Lots of thanks for many reasons!

Size: px
Start display at page:

Download "Lots of thanks for many reasons!"

Transcription

1 Lots of thanks for many reasons!

2

3 Structure and function of glutamate transporters from free energy simulations Turgut Baştuğ TOBB ETU

4 Transporter structures Transporters have larger structures, which are partly in and partly outside the membrane. Also they have no symmetries. Therefore they are much harder to crystallize First complete transporter structure: ABC (ATP binding cassette) transporter, Locher et al First glutamate (aspartate) transporter: GltPh from Pyrococcus horikoshii, Gouaux et al. 2004; 2007) First sodium-potassium pump structure: Nissen et al. Dec. 2007) Prediction: Gouaux and Nissen will win the Nobel prize within a few years.

5 Transporters Structures & Functions Each time an action potential passes, Na and K concentration differences are depleted a little. To maintain the concentration differences, membrane proteins called sodium-potassium pumps work in the background, continuously pumping Na + and K + ions against their electrochemical gradient. In each cycle, it pumps 3 Na + out, 2 K + in, using 1 ATP molecule. Na-K pump is an example of primary active transporters which use the energy from ATP.

6 Glutamate transporters Glutamate is the major excitatory neurotransmitter in the central nervous system. Its extracellular concentration needs to be tightly controlled, which is achieved by glutamate transporters. They use the ionic gradients to transport 1 Glu in together with 3 Na + and 1 H + ions. Structure of a bacterial aspartate transporter (Gouaux et al. 2004) Each monomer in the trimer functions independently.

7 Structure of GltPh from Pyrococcus horikoshii Boudker, Ryan et al Binding sites for Asp and two Na ions are observed.

8 MD simulations of the Asp transporter GltPh Crystal structure of GltPh gives information but incomplete MD simulations of GltPh reveal the binding site for the third Na ion, which was not observed in the crystal structure Complete characterization of the binding sites for the Na ions and Asp Binding free energy calculations for Na ions and Asp determine the binding order

9 Simulation system Protein Lipid Ions Water

10 The crystal structure is in closed state. After the Na Closed and open states of Gltph + ions and Asp are removed, the hairpin HP2 moves outward, exposing the binding sites. HP2

11 Opening of the extracellular gate HP2

12 Initial MD simulations of GltPh with 2 Na ions and Asp In the crystal structure, Na1 is coordinated by D405 side chain (2 O s) & carbonyls of G306, N310, N401 After (long) equilibration in MD simulations, D312 side chain swings 5 A and starts coordinating Na1, displacing G306 which moves out of the coordination shell. This picture is in conflict with the crystal structure. Proper question to ask: what is holding D312 side chain in that location in the crystal structure? The tip of the D312 side chain is the most likely site for Na3.

13 Movement of the D312 sidechain in MD simulations Initially, D312 (O) is > 7 A from Na1. After about 35 ns, it swings to the coordination shell of Na1, pushing away G306 (O) and also one of the D405 (O). This is conflict with the crystal structure.

14 Na ions in Gltph There are 2 Na ions and a ASP in the crystal structure of GltPh but experiments indicate presence of a third Na ion. Several suggestions have been made for the position of the third Na ion in the protein: Kavanaugh et al. Grewer et. al. and Tajkhorshid, This work supports Tajkhorshid 's suggestion for the position of the 3rd Na ion.

15

16 Hunt for the Na3 site after the experiments with radioactive Na + revealed its existence Reject those sites that do not involve D312 in the coordination of Na3 (Noskov et al, Kavanaugh et al.) Two prospective Na3 sites are found that involve D312 as well as T92 and N310 sidechains 1. In MD simulations that use the closed structure, the 5 th ligand is water. (Tajkhorshid, 2010) 2. In the open (TBOA bound) structure N310 sidechain is flipped around, which shifts the Na3 site, making the Y89 carbonyl as the 5 th ligand. (Question: Why isn t the Na3 site seen in the crystal structure?)

17 Comparison of Na3 sites from closed & open structures Na3 (closed structure) D312 (2), N310, T92, H 2 O (Huang and Tajkhorshid, 2010) Na3 (open structure) D312 (1), N310, T92, S93, Y89 (Our results)

18 Residues involved in the coordination of Na1 (Pair distribution functions for the Na O distances)

19 Ion Helix-residue Cryst. str. Closed state Open state Na3 TM3 T89 (O) 2.3 ± ± 0.1 TM3 T92 (OH) 2.4 ± ± 0.1 TM3 S93 (OH) 2.4 ± ± 0.1 TM7 N310 (OD) 2.2 ± ± 0.1 TM7 D312 (O 1 ) 2.1 ± ± 0.1 TM7 D312 (O 2 ) 3.6 ± ± 0.3 Na1 TM7 G306 (O) ± ± 0.2 TM7 N310 (O) ± ± 0.2 TM8 N401 (O) ± ± 0.2 TM8 D405 (O 1 ) ± ± 0.1 TM8 D405 (O 2 ) ± ± 0.1 H 2 O ± ± 0.1 Na2 TM7 T308 (O) ± 0.1 TM7 T308 (OH) ± 0.1 HP2 S349 (O) ± 0.3 HP2 I350 (O) ± 0.1 HP2 T352 (O) ± 0.1

20 Points to note Tl + ions are substituted for Na + ions in the crystal structure because they have six times more electrons and hence much easier to observe. Because Tl + ions are larger, the observed ion coordination distances are in general larger than those predicted for the Na + ions. For the same reason, some distortion of the binding sites can be expected (e.g. Na2) The path to the Na3 site goes through the Na1 site and is very narrow. Therefore Tl + substitution works for Na1 and Na2 but not for Na3. That is, the Na + ion at the Na3 site cannot be substituted by the Tl + ion at the Na1 site due to lack of space. This explains why the Na3 site is not observed in the crystal structure.

21 Coordination of Asp In the closed structure, Asp is coordinated by 10 N & O atoms (3 from HP1, 2 from HP2, 1 from TM7, 4 from TM8) In the open structure, HP2 gate opens, leading to loss of 2 contacts but another one is gained from TM8. In both cases, there is a 1-1 match between Exp. and MD. Asp stably binds to the open structure in the presence of Na3 and Na1. Removing Na1, destabilizes Asp which unbinds within a few ns. Corollary: Asp binds only after Na3 and Na1. Question: is there a coupling between Asp and Na1?

22 GltPh residues coordinating Asp Helix-residue Asp Cryst. str Closed state Open state Open (restr) HP1 R276 (O) a-n ± ± ± 0.2 HP1 S278 (N) a-o ± ± ± 0.1 HP1 S278 (OH) a-o ± ± ± 0.1 TM7 T314 (OH) b-o ± ± ± 0.1 HP2 V355 (O) a-n ± ± ± 0.3 HP2 G359 (N) b-o ± ± ± 0.3 TM8 D394(O 1 ) a-n ± ± ± 0.1 TM8 R397(N 1 ) b-o ± ± ± 0.1 TM8 R397(N 2 ) b-o ± ± ± 0.2 TM8 T398(OH) a-n ± ± ± 0.2 TM8 N401(ND) a-o ± ± ± 0.2 In the open state HP2 gate moves away from Asp but it remains bound

23 Binding free energies for Na + ions and Asp in GltPh The crystal structure provides a snapshot of the ion and Asp bound configuration of the transporter protein but it does not tell us anything about the binding order and energies. We can answer these question by performing free energy calculations. The specific questions are: 1.We expect a Na + ion to bind first - does it occupy Na1 or Na3 site? 2.Does a second Na+ ion bind before Asp? 3.Are the binding energies consistent with experimental affinities? 4.Are the ion binding sites selective for Na + ions? 5.Can we explain the observed selectivity for Asp over Glu (there is no such selectivity in human Glu transporters) Once we answer these questions successfully in GltPh, we can construct a homology model for human Glu transporters and ask the same there.

24 FEP for Open/Closed Gltph FEP for Ions Ion in the bs is destroyed and a water created whereas a water in the bulk is destroyed and an ion is created. FE is calculated by TI scheme.

25 FEP for Open/Closed Gltph FEP for Ions Ion in the bs is destroyed and a water created whereas a water in the bulk is destroyed and an ion is created. FE is calculated by TI scheme.

26 FEP for Open/Closed Gltph FEP for Ions Ion in the bs is destroyed and a water created whereas a water in the bulk is destroyed and an ion is created. FE is calculated by TI scheme.

27 FEP for Open/Closed Gltph FEP for ASP ASP in the BS is destroyed and 5 water molecules are created whereas 5 water molecules in the bulk are destroyed and one ASP molecule is created. FE is calculated for chain A

28 FEP for Open/Closed Gltph FEP for ASP ASP in the BS is destroyed and 5 water molecules are created whereas 5 water molecules in the bulk are destroyed and one ASP molecule is created. FE is calculated for chain A

29 Convergence of binding free energies in TI method TI calculation of the binding free energy of Na+ ion to the binding site 1 in Gltph. Integration is done using Gaussian quadrature with 7 points. Thick lines show the running averages, which flatten out as the data accumulate. Thin lines show averages over 50 ps blocks of data.

30 Na binding energies from free energy simulations Translocation free energy is obtained using free energy perturbation or thermodynamic integration. Free energy losses due to transl. and rotat. entropy are included (3 rd column). Binding free energies (in kcal/mol): Open structure Ion DG int DG tr DG b Na Na Na Na1 (Na3) Closed structure Ion DG int DG tr DG b Na Na Note that Na2 energy is positive, i.e. Na ion does not bind to Na2 (exp: -3.3)

31 Confirmation of the Na3 site from mutation experiments The T92A and S93A mutations reduce the experimental sodium affinities significantly relative to wild type (K 0.5 increases by x10). The same mutations reduce the calculated binding free energies at Na3 but not at Na1. (All energies are in kcal/mol) Wild type T92A S93A Na ± ± ± 1.2 Na1 (Na3) -7.1 ± ± ± 1.4 Conclusion: T92 and S93 are involved in the coordination of the Na3 site

32 Convergence of Asp binding free energy in TI method TI calculation of the binding free energy of Asp to the binding site in Gltph. Asp is substituted with 5 water molecules. First 400 ps data account for equilibration and the 1 ns of data are used in the production.

33 Asp binding energies (open structure) Contribution DG (kcal/mol) Notes Electrostatic (FEP), (TI) Lennard-Jones (bb) (sc) Translational 3.3 Rotational 3.9 Conform. restraints (bulk) (b.s.) Total -3.8 Forward and backward calculations agree within 1 kcal/mol (that is, no hysteresis) Convergence is checked from running averages Exp. binding free energy (-12 kcal/mol) includes gating & Na2 energy

34 Binding order from binding free energies The Na3 site has the lowest binding free energy, therefore it will be occupied first (-18.7 kcal/mol). Asp does not bind in the absence of Na1, hence Na1 will be occupied next (-7.1 kcal/mol). Asp binds after Na3 and Na1 (-3.8 kcal/mol). The HP2 gate closes after Asp binds. Na2 binds last following the closure of gate (-2.7 kcal/mol) Experiments confirm that a Na ion binds first and another one binds last but do not tell whether Asp binds after one or two Na ions. Presence of two Na ions obviously enhances binding of an Asp.

35 Lessons from the free energy simulations Correct reading of the crystal structure is essential: Respect the long and medium distance structure (e.g. the D312 side chain is correct). But be careful with short distance assignments of side chains (e.g. the N310 side chain has the wrong conformation in the closed structure). Free energy simulations can: help to resolve structural issues provide an overall picture for the binding processes confirm the reliability of the model via comparison with experimental binding free energies.

36 Conclusions Great deal of progress has been made in understanding the structure-function relations in ion channels. The field is now ripe for applications in biomedicine and pharmacology. Transporter structures have been solved more recently and much more work needs to be done to decipher the structure-function relations. New methods are needed to increase the simulation times to the milli to microsecond time domain.

37 People Serdar Kuyucak (Sydney Uni.) Germano Heinzelmann (Sydney Uni.) Murat Çavuş (Bozok Uni.)

38 Acknowlodgement Support from: TUBITAK ARC

39 THANK YOU!

Molecular Dynamics Simulations of the Mammalian Glutamate Transporter EAAT3

Molecular Dynamics Simulations of the Mammalian Glutamate Transporter EAAT3 Molecular Dynamics Simulations of the Mammalian Glutamate Transporter EAAT3 Germano Heinzelmann, Serdar Kuyucak* School of Physics, University of Sydney, NSW, Australia Abstract Excitatory amino acid transporters

More information

Membrane Protein Pumps

Membrane Protein Pumps Membrane Protein Pumps Learning objectives You should be able to understand & discuss: Active transport-na + /K + ATPase ABC transporters Metabolite transport by lactose permease 1. Ion pumps: ATP-driven

More information

Potassium channel gating and structure!

Potassium channel gating and structure! Reading: Potassium channel gating and structure Hille (3rd ed.) chapts 10, 13, 17 Doyle et al. The Structure of the Potassium Channel: Molecular Basis of K1 Conduction and Selectivity. Science 280:70-77

More information

Position of the Third Na + Site in the Aspartate Transporter Glt Ph and the Human Glutamate Transporter, EAAT1

Position of the Third Na + Site in the Aspartate Transporter Glt Ph and the Human Glutamate Transporter, EAAT1 Position of the Third Na + Site in the Aspartate Transporter Glt Ph and the Human Glutamate Transporter, EAAT1 Turgut Bastug 1,2, Germano Heinzelmann 1, Serdar Kuyucak 1, Marietta Salim 3, Robert J. Vandenberg

More information

Membrane Protein Channels

Membrane Protein Channels Membrane Protein Channels Potassium ions queuing up in the potassium channel Pumps: 1000 s -1 Channels: 1000000 s -1 Pumps & Channels The lipid bilayer of biological membranes is intrinsically impermeable

More information

The Membrane Potential

The Membrane Potential The Membrane Potential Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.aw.com/bc) ** It is suggested that you carefully label each ion

More information

TRANSPORT ACROSS MEMBRANE

TRANSPORT ACROSS MEMBRANE TRANSPORT ACROSS MEMBRANE The plasma membrane functions to isolate the inside of the cell from its environment, but isolation is not complete. A large number of molecules constantly transit between the

More information

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins

Advanced Higher Biology. Unit 1- Cells and Proteins 2c) Membrane Proteins Advanced Higher Biology Unit 1- Cells and Proteins 2c) Membrane Proteins Membrane Structure Phospholipid bilayer Transmembrane protein Integral protein Movement of Molecules Across Membranes Phospholipid

More information

Phys498BIO; Prof. Paul Selvin Hw #9 Assigned Wed. 4/18/12: Due 4/25/08

Phys498BIO; Prof. Paul Selvin Hw #9 Assigned Wed. 4/18/12: Due 4/25/08 1. Ionic Movements Across a Permeable Membrane: The Nernst Potential. In class we showed that if a non-permeable membrane separates a solution with high [KCl] from a solution with low [KCl], the net charge

More information

I. MEMBRANE POTENTIALS

I. MEMBRANE POTENTIALS I. MEMBRANE POTENTIALS Background to Nerve Impulses We have all heard that nerve impulses are electrical impulses. Stimuli at one end of a nerve cell are communicated to the far end of the nerve cell through

More information

Chem Lecture 9 Pumps and Channels Part 1

Chem Lecture 9 Pumps and Channels Part 1 Chem 45 - Lecture 9 Pumps and Channels Part 1 Question of the Day: What two factors about a molecule influence the change in its free energy as it moves across a membrane? Membrane proteins function as

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

Supplementary Figure S1. Urea-mediated buffering mechanism of H. pylori. Gastric urea is funneled to a cytoplasmic urease that is presumably attached

Supplementary Figure S1. Urea-mediated buffering mechanism of H. pylori. Gastric urea is funneled to a cytoplasmic urease that is presumably attached Supplementary Figure S1. Urea-mediated buffering mechanism of H. pylori. Gastric urea is funneled to a cytoplasmic urease that is presumably attached to HpUreI. Urea hydrolysis products 2NH 3 and 1CO 2

More information

Particles with opposite charges (positives and negatives) attract each other, while particles with the same charge repel each other.

Particles with opposite charges (positives and negatives) attract each other, while particles with the same charge repel each other. III. NEUROPHYSIOLOGY A) REVIEW - 3 basic ideas that the student must remember from chemistry and physics: (i) CONCENTRATION measure of relative amounts of solutes in a solution. * Measured in units called

More information

Substrate Binding and Formation of an Occluded State in the Leucine Transporter

Substrate Binding and Formation of an Occluded State in the Leucine Transporter 1600 Biophysical Journal Volume 94 March 2008 1600 1612 Substrate Binding and Formation of an Occluded State in the Leucine Transporter Leyla Celik,* y Birgit Schiøtt, y and Emad Tajkhorshid* *Department

More information

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement

Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement 1 Muscle regulation and Actin Topics: Tropomyosin and Troponin, Actin Assembly, Actin-dependent Movement In the last lecture, we saw that a repeating alternation between chemical (ATP hydrolysis) and vectorial

More information

T H E J O U R N A L O F G E N E R A L P H Y S I O L O G Y. jgp

T H E J O U R N A L O F G E N E R A L P H Y S I O L O G Y. jgp S u p p l e m e n ta l m at e r i a l jgp Lee et al., http://www.jgp.org/cgi/content/full/jgp.201411219/dc1 T H E J O U R N A L O F G E N E R A L P H Y S I O L O G Y S u p p l e m e n ta l D I S C U S

More information

Biophysics 490M Project

Biophysics 490M Project Biophysics 490M Project Dan Han Department of Biochemistry Structure Exploration of aa 3 -type Cytochrome c Oxidase from Rhodobacter sphaeroides I. Introduction: All organisms need energy to live. They

More information

The Molecular Dynamics Method

The Molecular Dynamics Method The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = d dx U(x) Conformation

More information

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron.

Protein Dynamics. The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Protein Dynamics The space-filling structures of myoglobin and hemoglobin show that there are no pathways for O 2 to reach the heme iron. Below is myoglobin hydrated with 350 water molecules. Only a small

More information

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES.

CELL BIOLOGY - CLUTCH CH. 9 - TRANSPORT ACROSS MEMBRANES. !! www.clutchprep.com K + K + K + K + CELL BIOLOGY - CLUTCH CONCEPT: PRINCIPLES OF TRANSMEMBRANE TRANSPORT Membranes and Gradients Cells must be able to communicate across their membrane barriers to materials

More information

Biochemistry Prof. S. Dasgupta Department of Chemistry. Indian Institute of Technology Kharagpur. Lecture - 15 Nucleic Acids III

Biochemistry Prof. S. Dasgupta Department of Chemistry. Indian Institute of Technology Kharagpur. Lecture - 15 Nucleic Acids III Biochemistry Prof. S. Dasgupta Department of Chemistry. Indian Institute of Technology Kharagpur Lecture - 15 Nucleic Acids III In the last two classes we spoke about lipids and membranes. Now, what we

More information

The Membrane Potential

The Membrane Potential The Membrane Potential Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) ** It is suggested that you carefully label each ion channel

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17991 Supplementary Discussion Structural comparison with E. coli EmrE The DMT superfamily includes a wide variety of transporters with 4-10 TM segments 1. Since the subfamilies of the

More information

Electrogenic steps associated with substrate binding to the neuronal glutamate transporter EAAC1

Electrogenic steps associated with substrate binding to the neuronal glutamate transporter EAAC1 JBC Papers in Press. Published on April 4, 2016 as Manuscript M116.722470 The latest version is at http://www.jbc.org/cgi/doi/10.1074/jbc.m116.722470 Electrogenic steps associated with substrate binding

More information

Chapter 7-3 Cells and Their Environment

Chapter 7-3 Cells and Their Environment Chapter 7-3 Cells and Their Environment 7-3 Passive Transport Passive transport-the movement of substances across the cell membrane without using NRG Concentration Gradient-difference in concentration

More information

Substrate and Cation Binding Mechanism of Glutamate Transporter Homologs Jensen, Sonja

Substrate and Cation Binding Mechanism of Glutamate Transporter Homologs Jensen, Sonja University of Groningen Substrate and Cation Binding Mechanism of Glutamate Transporter Homologs Jensen, Sonja IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

The potassium channel: Structure, selectivity and diffusion

The potassium channel: Structure, selectivity and diffusion JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 18 8 MAY 2000 The potassium channel: Structure, selectivity and diffusion T. W. Allen a) Protein Dynamics Unit, Department of Chemistry, Australian National

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Hodgkin-Huxley Model for Nerve Cell Action Potential Part 1 Dr. Zvi Roth (FAU) 1 References Hoppensteadt-Peskin Ch. 3 for all the mathematics. Cooper s The Cell

More information

Dynamics of the Extracellular Gate and Ion-Substrate Coupling in the Glutamate Transporter

Dynamics of the Extracellular Gate and Ion-Substrate Coupling in the Glutamate Transporter 2292 Biophysical Journal Volume 95 September 2008 2292 2300 Dynamics of the Extracellular Gate and Ion-Substrate Coupling in the Glutamate Transporter Zhijian Huang and Emad Tajkhorshid Department of Biochemistry,

More information

Membranes 2: Transportation

Membranes 2: Transportation Membranes 2: Transportation Steven E. Massey, Ph.D. Associate Professor Bioinformatics Department of Biology University of Puerto Rico Río Piedras Office & Lab: NCN#343B Tel: 787-764-0000 ext. 7798 E-mail:

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Crystallization. a, Crystallization constructs of the ET B receptor are shown, with all of the modifications to the human wild-type the ET B receptor indicated. Residues interacting

More information

β1 Structure Prediction and Validation

β1 Structure Prediction and Validation 13 Chapter 2 β1 Structure Prediction and Validation 2.1 Overview Over several years, GPCR prediction methods in the Goddard lab have evolved to keep pace with the changing field of GPCR structure. Despite

More information

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 04

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 04 01) Which of the following statements is not true about receptors? a. Most receptors are proteins situated inside the cell. b. Receptors contain a hollow or cleft on their surface which is known as a binding

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Table 1: Data collection, phasing and refinement statistics ChbC/Ta 6 Br 12 Native ChbC Data collection Space group P4 3 2 1 2 P4 3 2 1 2 Cell dimensions a, c (Å) 132.75, 453.57 132.81, 452.95

More information

2002NSC Human Physiology Semester Summary

2002NSC Human Physiology Semester Summary 2002NSC Human Physiology Semester Summary Griffith University, Nathan Campus Semester 1, 2014 Topics include: - Diffusion, Membranes & Action Potentials - Fundamentals of the Nervous System - Neuroanatomy

More information

Nonselective Conduction in a Mutated NaK Channel with Three Cation-Binding Sites

Nonselective Conduction in a Mutated NaK Channel with Three Cation-Binding Sites 2106 Biophysical Journal Volume 103 November 2012 2106 2114 Nonselective Conduction in a Mutated NaK Channel with Three Cation-Binding Sites Simone Furini and Carmen Domene * Department of Medical Surgery

More information

The Potassium Ion Channel: Rahmat Muhammad

The Potassium Ion Channel: Rahmat Muhammad The Potassium Ion Channel: 1952-1998 1998 Rahmat Muhammad Ions: Cell volume regulation Electrical impulse formation (e.g. sodium, potassium) Lipid membrane: the dielectric barrier Pro: compartmentalization

More information

CELLS NOT YOUR CELL PHONE HOMEOSTASIS: LESSON 5 OVERVIEW TEKS

CELLS NOT YOUR CELL PHONE HOMEOSTASIS: LESSON 5 OVERVIEW TEKS Lesson 5: Active Transport Protein Pumps Objectives: In this lesson the student will: CELLS NOT YOUR CELL PHONE HOMEOSTASIS: LESSON 5 OVERVIEW 1. Identify how the unique structure of the cell membrane

More information

Neuroscience 201A Exam Key, October 7, 2014

Neuroscience 201A Exam Key, October 7, 2014 Neuroscience 201A Exam Key, October 7, 2014 Question #1 7.5 pts Consider a spherical neuron with a diameter of 20 µm and a resting potential of -70 mv. If the net negativity on the inside of the cell (all

More information

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer

Chapt. 12, Movement Across Membranes. Chapt. 12, Movement through lipid bilayer. Chapt. 12, Movement through lipid bilayer Chapt. 12, Movement Across Membranes Two ways substances can cross membranes Passing through the lipid bilayer Passing through the membrane as a result of specialized proteins 1 Chapt. 12, Movement through

More information

Computational Structural Biology and Molecular Simulation. Introduction to VMD Molecular Visualization and Analysis

Computational Structural Biology and Molecular Simulation. Introduction to VMD Molecular Visualization and Analysis Computational Structural Biology and Molecular Simulation Introduction to VMD Molecular Visualization and Analysis Emad Tajkhorshid Department of Biochemistry, Beckman Institute, Center for Computational

More information

Interpreting and evaluating biological NMR in the literature. Worksheet 1

Interpreting and evaluating biological NMR in the literature. Worksheet 1 Interpreting and evaluating biological NMR in the literature Worksheet 1 1D NMR spectra Application of RF pulses of specified lengths and frequencies can make certain nuclei detectable We can selectively

More information

Transporters and Membrane Motors Nov 15, 2007

Transporters and Membrane Motors Nov 15, 2007 BtuB OM vitamin B12 transporter F O F 1 ATP synthase Human multiple drug resistance transporter P-glycoprotein Transporters and Membrane Motors Nov 15, 2007 Transport and membrane motors Concentrations

More information

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch.

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch. 1. Describe the basic structure of an ion channel. Name 3 ways a channel can be "activated," and describe what occurs upon activation. What are some ways a channel can decide what is allowed to pass through?

More information

Advanced Molecular Dynamics

Advanced Molecular Dynamics Advanced Molecular Dynamics Introduction May 2, 2017 Who am I? I am an associate professor at Theoretical Physics Topics I work on: Algorithms for (parallel) molecular simulations including GPU acceleration

More information

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a.

Lecture 04, 04 Sept 2003 Chapters 4 and 5. Vertebrate Physiology ECOL 437 University of Arizona Fall instr: Kevin Bonine t.a. Lecture 04, 04 Sept 2003 Chapters 4 and 5 Vertebrate Physiology ECOL 437 University of Arizona Fall 2003 instr: Kevin Bonine t.a.: Bret Pasch Vertebrate Physiology 437 1. Membranes (CH4) 2. Nervous System

More information

(Na++ K +)-ATPase in artificial lipid vesicles: influence of the concentration of mono- and divalent cations on the pumping rate

(Na++ K +)-ATPase in artificial lipid vesicles: influence of the concentration of mono- and divalent cations on the pumping rate 254 Biochimica et Biophysica Acta 862 (1986) 254-264 Elsevier BBA 72961 (Na++ K +)-ATPase in artificial lipid vesicles: influence of the concentration of mono- and divalent cations on the pumping rate

More information

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1

Membrane Physiology. Dr. Hiwa Shafiq Oct-18 1 Membrane Physiology Dr. Hiwa Shafiq 22-10-2018 29-Oct-18 1 Chemical compositions of extracellular and intracellular fluids. 29-Oct-18 2 Transport through the cell membrane occurs by one of two basic processes:

More information

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme

Structural and mechanistic insight into the substrate. binding from the conformational dynamics in apo. and substrate-bound DapE enzyme Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 215 Structural and mechanistic insight into the substrate binding from the conformational

More information

Universality of sensory-response systems

Universality of sensory-response systems excite.org(anism): Electrical Signaling Universality of sensory-response systems Three step process: sensation-integration-response Bacterial chemotaxis Madigan et al. Fig. 8.24 Rick Stewart (CBMG) Human

More information

Biol2174 Cell Physiology in Health & Disease

Biol2174 Cell Physiology in Health & Disease Biol2174 Cell Physiology in Health & Disease Lecture 4: Membrane Transport Proteins Kiaran Kirk Research School of Biology Learning objectives To understand: The need for membrane transport proteins in

More information

The protein folding problem consists of two parts:

The protein folding problem consists of two parts: Energetics and kinetics of protein folding The protein folding problem consists of two parts: 1)Creating a stable, well-defined structure that is significantly more stable than all other possible structures.

More information

Lecture 2. Excitability and ionic transport

Lecture 2. Excitability and ionic transport Lecture 2 Excitability and ionic transport Selective membrane permeability: The lipid barrier of the cell membrane and cell membrane transport proteins Chemical compositions of extracellular and intracellular

More information

Characterizing Structural Transitions of Membrane Transport Proteins at Atomic Detail Mahmoud Moradi

Characterizing Structural Transitions of Membrane Transport Proteins at Atomic Detail Mahmoud Moradi Characterizing Structural Transitions of Membrane Transport Proteins at Atomic Detail Mahmoud Moradi NCSA Blue Waters Symposium for Petascale Science and Beyond Sunriver, Oregon May 11, 2015 Outline Introduction

More information

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability

Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Proteins are not rigid structures: Protein dynamics, conformational variability, and thermodynamic stability Dr. Andrew Lee UNC School of Pharmacy (Div. Chemical Biology and Medicinal Chemistry) UNC Med

More information

Nervous System Organization

Nervous System Organization The Nervous System Nervous System Organization Receptors respond to stimuli Sensory receptors detect the stimulus Motor effectors respond to stimulus Nervous system divisions Central nervous system Command

More information

An Introduction to Metabolism

An Introduction to Metabolism An Introduction to Metabolism I. All of an organism=s chemical reactions taken together is called metabolism. A. Metabolic pathways begin with a specific molecule, which is then altered in a series of

More information

Analyzing Ion channel Simulations

Analyzing Ion channel Simulations Analyzing Ion channel Simulations (Neher and Sakmann, Scientific American 1992) Single channel current (Heurteaux et al, EMBO 2004) Computational Patch Clamp (Molecular Dynamics) Atoms move according to

More information

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017

Information processing. Divisions of nervous system. Neuron structure and function Synapse. Neurons, synapses, and signaling 11/3/2017 Neurons, synapses, and signaling Chapter 48 Information processing Divisions of nervous system Central nervous system (CNS) Brain and a nerve cord Integration center Peripheral nervous system (PNS) Nerves

More information

Lectures by Kathleen Fitzpatrick

Lectures by Kathleen Fitzpatrick Chapter 10 Chemotrophic Energy Metabolism: Aerobic Respiration Lectures by Kathleen Fitzpatrick Simon Fraser University Figure 10-1 Figure 10-6 Conversion of pyruvate The conversion of pyruvate to acetyl

More information

Membrane transport 1. Summary

Membrane transport 1. Summary Membrane transport 1. Summary A. Simple diffusion 1) Diffusion by electrochemical gradient no energy required 2) No channel or carrier (or transporter protein) is needed B. Passive transport (= Facilitated

More information

Table 1. Kinetic data obtained from SPR analysis of domain 11 mutants interacting with IGF-II. Kinetic parameters K D 1.

Table 1. Kinetic data obtained from SPR analysis of domain 11 mutants interacting with IGF-II. Kinetic parameters K D 1. Kinetics and Thermodynamics of the Insulin-like Growth Factor II (IGF-II) Interaction with IGF-II/Mannose 6-phosphate Receptor and the function of CD and AB Loop Solvent-exposed Residues. Research Team:

More information

April Barry Isralewitz

April Barry Isralewitz 1 April 2002 Barry Isralewitz All enzymes are beautiful, but ATP synthase is one of the most: - Beautiful because of its 3D structure, - Unusual because of its structural complexity and reaction mechanism,

More information

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 KEY CONCEPTS 34.1 Nervous Systems Are Composed of Neurons and Glial Cells 34.2 Neurons Generate Electric Signals by Controlling Ion Distributions 34.3

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11524 Supplementary discussion Functional analysis of the sugar porter family (SP) signature motifs. As seen in Fig. 5c, single point mutation of the conserved

More information

Chapter 4. Glutamic Acid in Solution - Correlations

Chapter 4. Glutamic Acid in Solution - Correlations Chapter 4 Glutamic Acid in Solution - Correlations 4. Introduction Glutamic acid crystallises from aqueous solution, therefore the study of these molecules in an aqueous environment is necessary to understand

More information

Minireview: Molecular Structure and Dynamics of Drug Targets

Minireview: Molecular Structure and Dynamics of Drug Targets Prague Medical Report / Vol. 109 (2008) No. 2 3, p. 107 112 107) Minireview: Molecular Structure and Dynamics of Drug Targets Dahl S. G., Sylte I. Department of Pharmacology, Institute of Medical Biology,

More information

Retinal Proteins (Rhodopsins) Vision, Bioenergetics, Phototaxis. Bacteriorhodopsin s Photocycle. Bacteriorhodopsin s Photocycle

Retinal Proteins (Rhodopsins) Vision, Bioenergetics, Phototaxis. Bacteriorhodopsin s Photocycle. Bacteriorhodopsin s Photocycle Molecular chanisms of Photoactivation and Spectral Tuning in Retinal Proteins Emad Tajkhorshid Theoretical and Computational Biophysics Group Beckman Institute University of Illinois at Urbana-Champaign

More information

The Nervous System and the Sodium-Potassium Pump

The Nervous System and the Sodium-Potassium Pump The Nervous System and the Sodium-Potassium Pump 1. Define the following terms: Ion: A Student Activity on Membrane Potentials Cation: Anion: Concentration gradient: Simple diffusion: Sodium-Potassium

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2004 How do we go from an unfolded polypeptide chain to a compact folded protein? (Folding of thioredoxin, F. Richards) Structure - Function

More information

Regulació electrostàtica de canals microfluídics i porus biològics. Jordi Faraudo Institut de Ciència de Materials de Barcelona

Regulació electrostàtica de canals microfluídics i porus biològics. Jordi Faraudo Institut de Ciència de Materials de Barcelona Regulació electrostàtica de canals microfluídics i porus biològics Jordi Faraudo Institut de Ciència de Materials de Barcelona A few (interesting?) examples of nanofluidic devices Electrostatic regulation

More information

Don t forget to bring your MD tutorial. Potential Energy (hyper)surface

Don t forget to bring your MD tutorial. Potential Energy (hyper)surface Don t forget to bring your MD tutorial Lab session starts at 1pm You will have to finish an MD/SMD exercise on α-conotoxin in oxidized and reduced forms Potential Energy (hyper)surface What is Force? Energy

More information

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways Chapter 8: An Introduction to Metabolism 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways 1. Energy & Chemical Reactions 2 Basic Forms of Energy Kinetic Energy (KE) energy in motion

More information

Problem Set 1

Problem Set 1 2006 7.012 Problem Set 1 Due before 5 PM on FRIDAY, September 15, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. For each of the following parts, pick

More information

Unfolding CspB by means of biased molecular dynamics

Unfolding CspB by means of biased molecular dynamics Chapter 4 Unfolding CspB by means of biased molecular dynamics 4.1 Introduction Understanding the mechanism of protein folding has been a major challenge for the last twenty years, as pointed out in the

More information

Particle-Based Simulation of Bio-Electronic Systems

Particle-Based Simulation of Bio-Electronic Systems Particle-Based Simulation of Bio-Electronic Systems Alex Smolyanitsky, and Marco Saraniti Arizona State University Outline Particle-based Brownian dynamics simulations for bioelectronic systems Complex-field

More information

Biochemistry. Biochemistry 7/11/ Bio-Energetics. 4.2) Transport of ions and small molecules across cell membranes

Biochemistry. Biochemistry 7/11/ Bio-Energetics. 4.2) Transport of ions and small molecules across cell membranes Biochemistry Biochemistry 4. Bio-Energetics 4.2) Transport of ions and small molecules across cell membranes Aquaporin, the water channel, consists of four identical transmembrane polypeptides Key Energy

More information

Questions: Properties of excitable tissues Transport across cell membrane Resting potential Action potential Excitability change at excitation

Questions: Properties of excitable tissues Transport across cell membrane Resting potential Action potential Excitability change at excitation Questions: Properties of excitable tissues Transport across cell membrane Resting potential Action potential Excitability change at excitation EXCITABLE TISSUES The tissues can change the properties under

More information

MOLECULAR CELL BIOLOGY

MOLECULAR CELL BIOLOGY 1 Lodish Berk Kaiser Krieger scott Bretscher Ploegh Matsudaira MOLECULAR CELL BIOLOGY SEVENTH EDITION CHAPTER 11 Transmembrane Transport of Ions and Small Molecules Copyright 2013 by W. H. Freeman and

More information

Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine. JAK2 Selective Mechanism Combined Molecular Dynamics Simulation

Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine. JAK2 Selective Mechanism Combined Molecular Dynamics Simulation Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is The Royal Society of Chemistry 2015 Supporting Information Enhancing Specificity in the Janus Kinases: A Study on the Thienopyridine

More information

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2

Organization of the nervous system. Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Nervous system Organization of the nervous system Tortora & Grabowski Principles of Anatomy & Physiology; Page 388, Figure 12.2 Autonomic and somatic efferent pathways Reflex arc - a neural pathway that

More information

Neuroscience: Exploring the Brain

Neuroscience: Exploring the Brain Slide 1 Neuroscience: Exploring the Brain Chapter 3: The Neuronal Membrane at Rest Slide 2 Introduction Action potential in the nervous system Action potential vs. resting potential Slide 3 Not at rest

More information

Lecture 3 13/11/2018

Lecture 3 13/11/2018 Lecture 3 13/11/2018 1 Plasma membrane ALL cells have a cell membrane made of proteins and lipids. protein channel Cell Membrane Layer 1 Layer 2 lipid bilayer protein pump Lipid bilayer allows water, carbon

More information

Molecular Basis of K + Conduction and Selectivity

Molecular Basis of K + Conduction and Selectivity The Structure of the Potassium Channel: Molecular Basis of K + Conduction and Selectivity -Doyle, DA, et al. The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science

More information

Topics in Neurophysics

Topics in Neurophysics Topics in Neurophysics Alex Loebel, Martin Stemmler and Anderas Herz Exercise 2 Solution (1) The Hodgkin Huxley Model The goal of this exercise is to simulate the action potential according to the model

More information

Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate

Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate Shidi Zhao a, Laura Restrepo-Pérez b, Misha Soskine c, Giovanni Maglia c, Chirlmin Joo b, Cees Dekker b and Aleksei Aksimentiev

More information

Cooperativity and Specificity of Cys 2 His 2 Zinc Finger Protein-DNA Interactions: A Molecular Dynamics Simulation Study

Cooperativity and Specificity of Cys 2 His 2 Zinc Finger Protein-DNA Interactions: A Molecular Dynamics Simulation Study 7662 J. Phys. Chem. B 2010, 114, 7662 7671 Cooperativity and Specificity of Cys 2 His 2 Zinc Finger Protein-DNA Interactions: A Molecular Dynamics Simulation Study Juyong Lee, Jin-Soo Kim, and Chaok Seok*

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2013 Monday, 17 June, 2.30 pm 5.45 pm 15

More information

Free energy calculations

Free energy calculations Free energy calculations Berk Hess May 5, 2017 Why do free energy calculations? The free energy G gives the population of states: ( ) P 1 G = exp, G = G 2 G 1 P 2 k B T Since we mostly simulate in the

More information

1 Electrons and Chemical Bonding

1 Electrons and Chemical Bonding CHAPTER 13 1 Electrons and Chemical Bonding SECTION Chemical Bonding BEFORE YOU READ After you read this section, you should be able to answer these questions: What is chemical bonding? What are valence

More information

Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: FEP and Related Methods

Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: FEP and Related Methods Statistical Thermodynamics Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: FEP and Related Methods Dr. Ronald M. Levy ronlevy@temple.edu Free energy calculations Free energy

More information

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty.

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty. Lecture 15: Enzymes & Kinetics Mechanisms Margaret A. Daugherty Fall 2004 ROLE OF THE TRANSITION STATE Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products

More information

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea The Scaled Effective Solvent Method for Predicting the Equilibrium Ensemble of Structures with Analysis of Thermodynamic Properties of Amorphous Polyethylene Glycol-Water Mixtures Hyeyoung Shin a, Tod

More information

K versus Na Ions in a K Channel Selectivity Filter: A Simulation Study

K versus Na Ions in a K Channel Selectivity Filter: A Simulation Study Biophysical Journal Volume 83 August 2002 633 645 633 K versus Na Ions in a K Channel Selectivity Filter: A Simulation Study Indira H. Shrivastava, D. Peter Tieleman, Philip C. Biggin, and Mark S. P. Sansom

More information

Ion Translocation Across Biological Membranes. Janos K. Lanyi University of California, Irvine

Ion Translocation Across Biological Membranes. Janos K. Lanyi University of California, Irvine Ion Translocation Across Biological Membranes Janos K. Lanyi University of California, Irvine Examples of transmembrane ion pumps Protein Cofactor, substrate, etc. MW Subunits Mitoch. cytochrome oxidase

More information

Neurons and Nervous Systems

Neurons and Nervous Systems 34 Neurons and Nervous Systems Concept 34.1 Nervous Systems Consist of Neurons and Glia Nervous systems have two categories of cells: Neurons, or nerve cells, are excitable they generate and transmit electrical

More information

Supporting Information for Lysozyme Adsorption in ph-responsive Hydrogel Thin-Films: The non-trivial Role of Acid-Base Equilibrium

Supporting Information for Lysozyme Adsorption in ph-responsive Hydrogel Thin-Films: The non-trivial Role of Acid-Base Equilibrium Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 215 Supporting Information for Lysozyme Adsorption in ph-responsive Hydrogel Thin-Films: The non-trivial

More information

General Physics. Nerve Conduction. Newton s laws of Motion Work, Energy and Power. Fluids. Direct Current (DC)

General Physics. Nerve Conduction. Newton s laws of Motion Work, Energy and Power. Fluids. Direct Current (DC) Newton s laws of Motion Work, Energy and Power Fluids Direct Current (DC) Nerve Conduction Wave properties of light Ionizing Radiation General Physics Prepared by: Sujood Alazzam 2017/2018 CHAPTER OUTLINE

More information

L718Q mutant EGFR escapes covalent inhibition by stabilizing. a non-reactive conformation of the lung cancer drug. osimertinib

L718Q mutant EGFR escapes covalent inhibition by stabilizing. a non-reactive conformation of the lung cancer drug. osimertinib Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information (ESI) for L718Q mutant EGFR escapes covalent inhibition

More information