Elmer instrument. You should also attempt to determine the copper content of the tap water sample using the flame AA method. Page 9

10 ATOMIZER COMPARISON: DATA SHEET In addition to filling out the following table, turn in copies of all printouts collected during the experiment. Don t forget to show your calculations on a separate sheet of paper. Name: sample blank std 1 std 2 std 3 std 4 std 5 std 6 std 7 std 8 tap water Furnace Atomizer conc (ppb) peak area (Avs) 0 Flame Atomizer conc (ppm) absorbance 0 characteristic conc, ppb (95% CI) characteristic mass, pg (95% CI) upper limit of LDR, ppb measurement RSD, % 95% CI for [Cu] in tap water, ppb: Results characteristic conc, ppm (95% CI) upper limit of LDR, ppm 95% CI for [Cu] in tap water, ppb measurement RSD, %

11 ATOMIZER COMPARISON: DATA TREATMENT You will need to fill in the results section in the DATA SHEET. Take special note of those values for which confidence intervals (CI s) are asked: the characteristic concentrations, the characteristic mass, and the concentration of copper in tap water. You do not need to calculate a confidence interval for the upper limit of the LDR or for the measurement RSD. Looking at your results, you should ponder the questions such as the following: which method is more sensitive? (The answer to this question should be fairly obvious.) which method has the largest linear dynamic range? Can you think of any reasons why? which method has the best measurement precision? What are the main sources of random error for each method? Is the difference between measurement RSD statistically significant? what are the advantages and disadvantages associated with each method? When would you prefer to use the FAAS method, and when would you want to use GFAAS? Estimate of Copper Concentration in Tap Water In constructing your calibration curve, average the measurements for each standard, and for the tap water (watch for outliers). Your calibration data should be curved (after all, one of the goals of the experiment is to compare the linear dynamic ranges). A second-order polynomial linear regression should give a reasonable fit for the data: y = 2 x x + 0 You should use this equation to obtain a confidence interval for the copper concentration in tap water using the GFAAS method. To obtain a point estimate, you will need to solve a quadratic equation. The standard deviation of this estimate can be approximated by s(x u ) l s res b 2 x u + b 1 n + (x u x) 2 S xx where b 2 and b 1 are the least-squares estimates of β 2 and β 1. To learn more about using polynomial calibration curves for quantitative analysis, refer to the web-based Tutorial. Characteristic Concentration Calculate the point estimates of the characteristic concentrations using the equation given in the BACKGROUND section. You can use propagation of error in order to determine the standard error in your calculated value; if you assume a normal distribution for the estimate (a somewhat dubious assumption), you may calculate a confidence interval for the characteristic concentration using t-tables. To calculate the characteristic mass of the GFAAS method, you will need to know the volume of solution sample that is analyzed (ask your instructor for more detail).

12 Linear Dynamic Range The upper range of the LDR is when there is a 10% decrease from a hypothetical linear response. Using a second-order polynomial fit, the upper range of the LDR, x upper, is thus x upper = 0.1 b 1 b 2 The negative sign is necessary because b 2 should be negative (if it isn t, come see me with your data). Measurement Precision The RSD indicates the precision with which the method can determine the analyte concentration of a sample. Calculate the RSD using the following equation: RSD = s res y where s res is the standard deviation of the residuals and y is the average of the y-values (i.e., the signals) in your calibration data set. The RSD calculated in this manner includes the effects of both measurement and calibration error. If you wish, you may compare the RSD values for each method using an F-test, since the ratio of squared RSD values should follow an F-distribution.

ANALYSIS OF ZINC IN HAIR USING FLAME ATOMIC ABSORPTION SPECTROSCOPY

ANALYSIS OF ZINC IN HAIR USING FLAME ATOMIC ABSORPTION SPECTROSCOPY ANALYSIS OF ZINC IN HAIR USING FLAME ATOMIC ABSORPTION SPECTROSCOPY Introduction The purpose of this experiment is to determine the concentration of zinc in a sample of hair. You will use both the calibration

More information

2101 Atomic Spectroscopy

2101 Atomic Spectroscopy 2101 Atomic Spectroscopy Atomic identification Atomic spectroscopy refers to the absorption and emission of ultraviolet to visible light by atoms and monoatomic ions. It is best used to analyze metals.

More information

3 - Atomic Absorption Spectroscopy

3 - Atomic Absorption Spectroscopy 3 - Atomic Absorption Spectroscopy Introduction Atomic-absorption (AA) spectroscopy uses the absorption of light to measure the concentration of gas-phase atoms. Since samples are usually liquids or solids,

More information

atomic absorption spectroscopy general can be portable and used in-situ preserves sample simpler and less expensive

atomic absorption spectroscopy general can be portable and used in-situ preserves sample simpler and less expensive Chapter 9: End-of-Chapter Solutions 1. The following comparison provides general trends, but both atomic absorption spectroscopy (AAS) and atomic absorption spectroscopy (AES) will have analyte-specific

More information

Atomic Absorption Spectroscopy and Atomic Emission Spectroscopy

Atomic Absorption Spectroscopy and Atomic Emission Spectroscopy Atomic Absorption Spectroscopy and Atomic Emission Spectroscopy A. Evaluation of Analytical Parameters in Atomic Absorption Spectroscopy Objective The single feature that contributes most to making atomic

More information

Ch. 9 Atomic Absorption & Atomic Fluorescence Spectrometry

Ch. 9 Atomic Absorption & Atomic Fluorescence Spectrometry Ch. 9 Atomic Absorption & Atomic Fluorescence Spectrometry 9.1 9A. Atomization Most fundamental for both techniques. Typical types 1. flame - burner type 2. Electrothermal graphite furnace 3. Specialized

More information

9/13/10. Each spectral line is characteristic of an individual energy transition

9/13/10. Each spectral line is characteristic of an individual energy transition Sensitive and selective determination of (primarily) metals at low concentrations Each spectral line is characteristic of an individual energy transition 1 Atomic Line Widths Why do atomic spectra have

More information

Atomic Absorption Spectrophotometry. Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon

Atomic Absorption Spectrophotometry. Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon Atomic Absorption Spectrophotometry Presentation by, Mrs. Sangita J. Chandratre Department of Microbiology M. J. college, Jalgaon Defination In analytical chemistry, Atomic absorption spectroscopy is a

More information

Zinc Metal Determination Perkin Elmer Atomic Absorption Spectrometer AAnalyst Procedures

Zinc Metal Determination Perkin Elmer Atomic Absorption Spectrometer AAnalyst Procedures Villanova University Date: Oct 2011 Page 1 of 9 Villanova University Villanova Urban Stormwater Partnership Watersheds Laboratory Standard Operating Procedure VUSP F Zinc Metal Determination Perkin Elmer

More information

AN INTRODUCTION TO ATOMIC SPECTROSCOPY

AN INTRODUCTION TO ATOMIC SPECTROSCOPY AN INTRODUCTION TO ATOMIC SPECTROSCOPY Atomic spectroscopy deals with the absorption, emission, or fluorescence by atom or elementary ions. Two regions of the spectrum yield atomic information- the UV-visible

More information

Emission spectrum of H

Emission spectrum of H Atomic Spectroscopy Atomic spectroscopy measures the spectra of elements in their atomic/ionized states. Atomic spectrometry, exploits quantized electronic transitions characteristic of each individual

More information

PRINCIPLE OF ICP- AES

PRINCIPLE OF ICP- AES INTRODUCTION Non- flame atomic emission techniques, which use electrothermal means to atomize and excite the analyte, include inductively coupled plasma and arc spark. It has been 30 years since Inductively

More information

ATOMIC SPECROSCOPY (AS)

ATOMIC SPECROSCOPY (AS) ATOMIC ABSORPTION ANALYTICAL CHEMISTRY ATOMIC SPECROSCOPY (AS) Atomic Absorption Spectroscopy 1- Flame Atomic Absorption Spectreoscopy (FAAS) 2- Electrothermal ( Flame-less ) Atomic Absorption Spectroscopy

More information

Optical Atomic Spectroscopy

Optical Atomic Spectroscopy Optical Atomic Spectroscopy Methods to measure conentrations of primarily metallic elements at < ppm levels with high selectivity! Two main optical methodologies- -Atomic Absorption--need ground state

More information

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber

10/2/2008. hc λ. νλ =c. proportional to frequency. Energy is inversely proportional to wavelength And is directly proportional to wavenumber CH217 Fundamentals of Analytical Chemistry Module Leader: Dr. Alison Willows Electromagnetic spectrum Properties of electromagnetic radiation Many properties of electromagnetic radiation can be described

More information

Atomic Spectroscopy AA/ICP/ICPMS:

Atomic Spectroscopy AA/ICP/ICPMS: Atomic Spectroscopy AA/ICP/ICPMS: A Comparison of Techniques VA AWWA/VWEA Lab Practices Conference July 25, 2016 Dan Davis Shimadzu Scientific Instruments AA/ICP/ICPMS: A Comparison of Techniques Topics

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Atomic line widths: Narrow line widths reduce the possibility of spectral overlap and thus interferences. The band width at half height is used to indicate width. This is also sometimes called the effective

More information

CH. 21 Atomic Spectroscopy

CH. 21 Atomic Spectroscopy CH. 21 Atomic Spectroscopy 21.1 Anthropology Puzzle? What did ancient people eat for a living? Laser Ablation-plasma ionization-mass spectrometry CH. 21 Atomic Spectroscopy 21.2 plasma In Atomic Spectroscopy

More information

Determination of major, minor and trace elements in rice fl our using the 4200 Microwave Plasma- Atomic Emission Spectrometer (MP-AES) Authors

Determination of major, minor and trace elements in rice fl our using the 4200 Microwave Plasma- Atomic Emission Spectrometer (MP-AES) Authors Determination of major, minor and trace elements in rice flour using the 4200 Microwave Plasma- Atomic Emission Spectrometer (MP-AES) Application note Food testing Authors John Cauduro Agilent Technologies,

More information

very high temperature for excitation not necessary generally no plasma/arc/spark AAS

very high temperature for excitation not necessary generally no plasma/arc/spark AAS Atomic Absorption Spectrometry (Chapter 9) AAS intrinsically more sensitive than AES similar atomization techniques to AES addition of radiation source high temperature for atomization necessary flame

More information

UNIVERSITI SAINS MALAYSIA. Second Semester Examination Academic Session 2004/2005. March KAA 502 Atomic Spectroscopy.

UNIVERSITI SAINS MALAYSIA. Second Semester Examination Academic Session 2004/2005. March KAA 502 Atomic Spectroscopy. UNIVERSITI SAINS MALAYSIA Second Semester Examination Academic Session 2004/2005 March 2005 KAA 502 Atomic Spectroscopy Time: 3 hours Please make sure this paper consists of FIVE typed pages before answering

More information

Elemental analysis of river sediment using the Agilent 4200 MP-AES

Elemental analysis of river sediment using the Agilent 4200 MP-AES Elemental analysis of river sediment using the Agilent 4200 MP-AES Application note Environmental: Soils, sludges & sediments Authors Neli Drvodelic Agilent Technologies, Melbourne, Australia Introduction

More information

A Spectrophotometric Analysis of Calcium in Cereal

A Spectrophotometric Analysis of Calcium in Cereal CHEM 311L Quantitative Analysis Laboratory Revision 1.2 A Spectrophotometric Analysis of Calcium in Cereal In this laboratory exercise, we will determine the amount of Calium in a serving of cereal. We

More information

Determination the elemental composition of soil samples

Determination the elemental composition of soil samples 4. Experiment Determination the elemental composition of soil samples Objectives On this practice you will determine the elemental composition of soil samples by Inductively Coupled Plasma Optical Emission

More information

Atomization. In Flame Emission

Atomization. In Flame Emission FLAME SPECTROSCOPY The concentration of an element in a solution is determined by measuring the absorption, emission or fluorescence of electromagnetic by its monatomic particles in gaseous state in the

More information

FLAME PHOTOMETRY AIM INTRODUCTION

FLAME PHOTOMETRY AIM INTRODUCTION FLAME PHOTOMETRY AIM INTRODUCTION Atomic spectroscopy is based on the absorption, emission or fluorescence process of light by atoms or elementary ions. Information for atomic scale is obtained in two

More information

Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT.

Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. CHEM 322 Name Exam 3 Spring 2013 Complete the following. Clearly mark your answers. YOU MUST SHOW YOUR WORK TO RECEIVE CREDIT. Warm-up (3 points each). 1. In Raman Spectroscopy, molecules are promoted

More information

A New Cross-Shaped Graphite Furnace with Ballast Body for Reduction of Interferences in Atomic Absorption Spectrometry

A New Cross-Shaped Graphite Furnace with Ballast Body for Reduction of Interferences in Atomic Absorption Spectrometry http://www.e-journals.net ISSN: 0973-4945; CODEN ECJHAO E- Chemistry 2010, 7(S1), S127-S130 A New Cross-Shaped Graphite Furnace with Ballast Body for Reduction of Interferences in Atomic Absorption Spectrometry

More information

Brooklyn College Department of Chemistry

Brooklyn College Department of Chemistry Brooklyn College Department of Chemistry Instrumental Analysis (Chem 42/790) Atomic Absorption Spectroscopy An atomic absorption spectrometer is used in this experiment to analyze a copper-base alloy for

More information

Lecture 7: Atomic Spectroscopy

Lecture 7: Atomic Spectroscopy Lecture 7: Atomic Spectroscopy 1 Atomic spectroscopy The wavelengths of absorbance and emission from atoms in the gas phase are characteristic of atomic orbitals. 2 In the lowest energy transition, the

More information

Chem 434 Instrumental Analysis Test 1

Chem 434 Instrumental Analysis Test 1 Chem 434 Instrumental Analysis Test 1 Name: 1. (15 points) In Chapter 5 we discussed four sources of instrumental noise: Thermal Noise, Shot Noise, Flicker Noise, and Environmental noise. Discuss the differences

More information

ATOMIC ABSORPTION SPECTROSCOPY (AAS) is an analytical technique that measures the concentrations of elements. It makes use of the absorption of light

ATOMIC ABSORPTION SPECTROSCOPY (AAS) is an analytical technique that measures the concentrations of elements. It makes use of the absorption of light ATOMIC ABSORPTION SPECTROSCOPY (AAS) is an analytical technique that measures the concentrations of elements. It makes use of the absorption of light by these elements in order to measure their concentration.

More information

Atomic Absorption & Atomic Fluorescence Spectrometry

Atomic Absorption & Atomic Fluorescence Spectrometry Atomic Absorption & Atomic Fluorescence Spectrometry Sample Atomization Atomic Absorption (AA) Atomic Fluorescence (AF) - Both AA and AF require a light source - Like Molecular Absorption & Fluorescence,

More information

a. An emission line as close as possible to the analyte resonance line

a. An emission line as close as possible to the analyte resonance line Practice Problem Set 5 Atomic Emission Spectroscopy 10-1 What is an internal standard and why is it used? An internal standard is a substance added to samples, blank, and standards. The ratio of the signal

More information

high temp ( K) Chapter 20: Atomic Spectroscopy

high temp ( K) Chapter 20: Atomic Spectroscopy high temp (2000-6000K) Chapter 20: Atomic Spectroscopy 20-1. An Overview Most compounds Atoms in gas phase high temp (2000-6000K) (AES) (AAS) (AFS) sample Mass-to-charge (ICP-MS) Atomic Absorption experiment

More information

Atomic Emission Spectroscopy

Atomic Emission Spectroscopy Atomic Emission Spectroscopy Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia Building:

More information

Today s Agilent Solutions for Determining Heavy Metals in Food using Atomic Spectroscopy

Today s Agilent Solutions for Determining Heavy Metals in Food using Atomic Spectroscopy Today s Agilent Solutions for Determining Heavy Metals in Food using Atomic Spectroscopy Evrim Kilicgedik Product Specialist, Atomic Spectroscopy Agilent Technologies 04.11.2011 2011 The Atomic Spectroscopy

More information

Chapter 9. Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques

Chapter 9. Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques Chapter 9 Atomic emission and Atomic Fluorescence Spectrometry Emission spectrophotometric Techniques Emission Spectroscopy Flame and Plasma Emission Spectroscopy are based upon those particles that are

More information

Atomic Absorption Spectrometer ZEEnit P series

Atomic Absorption Spectrometer ZEEnit P series Atomic Absorption Spectrometer ZEEnit P series Technical Data ZEEnit series Update 07/2014 OBue 1/ 5 ZEEnit P series Variable high-end AA Spectrometer with Deuterium and Zeeman Background Correction with

More information

Chemistry Instrumental Analysis Lecture 18. Chem 4631

Chemistry Instrumental Analysis Lecture 18. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 18 Instrumentation Radiation sources Hollow cathode lamp Most common source Consist of W anode and a cathode sealed in a glass tube filled with Ne or Ar. Hollow

More information

Prof. Dr. Biljana Škrbić, Jelena Živančev

Prof. Dr. Biljana Škrbić, Jelena Živančev 5 th CEFSER Training Course Analysis of chemical contaminants in food and the environment Faculty of Technology, University of Novi Sad, Novi Sad, Republic of Serbia 7-11 May 2012 Analysis of heavy elements

More information

Partial Energy Level Diagrams

Partial Energy Level Diagrams Partial Energy Level Diagrams 460 nm 323 nm 610 nm 330 nm 819 nm 404 nm 694 nm 671 nm 589 / 590 nm 767 / 769 nm Lithium Sodium Potassium Gas Mixtures Maximum Temperatures, C Air-Coal Gas 1825 Air-Propane

More information

II. Spectrophotometry (Chapters 17, 19, 20)

II. Spectrophotometry (Chapters 17, 19, 20) II. Spectrophotometry (Chapters 17, 19, 20) FUNDAMENTALS (Chapter 17) Spectrophotometry: any technique that uses light to measure concentrations (here: U and visible - ~190 800 nm) c = 2.99792 x 10 8 m/s

More information

ANALYSIS OF LEAD IN SEAWATER

ANALYSIS OF LEAD IN SEAWATER ANALYSIS OF LEAD IN SEAWATER BY DIFFERENTIAL PULSE POLAROGRAPHY Introduction Electrochemical methods of analysis can be used for the quantitative analysis of any electroactive species any species that

More information

Analysis of high matrix samples using argon gas dilution with the Thermo Scientific icap RQ ICP-MS

Analysis of high matrix samples using argon gas dilution with the Thermo Scientific icap RQ ICP-MS TECHNICAL NOTE 4322 Analysis of high matrix samples using argon gas dilution with the Thermo Scientific icap RQ ICP-MS Keywords Argon gas dilution, AGD, High matrix samples, Seawater Goal To critically

More information

Quality Control Procedures for Graphite Furnace AAS using Avanta Software

Quality Control Procedures for Graphite Furnace AAS using Avanta Software Application Note Quality Control Procedures for Graphite Furnace AAS using Avanta Software Introduction With the arrival of quality standards in the analytical laboratory, an ever increasing emphasis is

More information

Analysis of domestic sludge using the Agilent 4200 MP-AES

Analysis of domestic sludge using the Agilent 4200 MP-AES Analysis of domestic sludge using the Agilent 4200 MP-AES Application note Environmental Authors Neli Drvodelic Agilent Technologies, Melbourne, Australia Introduction Managing the treatment and disposal

More information

Combustion. Indian Institute of Science Bangalore

Combustion. Indian Institute of Science Bangalore Combustion Indian Institute of Science Bangalore Combustion Applies to a large variety of natural and artificial processes Source of energy for most of the applications today Involves exothermic chemical

More information

CHAPTER 4: ANALYTICAL INSTRUMENTATION

CHAPTER 4: ANALYTICAL INSTRUMENTATION CHAPTER 4: ANALYTICAL INSTRUMENTATION 4.1 INTRODUCTION In this section, a review of the analytical instrumentation used during sample preparation and analysis is presented which includes an overview of

More information

Determinations by Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Atomic Emission

Determinations by Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Atomic Emission 0 chapter Sodium and Potassium Determinations by Atomic Absorption Spectroscopy and Inductively Coupled Plasma-Atomic Emission Spectroscopy 67 S. S. Nielsen (ed.), Food Analysis Laboratory Manual Springer

More information

novaa 800 D Atomic Absorption Spectrometer

novaa 800 D Atomic Absorption Spectrometer Technical Data Atomic Absorption Spectrometer Cpt : +27 (0) 21 905 0476 Jhb : +27 (0) 11 794 Dbn : +27 (0) 31 266 2454 1/7 General The is a compact atomic absorption spectrometer with deuterium background

More information

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+ Many substances absorb light. When light is absorbed, electrons in the ground state are excited to higher energy levels. Colored

More information

Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS

Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS APPLICATION NOTE ICP - Mass Spectrometry Author Kenneth Ong PerkinElmer, Inc. Singapore Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS Introduction The control of impurity

More information

INTRODUCTION TO OPTICAL ATOMIC SPECTROSCOPY (Chapter 8)

INTRODUCTION TO OPTICAL ATOMIC SPECTROSCOPY (Chapter 8) INTRODUCTION TO OPTICAL ATOMIC SPECTROSCOPY (Chapter 8) Atomic spectroscopy techniques: Optical spectrometry Mass spectrometry X-Ray spectrometry Optical spectrometry: Elements in the sample are atomized

More information

HEAVY METALS IN LAKE NAKURU ATOMIC SPECTROSCOPY

HEAVY METALS IN LAKE NAKURU ATOMIC SPECTROSCOPY HEAVY METALS IN LAKE NAKURU ATOMIC SPECTROSCOPY PURPOSE This section will provide an introduction to atomic spectroscopy. The basic concepts of flame atomic absorption spectroscopy (FLAA), graphite furnace

More information

EXPERIMENT 7. Determination of Sodium by Flame Atomic-Emission Spectroscopy

EXPERIMENT 7. Determination of Sodium by Flame Atomic-Emission Spectroscopy EXPERIMENT 7 Determination of Sodium by Flame Atomic-Emission Spectroscopy USE ONLY DEIONIZED WATER (NOT DISTILLED WATER!) THROUGHOUT THE ENTIRE EXPERIMENT Distilled water actually has too much sodium

More information

The Low-Temperature Evaporative Light-Scattering Detector (LT-ELSD)

The Low-Temperature Evaporative Light-Scattering Detector (LT-ELSD) The Low-Temperature Evaporative Light-Scattering Detector (LT-ELSD) Basically all compounds which are less volatile than the mobile phase can be detected. Detection is based on a Universal property of

More information

Determination of Pb, Cd, Cr and Ni in Grains Based on Four Chinese National Methods via Zeeman GFAAS

Determination of Pb, Cd, Cr and Ni in Grains Based on Four Chinese National Methods via Zeeman GFAAS Determination of Pb, Cd, Cr and Ni in Grains Based on Four Chinese National Methods via Zeeman GFAAS Application Note Food Testing Author John Cauduro Agilent Technologies, Australia Introduction Trace

More information

PRINCIPLES OF AAS atomization flame furnace atomization absorption

PRINCIPLES OF AAS atomization flame furnace atomization absorption INTRODUCTION Atomic absorption spectroscopy (AAS) currently is the most widely used of atomic spectroscopic techniques. AAS is a quantitative method of elemental analysis that is applicable to many metals

More information

Test Method: CPSC-CH-E

Test Method: CPSC-CH-E UNITED STATES CONSUMER PRODUCT SAFETY COMMISSION DIRECTORATE FOR LABORATORY SCIENCES DIVISION OF CHEMISTRY 10901 DARNESTOWN RD GAITHERSBURG, MD 20878 Test Method: CPSC-CH-E1001-08 Standard Operating Procedure

More information

V. LAB REPORT. PART I. ICP-AES (section IVA)

V. LAB REPORT. PART I. ICP-AES (section IVA) V. LAB REPORT The lab report should include an abstract and responses to the following items. All materials should be submitted by each individual, not one copy for the group. The goal for this part of

More information

Ch. 8 Introduction to Optical Atomic Spectroscopy

Ch. 8 Introduction to Optical Atomic Spectroscopy Ch. 8 Introduction to Optical Atomic Spectroscopy 8.1 3 major types of Spectrometry elemental Optical Spectrometry Ch 9, 10 Mass Spectrometry Ch 11 X-ray Spectrometry Ch 12 In this chapter theories on

More information

Techniques for the Analysis of Organic Chemicals by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Techniques for the Analysis of Organic Chemicals by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Techniques for the Analysis of Organic Chemicals by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Petrochemical Authors Ed McCurdy & Don Potter Agilent Technologies Ltd. Lakeside Cheadle Royal

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Chapter 23. Gas Chromatography What did they eat in the year 1,000? GC of Cholesterol and other lipids extracted from

More information

Application note. Determination of exchangeable cations in soil extracts using the Agilent 4100 Microwave Plasma-Atomic Emission Spectrometer

Application note. Determination of exchangeable cations in soil extracts using the Agilent 4100 Microwave Plasma-Atomic Emission Spectrometer Determination of exchangeable cations in soil extracts using the Agilent 4100 Microwave Plasma-Atomic Emission Spectrometer Application note Agriculture Authors Annie Guerin INRA, Laboratoire d Analyses

More information

Water Hardness and Softening (Bring a water sample from home) Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.2.

Water Hardness and Softening (Bring a water sample from home) Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.2. Water Hardness and Softening (Bring a water sample from home) Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.2.16 I. Introduction Hard Water and Water Softening Water that

More information

Enhancing the productivity of food sample analysis with the Agilent 7700x ICP-MS

Enhancing the productivity of food sample analysis with the Agilent 7700x ICP-MS Enhancing the productivity of food sample analysis with the Agilent 77x ICP-MS Application note Foods testing Authors Sebastien Sannac, Jean Pierre Lener and Jerome Darrouzes Agilent Technologies Paris,

More information

Reacting Gas Mixtures

Reacting Gas Mixtures Reacting Gas Mixtures Reading Problems 15-1 15-7 15-21, 15-32, 15-51, 15-61, 15-74 15-83, 15-91, 15-93, 15-98 Introduction thermodynamic analysis of reactive mixtures is primarily an extension of the principles

More information

6.5 Optical-Coating-Deposition Technologies

6.5 Optical-Coating-Deposition Technologies 92 Chapter 6 6.5 Optical-Coating-Deposition Technologies The coating process takes place in an evaporation chamber with a fully controlled system for the specified requirements. Typical systems are depicted

More information

Basic Digestion Principles

Basic Digestion Principles Basic Digestion Principles 1 From Samples to Solutions Direct Analytical Method Solid Sample Problems: Mech. Sample Preparation (Grinding, Sieving, Weighing, Pressing, Polishing,...) Solid Sample Autosampler

More information

Exam 3 Chem 454 April 25, 2018, Name

Exam 3 Chem 454 April 25, 2018, Name Exam 3 Chem 454 April 25, 2018, Name K = Cs/Cm k = (tr tm)/tm tr = tr tm = tr2 /tr1 = K2/K1 H = L/N = 2 /L Rs = tr/wavg R s t r, B r, A N t t r, B 4 70 total points. 14 questions @ 5 points each.s 1] Sketch

More information

A process whereby an electron is either removed from or added to the atom or molecule producing an ion in its ground state.

A process whereby an electron is either removed from or added to the atom or molecule producing an ion in its ground state. 12.3 Processes and techniques 12.3.1 Ionization nomenclature Adiabatic ionization A process whereby an electron is either removed from or added to the atom or molecule producing an ion in its ground state.

More information

Gummy Bear Demonstration:

Gummy Bear Demonstration: Name: Unit 8: Chemical Kinetics Date: Regents Chemistry Aim: _ Do Now: a) Using your glossary, define chemical kinetics: b) Sort the phrases on the SmartBoard into the two columns below. Endothermic Rxns

More information

Part II. Cu(OH)2(s) CuO(s)

Part II. Cu(OH)2(s) CuO(s) The Copper Cycle Introduction In this experiment, you will carry out a series of reactions starting with copper metal. This will give you practice handling chemical reagents and making observations. It

More information

The Determination of Toxic, Trace, and Essential Elements in Food Matrices using THGA Coupled with Longitudinal Zeeman Background Correction

The Determination of Toxic, Trace, and Essential Elements in Food Matrices using THGA Coupled with Longitudinal Zeeman Background Correction application Note Atomic Absorption Authors David Bass Senior Product Specialist Cynthia P. Bosnak Senior Product Specialist PerkinElmer, Inc. Shelton, CT 06484 USA The Determination of Toxic, Trace, and

More information

Atomic Spectra: Energy, Light, and the Electron

Atomic Spectra: Energy, Light, and the Electron Atomic Spectra: Energy, Light, and the Electron Introduction: An atom consists of a nucleus, containing protons and neutrons, and tiny electrons, which move around the nucleus. Picture a beehive where

More information

Pre-Lab Exercises Lab 3: Chemical Properties

Pre-Lab Exercises Lab 3: Chemical Properties Pre-Lab Exercises Lab 3: Chemical Properties 1. How is a chemical property different from a physical property? Name Date Section 2. How is a chemical change different from a physical change? 3. Give two

More information

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25) 1 TMT4320 Nanomaterials November 10 th, 2015 Thin films by physical/chemical methods (From chapter 24 and 25) 2 Thin films by physical/chemical methods Vapor-phase growth (compared to liquid-phase growth)

More information

Experiment 7: SIMULTANEOUS EQUILIBRIA

Experiment 7: SIMULTANEOUS EQUILIBRIA Experiment 7: SIMULTANEOUS EQUILIBRIA Purpose: A qualitative view of chemical equilibrium is explored based on the reaction of iron(iii) ion and thiocyanate ion to form the iron(iii) thiocyanate complex

More information

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS.

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS. School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS DURATION: 3 HOURS TOTAL MARKS: 100 Internal Examiners: Professor A Kindness Dr T Msagati

More information

What are the energies (J) and wavelengths (in nm) for these colors? Color Energy wavelength. Rev. F11 Page 1 of 5

What are the energies (J) and wavelengths (in nm) for these colors? Color Energy wavelength. Rev. F11 Page 1 of 5 Exp. 8 Pre Lab ASSIGNMENT Name: Lab Section Score: / 10 (1) Use the equations [see the discussion on the next page] to calculate the energies of the 6 lowest states for the hydrogen atom, and enter your

More information

2. Why do the discharge tubes get hot after running for a period of time?

2. Why do the discharge tubes get hot after running for a period of time? EXPERIIMENT #2 FLAME TESTS Note: Experiments #2 and #3 can be completed together in a single lab period (90 minutes). A combined data sheet for the two labs can be found after Experiment #3. Discussion:

More information

Analytical Performance & Method. Validation

Analytical Performance & Method. Validation Analytical Performance & Method Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia Building:

More information

Properties of Alkanes, Alkenes, Aromatic Compounds and an Alcohol

Properties of Alkanes, Alkenes, Aromatic Compounds and an Alcohol 1 of 5 1/26/2010 11:40 AM Experiment 2 Properties of Alkanes, Alkenes, Aromatic Compounds and an Alcohol In the reactions we will perform in this experiment, hexane will be used to represent the saturated

More information

Allotropes (Diamond and Graphite) Revision Pack (C3)

Allotropes (Diamond and Graphite) Revision Pack (C3) Allotropes: Allotropes are different forms of the same element in the same physical state; the atoms are bonded differently. Carbon has allotropes: - Diamond - Graphite - Buckminsterfullerene Diamond Properties

More information

Tap Water Analysis Lockwood 1 TAP WATER ANALYSIS BY ATOMIC ABSORPTION SPECTROSCOPY AND ION CHROMATOGRAPHY. Susan Lockwood

Tap Water Analysis Lockwood 1 TAP WATER ANALYSIS BY ATOMIC ABSORPTION SPECTROSCOPY AND ION CHROMATOGRAPHY. Susan Lockwood Tap Water Analysis Lockwood 1 TAP WATER ANALYSIS BY ATOMIC ABSORPTION SPECTROSCOPY AND ION CHROMATOGRAPHY Susan Lockwood Inorganic Quantitative Analysis - Section 6 California State University, Sacramento

More information

Laboratory 3. Development of an Equation. Objectives. Introduction

Laboratory 3. Development of an Equation. Objectives. Introduction Laboratory 3 Development of an Equation Objectives Apply laboratory procedures and make observations to investigate a chemical reaction. Based on these observations, identify the pattern of reactivity

More information

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics Mass spectrometry (MS) is the technique for protein identification and analysis by production of charged molecular species in vacuum, and their separation by magnetic and electric fields based on mass

More information

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory 8.-1 Systems, where fuel and oxidizer enter separately into the combustion chamber. Mixing takes place by convection and diffusion. Only where

More information

Introduction to Plasma

Introduction to Plasma What is a plasma? The fourth state of matter A partially ionized gas How is a plasma created? Energy must be added to a gas in the form of: Heat: Temperatures must be in excess of 4000 O C Radiation Electric

More information

OES - Optical Emission Spectrometer 2000

OES - Optical Emission Spectrometer 2000 OES - Optical Emission Spectrometer 2000 OES-2000 is used to detect the presence of trace metals in an analyte. The analyte sample is introduced into the OES-2000 as an aerosol that is carried into the

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

Atomic absorption spectroscopy

Atomic absorption spectroscopy Atomic absorption spectroscopy Modern atomic absorption spectrometers Atomic absorption spectroscopy (AAS) is a spectroanalytical procedure for the quantitative determination of chemical elements using

More information

Investigation of Nutrient Elements in Cucurbita pepo Using Atomic Absorption Spectrometry

Investigation of Nutrient Elements in Cucurbita pepo Using Atomic Absorption Spectrometry Available online at www.ilcpa.pl International Letters of Chemistry, Physics and Astronomy 2 (2013) 11-17 ISSN 2299-3843 Investigation of Nutrient Elements in Cucurbita pepo Using Atomic Absorption Spectrometry

More information

6.1- Chemical vs. Physical - Pre-Lab Questions

6.1- Chemical vs. Physical - Pre-Lab Questions 6.1- Chemical vs. Physical - Pre-Lab Questions Name: Instructor: Date: Section/Group: 1. Using the procedures for each station provided as a guide, predict which properties you will be looking for in each

More information

For simplicity, we ll represent BTB s ionization in a solution by the equilibrium: HBTB = H + + BTB -

For simplicity, we ll represent BTB s ionization in a solution by the equilibrium: HBTB = H + + BTB - Chemistry 160 Please have the following pages ready before class on Wednesday, April 11. An abstract (see the end of this handout) is needed for this write-up. The abstract and photocopied pages of the

More information

Unit 4: Chemical Changes (Higher Content)

Unit 4: Chemical Changes (Higher Content) Metals react with oxygen to produce metal oxides. E.g. Copper + Oxygen > Copper Oxide The reactions are oxidation reactions because the metals gain oxygen. Reactivity of Metals Metal Extraction Metals

More information

1. The range of frequencies that a measurement is sensitive to is called the frequency

1. The range of frequencies that a measurement is sensitive to is called the frequency CHEM 3 Name Exam 1 Fall 014 Complete these problems on separate paper and staple it to this sheet when you are finished. Please initial each sheet as well. Clearly mark your answers. YOU MUST SHOW YOUR

More information

Atomic Theory: Spectroscopy and Flame Tests

Atomic Theory: Spectroscopy and Flame Tests Atomic Theory: Spectroscopy and Flame Tests Pre-Lab Demonstrations: Gas Discharge Demo Your instructor will show samples of gas collected in thin glass tubes known as gas discharge tubes. The ends of the

More information