Non-Ideal Reactors. Definitions * Segregated flow - fluid elements do not mix, have different residence times - Need Residence Time Distribution

Size: px
Start display at page:

Download "Non-Ideal Reactors. Definitions * Segregated flow - fluid elements do not mix, have different residence times - Need Residence Time Distribution"

Transcription

1 Non-Ideal Reactors Deviations from ideal reactor behavior - Tank Reactors: inadequate mixing, stagnant regions, bypassing or short-circuiting Tubular Reactors: mixing in longitudinal direction, incomplete mixing in radial direction, bypassing (especially in fixed bed reactors) Definitions * Segregated flow - fluid elements do not mix, have different residence times - Need Residence Time Distribution * Micromixing - adjacent elements mix partially - Need extent of micromixing * Effects of non-ideality are higher for viscous reaction mixtures * Study limited to non-idealities for single reactions in homogeneous reactors here. Residence Time Distribution * residence time is the time it takes for a fluid element to pass through the reactor * age is the time since the element entered the reactor * residual lifetime - remaining time the element will spend in the reactor * age+residual lifetime=residence time F(t): Fraction of the effluent stream that has residence time less than t. F(0)=0 F(inf)=1 E(t)dt = df is the fraction of the effluent stream that has residence time between t and t+dt E(t) is typically called the residence time distribution function Based on the concentration of tracer species measured at effluent, E(t) can be defined as: Properties of RTD if the volumetric flow rate can be assumed to be constant, for a pulse input. for a step input.

2 U 0 Cumulative RTD: than t)! #"$ Mean Residence Time: '& 1 32 Variance of the RTD: /0 Internal age distribution function 5 and t+dt) # #"( ) +*-,.! #"$ 4& (fraction of effluent that has been in reactor for time less (for closed system) (fraction of fluid in the reactor that has age between t RTD for Ideal Reactors Since the mixing conditions are well known for these ideal reactors, the RTD can be predicted without real experimentation: PFR - All elements come out at same time is the Dirac Delta function, has a value of : Furthermore, ;=< >A2 #"$>B < at t=0 and is zero otherwise. CSTR- Material balance on inert tracer can be performed: in-out=accumulation C 2D.EF F* G EH +E ;JI =NPOQ RST#U' Thus, 4& Laminar flow reactor: Similarly (see Fogler), the RTD for a laminar flow reactor can be derived as: CV XW,ZY,ZY[ #\ V X]^ 0,ZY Reactor modelling with RTD: * chance of a molecule reacting depends on the other molecules it encounters during its stay in the reactor, => need residence time and mixing pattern * if velocity and local rate of mixing of every molecule in the reactor were known, differential mass balance can be written and integrated to get the final conversion * in the absence of such information approximations are necessary for reactor modelling * so, for reactors with known RTD, some assumptions regarding mixing have to be made. Mixing conditions: extremes

3 The two extreme situations are: -> incoming fluid remains completely segregated - i.e., it forms small globules that are uniformly dispersed, and such that all molecules in the globule have the same residence time (Segregation Model) -> incoming fluid is completely mixed on a molecular scale (Maximum Mixedness Model) * it turns out that for first order reactions either assumption amounts to the same thing in terms of final conversion, since conversion is independant of local concentration * in case of the CSTR, maximum mixedness also implies perfect mixing. if the RTD of the real reactor is the same as that for a CSTR, then the maximum mixedness assumption on top of it, leads to equations matching that of a CSTR. Estimating Deviations from Ideal Behavior: Zero and One-Parameter Models (i) Wholly Segregated Flow - measure RTD from experiment- - calculate conversion by assuming wholly segregated flow (good for PFR; not good for nearly ideal CSTR) (ii) Maximum Mixedness Model - measure RTD - assume maximum mixedness (good for nearly ideal CSTR) (ii) Axial Dispersion Model - assume ideal PFR + axial dispersion occurs - actual RTD is required - good for PFR in turbulent flow (iii) Series of Ideal CSTRs of equal volume - actual reactor response to be used to determine number of tanks (iv) PFR with recycle (not covered in class) - mixing introduced through recycle - extent of recycle determines whether close to PFR behavior (zero recycle) or CSTR behavior (infinite recycle)

4 Q Q Q Degree of segregation Danckwerts two limiting mixing conditions can be further clarified as: (i) Incoming fluid is broken up into discrete fragmants which are small compared to the size of the reactor, and are uniformly dispersed in the reactor. the molecules of the fragments which have entered together remain together indefinitely. (fully segregated fluid) (ii) Incoming material is dispersed on a molecular scale in a time less than the average residence time; the mixture is chemically uniform Segregation is a measure of mixing in the reactor. It is understood to be the degree of departure of reactor from the perfectly mixed behaviour. - Suppose we superimpose the F vs. time diagram of a perfectly mixed reactor over that for the real reactor. The difference between the two curves can be said to be a measure of segregation in the system. * A useful definition of perfect mixing is: If the age distribution of material in the reactor is the same as that in the outgoing stream, the reactor is perfectly mixed (CSTR). The other extreme is when the exit age is the same for all internal ages (PFR). * If the age of a molecule is a= time elapsed since the molecule entered the reactor.9_(à_b the reactor c_d2 _ 0 - average over all the molecules, _ being the mean age of molcules currently in * Now let the mean age of molecules occupying some point in the reactor be _ Q. Then,.9_(à_ c_ 2 _ 0 - average over all points in the reactor. Now, for mixed flow, there is no variation in ages of molecules at different points in the reactor, therefore.7_7à_ Q C. (Note that this cannot be strictly true except for the CSTR) For Fully Segregated Flow the variance in ages between points in the reactor equals the variance in ages, as molecules that enter at the same time stay together and pass through the reactor all together. This,.9_(à_b e.7_7à_ Q for this case. Based on these observations, degree of segregation can be defined as: fg e.9_(à_,.7_7`z_, such that fh ji for fully segregated flow, and fh C for mixed flow. The degree of segregation which can be estimated from experiments, serves as a useful means of estimating the mixing characteristics of the real reactor. Qualitative analysis of the effect of segregation/mixing:

5 ; Consider (a problem from Fogler) a second order reaction in two reactor sequences: a. A PFR followed by CSTR b. A CSTR followed by PFR Let the concentration of reactant at inlet be 1, and the reaction rate constant and residence time in each reactor also 1, all in self-consistent units. Then it can be shown that in case (a) the final conversion is 63.4 while in case (b) the final conversion is Note that it can be further shown the RTD for both (a) and (b) is the same. This difference in conversion in the two set-ups is attributable to the fact that in (a) the mixing between molecules of different ages happens later than in case (b), and this in turn implies that the degree of segregation is higher in (a) than in (b). For second and higher order reactions a higher degree of segregation is suitable, while the opposite is true for negative reaction orders. Estimating conversion * in the general, the complex mixing pattern has to be known in addition to the residence time function for the evaluation of conversion. * in the extreme cases of mixing this estimation is quite simplified: * typically, we can say that estimating conversion using the RTD of the real reactor, along with the completely segregated and maximum micxedness models will give the minimum and maximum bounds for the real conversion. Completely segregated model * In this case, each globule, i.e., bunch of molecules that enter the reactor at same time, can be thought of as a separate batch reactor. * Each globule is a lump of all the molecules that have the same residence time in the reactor * Let the conversion in the batch reactor be X(t), where t refers to the time spent in reactor, as relevant to the globules, this t is the corresponding residence time Mean Conversion of globules with res. time between t and t+dt = Conversion in batch reactor at time t x fraction of globules that have residence time between t and t+dt. In other words, reactor conversion for this model can be written as: kl km #! #"$ Maximum Mixedness Model * This limiting case is not as easy to model * If the residence time distribution function for the real reactor matches that for a CSTR, then

6 : : in the limit of maximum mixedness, we can assume that the real reactor behaves like a CSTR, and just solve the CSTR equations * It is not possible to apply this model if the RTD is that of a PFR * If the residence time distribution is some other function, then the minimum value of the degree of segregation is not zero, we hypothesize a tubular reactor, with fluid entering along the length of the tube, through side entrances, in such a way that the RTD remains same as that of the real reactor. In addition, plug flow is assumed so that there is complete radial mixing as soon as the fluid enters the reactor. * Then, the differential equation of mass balance can be derived to be: G n j2m`qpsrt uevpw2xevp o ; my { zoq R} 3~o where E p ; refers to the inlet concentration of the reactant, ` p is the reaction rate, is the RTD, the cumulative RTD, and is a time variable such that its value is 0 at the exit of the reactor and inf. at the entrance of the reactor. * Two initial conditions are common for this hypothetical reactor, V Evp +Evp ; or * either can be used V "Evp8,[" C * to solve this equation, we have to integrate backwards (typically numerically), starting at a large value of (usually 4-5 times the average residence time), and finally reaching conversion can thus be calculated. * The process is little more involved than the completely segregated model, but turns out to be really simple if the RTD matches that of CSTR * Note that this model cannot be used of the RTD matches that of a PFR, a quick substitution into the differential equation will show you the inconsistency * This is because the micro- and macro-mixing aspects of a reactor are not exactly independent of each other, if the RTD is that of a PFR then maximum mixedness is impossible as the RTD itself implies virtually no mixing between adjacent elements. * Detailed mathematical analysis can be found in the journal articles by Danckwerts and Zwitterieg, and is closely related to the analysis of degree of segregation for real reactors C The Tanks-in-series model * this model has one adjustable parameter, and also requires the RTD function * typical application is for tubular reactors * the assumption is that the real reactor can be approximated as a series of equal-volume CSTRs * the job is the find the number of such CSTRs required * if the average res. time and variance are evaluated from from the RTD function, the number

7 0 0 r 2 0 of reactors can be obtained from a simple relation: U'ƒ ƒ * Further, the conversion can be calculated easily as all the CSTRs are of same size (by repeated application of the CSTR mass balance equations) * for first order reactions it is simply k i2 { {P?ˆ UŠ Œ where n is number of tanks from above, and is the residence time in eaach tank (=t/n) * Note that for non first-order reactions, numerical solution of the system of algebraic equations from mass balance for each tank, may be required. Axial dispersion model * more complicated to analyse than the tanks-in-series; also requires one parameter to be estimated (dispersion coefficient) * application to tubular reactors * axial dispersion, governed by Fick s law of diffusion is superimposed on ideal plug flow * dispersion causes the input pulse to broaden as it moves down the tubular reactor, thus it can be interpreted as deviation from plug flow (where the pulse remains infinitesimally narrow) * First an unsteady mole balance on the inert tracer is to be done (for determination of the dispsersion coefficient from pulse tracer experiments): Ž' Ž j2 Ž ~ Ž r b Ž Ž' ƒ ƒ ( is the dispersion coefficient) * Different types of boundary conditions for the reactor are to be imposed, depending on the situation just outside: Closed-closed implies that outside both entrance and exit of the real reactor, plug flow can be assumed; Open-open implies that the dispersion non-ideality exits just outside the reactor at entrance and exit * the following equations are relevant for estimating dispersion coefficient for each of these BCs (Pe is Peclet Number = D/uL): (a) Closed-closed: ƒ U ƒ (b) Open-open: ƒ U ƒ N 2 N I R N N ƒ * Note that the Peclet number for some reactor types can be also be obtained as functions of Reynolds number etc. through correlations (See Levenspiel, correlations in figures). These obviate the need for tracer experiments, but exist only for a handful of reactor types * After estimatoin of the dispersion coefficient, the combined process of axial dispersion and reaction has be solved to obtain conversion, appropriate boundary conditions have to be chosen in this case as well. Analytical solution is only possible in case of first order reactions (Fogler has detailed calculations).

8 Summary * Non-idealities in reactors are understood from viewpoint of micro and macro-mixing. * Macromixing effects are captures thorugh the residence time distribution function that can be obtained from inert tracer experiments * Micromixing effects are analyzed with two extreme cases - COmplete segregation (no micromixing) and maximum mixedness (complete micromixing) models. * One-parameter models used for tubular reactors are tanks in series model and axial dispersion model - the parameter is to be evaluated using the RTD; conversion to be calculated by re-writing the balance equations for assumed reactor types. * Several other models have been developed for capturing non-ideality. Levenpsiel and Fogler give descriptions of some of these, others can be found in research articles.

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts Handouts Handout 1: Practical reactor performance deviates from that of ideal reactor s : Packed bed reactor Channeling CSTR & Batch Dead Zones, Bypass PFR deviation from plug flow dispersion Deviation

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 32! Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.!! 1! Lecture 32 Thursday

More information

Review: Nonideal Flow in a CSTR

Review: Nonideal Flow in a CSTR L3- Review: Nonideal Flow in a CSTR Ideal CSTR: uniform reactant concentration throughout the vessel Real stirred tank Relatively high reactant concentration at the feed entrance Relatively low concentration

More information

CHEMICAL REACTORS - PROBLEMS OF NON IDEAL REACTORS 61-78

CHEMICAL REACTORS - PROBLEMS OF NON IDEAL REACTORS 61-78 011-01 ourse HEMIL RETORS - PROBLEMS OF NON IDEL RETORS 61-78 61.- ccording to several experiments carried out in a continuous stirred tank reactor we suspect that the behavior of the reactor is not ideal.

More information

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz,

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net More reactors So far we have learned about the three basic types of reactors: Batch, PFR, CSTR.

More information

Basic Concepts in Reactor Design

Basic Concepts in Reactor Design Basic Concepts in Reactor Design Lecture # 01 KBK (ChE) Ch. 8 1 / 32 Introduction Objectives Learning Objectives 1 Different types of reactors 2 Fundamental concepts used in reactor design 3 Design equations

More information

CHAPTER 4 EXPERIMENTAL METHODS

CHAPTER 4 EXPERIMENTAL METHODS 47 CHAPTER 4 EXPERIMENTAL METHODS 4.1 INTRODUCTION The experimental procedures employed in the present work are oriented towards the evaluation of residence time distribution in a static mixer and the

More information

Models for Nonideal Reactors

Models for Nonideal Reactors Fogler_Web_Ch18.fm Page 1 Monday, October 9, 017 1:58 PM Models for Nonideal Reactors 18 Success is a journey, not a destination. Ben Sweetland Use the RTD to evaluate parameters. Overview. Not all tank

More information

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model Unit 33. Axial Dispersion Model Overview In the plug flow reactor model, concentration only varies in the axial direction, and the sole causes of that variation are convection and reaction. Unit 33 describes

More information

PHEN 612 SPRING 2008 WEEK 12 LAURENT SIMON

PHEN 612 SPRING 2008 WEEK 12 LAURENT SIMON PHEN 612 SPRING 28 WEEK 12 LAURENT SIMON Mixing in Reactors Agitation, Mixing of Fluids and Power requirements Agitation and mixing are two of the most common operations in the processing industries Agitation:

More information

Models for Nonideal Reactors

Models for Nonideal Reactors Fogler_ECRE_CDROM.book Page 945 Wednesday, September 17, 8 5:1 PM Models for Nonideal Reactors 14 Success is a journey, not a destination. Ben Sweetland Use the RTD to evaluate parameters Overview Not

More information

1. Introductory Material

1. Introductory Material CHEE 321: Chemical Reaction Engineering 1. Introductory Material 1b. The General Mole Balance Equation (GMBE) and Ideal Reactors (Fogler Chapter 1) Recap: Module 1a System with Rxn: use mole balances Input

More information

Chemical Reactions and Chemical Reactors

Chemical Reactions and Chemical Reactors Chemical Reactions and Chemical Reactors George W. Roberts North Carolina State University Department of Chemical and Biomolecular Engineering WILEY John Wiley & Sons, Inc. x Contents 1. Reactions and

More information

Chemical Reaction Engineering Lecture 5

Chemical Reaction Engineering Lecture 5 Chemical Reaction Engineering g Lecture 5 The Scope The im of the Course: To learn how to describe a system where a (bio)chemical reaction takes place (further called reactor) Reactors Pharmacokinetics

More information

Engineering Theory of Leaching

Engineering Theory of Leaching Engineering Theory of Leaching An approach to non-ideal reactors and scale- up of pressure leaching systems Presented by Lynton Gormely, P.Eng., Ph.D. The Problem given lab scale batch results, predict

More information

A MASTER'S REPORT MASTER OF SCIENCE. Major Professor CHEMICAL ENGINEERING" Tsai. Billy I. submitted in partial fulfillment of

A MASTER'S REPORT MASTER OF SCIENCE. Major Professor CHEMICAL ENGINEERING Tsai. Billy I. submitted in partial fulfillment of "EFFECT OF MIXING ON REACTOR PERFORMANCE" AND "APPLICATION OF LINEAR PROGRAMMING TO CHEMICAL ENGINEERING" by < -y Billy I Tsai B. S., National Taiwan University, 1963 A MASTER'S REPORT submitted in partial

More information

Mixing in Chemical Reactors

Mixing in Chemical Reactors 1 / 131 Mixing in Chemical Reactors Copyright c 2018 by Nob Hill Publishing, LLC The three main reactor types developed thus far batch, continuous-stirred-tank, and plug-flow reactors are useful for modeling

More information

CHAPTER 15 RESIDENCE TIME DISTRIBUTIONS

CHAPTER 15 RESIDENCE TIME DISTRIBUTIONS CHAPTER 15 RESIDENCE TIME DISTRIBUTIONS Reactor design usually begins in the laboratory with a kinetic study. Data are taken in small-scale, specially designed equipment that hopefully (but not inevitably)

More information

NPTEL. Chemical Reaction Engineering II - Video course. Chemical Engineering. COURSE OUTLINE

NPTEL. Chemical Reaction Engineering II - Video course. Chemical Engineering.   COURSE OUTLINE NPTEL Syllabus Chemical Reaction Engineering II - Video course COURSE OUTLINE This is a typical second course in the subject of chemical reaction engineering with an emphasis on heterogeneous reaction

More information

Minister E. Obonukut, Perpetua G. Bassey IJSRE Volume 4 Issue 1 January

Minister E. Obonukut, Perpetua G. Bassey IJSRE Volume 4 Issue 1 January Volume 4 Issue 1 Pages-4767-4777 January-216 ISSN (e): 2321-7545 Website: http://ijsae.in DOI: http://dx.doi.org/1.18535/ijsre/v4i1.2 Residence Time Distribution of A Tubular Reactor Authors Minister E.

More information

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna.

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna. Chemical Reaction Engineering and Reactor Technology Tapio Salmi Abo Akademi Abo-Turku, Finland Jyri-Pekka Mikkola Umea University, Umea, Sweden Johan Warna Abo Akademi Abo-Turku, Finland CRC Press is

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. #40 Problem solving: Reactor Design Friends, this is our last session

More information

Mixing in Chemical Reactors

Mixing in Chemical Reactors Mixing in Chemical Reactors Copyright c 2016 by Nob Hill Publishing, LLC The three main reactor types developed thus far batch, continuous-stirredtank, and plug-flow reactors are useful for modeling many

More information

Mixing in Chemical Reactors

Mixing in Chemical Reactors Mixing in Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC The three main reactor types developed thus far batch, continuous-stirredtank, and plug-flow reactors are useful for modeling many

More information

Advanced Transport Phenomena Module 6 - Lecture 28

Advanced Transport Phenomena Module 6 - Lecture 28 Mass Transport: Non-Ideal Flow Reactors Advanced Transport Phenomena Module 6 - Lecture 28 Dr. R. Nagarajan Professor Dept of Chemical Engineering IIT Madras 1 Simplest approach: apply overall material/

More information

Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I)

Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I) Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I) Prof. Gabriele Pannocchia Department of Civil and Industrial Engineering (DICI) University

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press I i Green Chemical Engineering An Introduction to Catalysis, Kinetics, and Chemical Processes S. Suresh and S. Sundaramoorthy CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Type of reactors Dr. Zifei Liu Ideal reactors A reactor is an apparatus in which chemical, biological, and physical processes (reactions) proceed intentionally,

More information

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS Starting Reference 1. P. A. Ramachandran and R. V. Chaudhari, Three-Phase Catalytic Reactors, Gordon and Breach Publishers, New York, (1983). 2. Nigam, K.D.P.

More information

ξ Da nc n = c Pe ξ = c o ( θ ) (95) c ξ = 0 (96) θ = 0 ; c= c i ξ ( ) (97) (98) Pe z = u L E z

ξ Da nc n = c Pe ξ = c o ( θ ) (95) c ξ = 0 (96) θ = 0 ; c= c i ξ ( ) (97) (98) Pe z = u L E z 5. THE AXIAL DISPERSION MODEL The axial dispersion model can readily be extended to apply to turbulent flow conditions. Under such conditions the velocity profile is almost flat and averaging with respect

More information

ERT 208 REACTION ENGINEERING

ERT 208 REACTION ENGINEERING ERT 208 REACTION ENGINEERING MOLE BALANCE MISMISURAYA MEOR AHMAD School of bioprocess engineering Unimap Course Outcome No.1: Ability to solve the rate of reaction and their kinetics. objectives DESCRIBE

More information

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS At the end of this week s lecture, students should be able to: Differentiate between the three ideal reactors Develop and apply the

More information

Chapter 8 STATISTICAL ASSESSMENT OF NUMERICAL DIFFUSION

Chapter 8 STATISTICAL ASSESSMENT OF NUMERICAL DIFFUSION 84 hapter 8 STATISTIAL ASSESSMENT OF NUMERIAL DIFFUSION The assessment of the performance of high-order numerical methods regarding the numerical diffusion introduced in the solution of the scalar transport

More information

Study on residence time distribution of CSTR using CFD

Study on residence time distribution of CSTR using CFD Indian Journal of Chemical Technology Vol. 3, March 16, pp. 114-1 Study on residence time distribution of CSTR using CFD Akhilesh Khapre*, Divya Rajavathsavai & Basudeb Munshi Department of Chemical Engineering,

More information

Determining of the Residence Time Distribution in CPC reactor type

Determining of the Residence Time Distribution in CPC reactor type Available online at www.sciencedirect.com Energy Procedia 18 (212 ) 368 376 Determining of the Residence Time Distribution in CPC reactor type Ouassila Benhabiles a*, Nadia Chekir a,walid Taane a a Solar

More information

RADIOTRACER RESIDENCE TIME DISTRIBUTION METHOD IN DIAGNOSING INDUSTRIAL PROCESSING UNITS: CASE STUDIES

RADIOTRACER RESIDENCE TIME DISTRIBUTION METHOD IN DIAGNOSING INDUSTRIAL PROCESSING UNITS: CASE STUDIES RADIOTRACER RESIDENCE TIME DISTRIBUTION METHOD IN DIAGNOSING INDUSTRIAL PROCESSING UNITS: CASE STUDIES J. Thereska*, E. Plasari** * Institute of Applied Nuclear Physics, Tirana, Albania ** Ecole Nationale

More information

A First Course on Kinetics and Reaction Engineering Example 11.5

A First Course on Kinetics and Reaction Engineering Example 11.5 Example 11.5 Problem Purpose This problem illustrates the use of the age function measured using a step change stimulus to test whether a reactor conforms to the assumptions of the ideal PFR model. Then

More information

Chemical Reactor flnolysis

Chemical Reactor flnolysis Introduction to Chemical Reactor flnolysis SECOND EDITION R.E. Hayes J.P. Mmbaga ^ ^ T..,«,,.«M.iirti,im.' TECHNISCHE INFORMATIONSBIBLIOTHEK UNWERSITATSBIBLIOTHEK HANNOVER i ii ii 1 J /0\ CRC Press ycf*

More information

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1 (Refer Slide Time: 00:19) Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay Lecture - 03 Design Equations-1 We are looking at advanced reaction engineering;

More information

CHAPTER FIVE REACTION ENGINEERING

CHAPTER FIVE REACTION ENGINEERING 1 CHAPTER FIVE REACTION ENGINEERING 5.1. Determination of Kinetic Parameters of the Saponification Reaction in a PFR 5.3. Experimental and Numerical Determination of Kinetic Parameters of the Saponification

More information

Table of Contents. Preface... xiii

Table of Contents. Preface... xiii Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics... 3 1.1. Forces, stress tensor, and pressure... 4 1.2. Navier Stokes equations in Cartesian coordinates...

More information

(Refer Slide Time: 00:10)

(Refer Slide Time: 00:10) Chemical Reaction Engineering 1 (Homogeneous Reactors) Professor R. Krishnaiah Department of Chemical Engineering Indian Institute of Technology Madras Lecture No 10 Design of Batch Reactors Part 1 (Refer

More information

MODELING OF CONTINUOUS OSCILLATORY BAFFLED REACTOR FOR BIODIESEL PRODUCTION FROM JATROPHA OIL ABSTRACT

MODELING OF CONTINUOUS OSCILLATORY BAFFLED REACTOR FOR BIODIESEL PRODUCTION FROM JATROPHA OIL ABSTRACT MODELING OF CONTINUOUS OSCILLATORY BAFFLED REACTOR FOR BIODIESEL PRODUCTION FROM JATROPHA OIL B. K. Highina, I. M. Bugaje & B. Gutti Department of Chemical Engineering University of Maiduguri, Borno State,

More information

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre Chemical Reaction Engineering Multiple Reactions Dr.-Eng. Zayed Al-Hamamre 1 Content Types of Reactions Selectivity Reaction Yield Parallel Reactions Series Reactions Net Rates of Reaction Complex Reactions

More information

Basics of Non-Ideal Flow

Basics of Non-Ideal Flow Chapter 11 Basics of Non-Ideal Flow So far we have treated two flow patterns, plug flow and mixed flow. These can give very different behavior (size of reactor, distribution of products). We like these

More information

Plug flow Steady-state flow. Mixed flow

Plug flow Steady-state flow. Mixed flow 1 IDEAL REACTOR TYPES Batch Plug flow Steady-state flow Mixed flow Ideal Batch Reactor It has neither inflow nor outflow of reactants or products when the reaction is being carried out. Uniform composition

More information

Predicting Continuous Leach Performance from Batch Data

Predicting Continuous Leach Performance from Batch Data Predicting Continuous Leach Performance from Batch Data An approach to non-ideal reactors and scale- up of leaching systems Presented by Lynton Gormely, P.Eng., Ph.D. The Problem given lab scale batch

More information

A First Course on Kinetics and Reaction Engineering Unit 12. Performing Kinetics Experiments

A First Course on Kinetics and Reaction Engineering Unit 12. Performing Kinetics Experiments Unit 12. Performing Kinetics Experiments Overview Generating a valid rate expression for a reaction requires both a reactor and and an accurate mathematical model for that reactor. Unit 11 introduced the

More information

A First Course on Kinetics and Reaction Engineering Unit 14. Differential Data Analysis

A First Course on Kinetics and Reaction Engineering Unit 14. Differential Data Analysis Unit 14. Differential Data Analysis Overview The design equations (reactor models) for the perfectly mixed batch reactor and for the PFR are differential equations. This presents a small problem when data

More information

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, 2013 Closed Book, Web, and Notes Name Honor Code (Sign at the end of exam period) 1) / 5 pts 2) / 5 pts 3) / 5 pts 4) / 5 pts 5) / 5 pts 6) / 5

More information

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz,

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz, Chemical Reaction Engineering - Part 4 - intro to CSTRs Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Continuous Stirred Tank Reactors - CSTRs Here are a couple screenshots from the ReactorLab, Division

More information

A First Course on Kinetics and Reaction Engineering Unit D and 3-D Tubular Reactor Models

A First Course on Kinetics and Reaction Engineering Unit D and 3-D Tubular Reactor Models Unit 34. 2-D and 3-D Tubular Reactor Models Overview Unit 34 describes two- and three-dimensional models for tubular reactors. One limitation of the ideal PFR model is that the temperature and composition

More information

CEE 370 Environmental Engineering Principles

CEE 370 Environmental Engineering Principles Updated: 29 September 2015 Print version EE 370 Environmental Engineering Principles Lecture #9 Material Balances I Reading: Mihelcic & Zimmerman, hapter 4 Davis & Masten, hapter 4 David Reckhow EE 370

More information

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design Textbook: Elements of Chemical Reaction Engineering, 4 th Edition 1 CHE 404 Chemical Reaction Engineering Chapter 8 Steady-State Nonisothermal Reactor Design Contents 2 PART 1. Steady-State Energy Balance

More information

5. Collection and Analysis of. Rate Data

5. Collection and Analysis of. Rate Data 5. Collection and nalysis of o Objectives Rate Data - Determine the reaction order and specific reaction rate from experimental data obtained from either batch or flow reactors - Describe how to analyze

More information

REFERENCE TEXTBOOKS MATERIAL AND ENERGY BALANCE: THERMODYNAMICS: TRANSPORT: KINETICS AND REACTOR DESIGN:

REFERENCE TEXTBOOKS MATERIAL AND ENERGY BALANCE: THERMODYNAMICS: TRANSPORT: KINETICS AND REACTOR DESIGN: REFERENCE TEXTBOOKS MATERIAL AND ENERGY BALANCE: Elementary Principles of Chemical Processes, 4 th Edition - Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard THERMODYNAMICS: Introduction to Chemical

More information

Chemical Reaction Engineering. Dr. Yahia Alhamed

Chemical Reaction Engineering. Dr. Yahia Alhamed Chemical Reaction Engineering Dr. Yahia Alhamed 1 Kinetics and Reaction Rate What is reaction rate? It is the rate at which a species looses its chemical identity per unit volume. The rate of a reaction

More information

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore Module No. #05 Lecture No. #29 Non Isothermal Reactor Operation Let us continue

More information

Mathematical Modeling Of Chemical Reactors

Mathematical Modeling Of Chemical Reactors 37 Mathematical Modeling Of Chemical Reactors Keywords: Reactors, lug flow, CSTR, Conversion, Selectivity Chemical reactor calculations are based on the elementary conservation laws of matter and energy.

More information

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60 2011-2012 Course CHEMICL RECTORS - PROBLEMS OF RECTOR SSOCITION 47-60 47.- (exam jan 09) The elementary chemical reaction in liquid phase + B C is carried out in two equal sized CSTR connected in series.

More information

NPTEL. Chemical Reaction Engineering 1 (Homogeneous Reactors) - Video course. Chemical Engineering.

NPTEL. Chemical Reaction Engineering 1 (Homogeneous Reactors) - Video course. Chemical Engineering. NPTEL Syllabus Chemical Reaction Engineering 1 (Homogeneous Reactors) - Video course COURSE OUTLINE In simple terms, Chemical Engineering deals with the production of a variety of chemicals on large scale.

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Today s lecture Complex

More information

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler)

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) CHE 309: Chemical Reaction Engineering Lecture-2 Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) Module 1: Mole Balances, Conversion & Reactor Sizing Topics to be covered

More information

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do. Lecture (9) Reactor Sizing 1.Introduction Chemical kinetics is the study of chemical reaction rates and reaction mechanisms. The study of chemical reaction engineering (CRE) combines the study of chemical

More information

The Convection Model for Laminar Flow

The Convection Model for Laminar Flow Chapter 15 The Convection Model for Laminar Flow When a tube or pipe is long enough and the fluid is not very viscous, then the dispersion or tanks-in-series model can be used to represent the flow in

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Chemical Reaction Engineering Dr. Yahia Alhamed Chemical and Materials Engineering Department College of Engineering King Abdulaziz University General Mole Balance Batch Reactor Mole Balance Constantly

More information

Name. Honor Code: I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code.

Name. Honor Code: I have neither given nor received unauthorized aid on this examination, nor have I concealed any violations of the Honor Code. ChE 344 Fall 014 Mid Term Exam II Wednesday, November 19, 014 Open Book Closed Notes (but one 3x5 note card), Closed Computer, Web, Home Problems and In-class Problems Name Honor Code: I have neither given

More information

Assessing Mixing Sensitivities for Scale-up. Matthew Jörgensen Atlanta, 10/20/2014

Assessing Mixing Sensitivities for Scale-up. Matthew Jörgensen Atlanta, 10/20/2014 Assessing Mixing Sensitivities for Scale-up Matthew Jörgensen Atlanta, 10/20/2014 Nalas: Solutions that Scale! Engineering Services Broad range of services & capabilities supporting chemical process development

More information

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes ChE 344 Winter 011 Mid Term Exam I + Thursday, February 17, 011 Closed Book, Web, and Notes Name Honor Code (sign at the end of exam) 1) / 5 pts ) / 5 pts 3) / 5 pts 4) / 15 pts 5) / 5 pts 6) / 5 pts 7)

More information

Steady-State Molecular Diffusion

Steady-State Molecular Diffusion Steady-State Molecular Diffusion This part is an application to the general differential equation of mass transfer. The objective is to solve the differential equation of mass transfer under steady state

More information

Analysis and Validation of Chemical Reactors performance models developed in a commercial software platform

Analysis and Validation of Chemical Reactors performance models developed in a commercial software platform Analysis and Validation of Chemical Reactors performance models developed in a commercial software platform Faheem Mushtaq Master of Science Thesis KTH School of Industrial Engineering and Management Energy

More information

The Scale-Up of Oscillatory Flow Mixing

The Scale-Up of Oscillatory Flow Mixing The Scale-Up of Oscillatory Flow Mixing by Keith B. Smith Christ's College Cambridge September 1999 A dissertation submitted for the degree of Doctor of Philosophy in the University of Cambridge To my

More information

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs Unit 22. Analysis of Steady State CSRs Overview Reaction engineering involves constructing an accurate mathematical model of a real world reactor and then using that model to perform an engineering task

More information

Chapter 1. Lecture 1

Chapter 1. Lecture 1 Chapter 1 Lecture 1 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. 1 Lecture 1 Introduction

More information

Macromixing and micromixing in a semibatch chemical reactor

Macromixing and micromixing in a semibatch chemical reactor Retrospective Theses and Dissertations 1974 Macromixing and micromixing in a semibatch chemical reactor Douglas Duane Roth Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/rtd

More information

CE 329, Fall 2015 Second Mid-Term Exam

CE 329, Fall 2015 Second Mid-Term Exam CE 39, Fall 15 Second Mid-erm Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must first turn

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. 1 Lecture 2 Review of Lecture

More information

Chapter (4) Motion of Fluid Particles and Streams

Chapter (4) Motion of Fluid Particles and Streams Chapter (4) Motion of Fluid Particles and Streams Read all Theoretical subjects from (slides Dr.K.AlASTAL) Patterns of Flow Reynolds Number (R e ): A dimensionless number used to identify the type of flow.

More information

Modeling of Mixing in The Liquid Phase For Bubble Column

Modeling of Mixing in The Liquid Phase For Bubble Column Eng. & Tech. Journal, Vol.27, No.10, 2009 Phase For Bubble Column Abstract Dr.Ali H. Jawad* Received on:10/11/2008 Accepted on:5/3/2009 Hydrodynamic characteristics (mixing in the liquid phase) in a bubble

More information

Effect of Shape and Flow Control Devices on the Fluid Flow Characteristics in Three Different Industrial Six Strand Billet Caster Tundish

Effect of Shape and Flow Control Devices on the Fluid Flow Characteristics in Three Different Industrial Six Strand Billet Caster Tundish , pp. 1647 1656 Effect of Shape and Flow Control Devices on the Fluid Flow Characteristics in Three Different Industrial Six Strand Billet Caster Tundish Anurag TRIPATHI and Satish Kumar AJMANI Research

More information

Application of the theory of micromixing to groundwater reactive transport models

Application of the theory of micromixing to groundwater reactive transport models WATER RESOURCES RESEARCH, VOL. 39, NO. 11, 1313, doi:10.1029/2003wr002368, 2003 Application of the theory of micromixing to groundwater reactive transport models Bruce A. Robinson and Hari S. Viswanathan

More information

The Material Balance for Chemical Reactors

The Material Balance for Chemical Reactors The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

THINK FLUID DYNAMIX Mixing, Homogenization & Blend Time. THINK Fluid Dynamix

THINK FLUID DYNAMIX Mixing, Homogenization & Blend Time. THINK Fluid Dynamix THINK FLUID DYNAMIX Mixing, Homogenization & Blend Time Provided by: THINK Fluid Dynamix Am Pestalozziring 21 D-91058 Erlangen (Germany) Tel. +49 (0)9131 69098-00 http://www.think-fd.com CFD ENGINEERING

More information

A new jet-stirred reactor for chemical kinetics investigations Abbasali A. Davani 1*, Paul D. Ronney 1 1 University of Southern California

A new jet-stirred reactor for chemical kinetics investigations Abbasali A. Davani 1*, Paul D. Ronney 1 1 University of Southern California 0 th U. S. National Combustion Meeting Organized by the Eastern States Section of the Combustion Institute pril 23-26, 207 College Park, Maryland new jet-stirred reactor for chemical kinetics investigations

More information

The Material Balance for Chemical Reactors. General Mole Balance. R j. Q 1 c j1. c j0. Conservation of mass. { rate of inflow

The Material Balance for Chemical Reactors. General Mole Balance. R j. Q 1 c j1. c j0. Conservation of mass. { rate of inflow 2 / 153 The Material Balance for Chemical Reactors Copyright c 2018 by Nob Hill Publishing, LLC 1 / 153 General Mole Balance R j V Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component

More information

A First Course on Kinetics and Reaction Engineering Example 33.1

A First Course on Kinetics and Reaction Engineering Example 33.1 Example 33.1 Problem Purpose This problem will help you determine whether you have mastered the learning objectives for this unit. It illustrates the analysis of a tubular reactor using the ial dispersion

More information

Chemical Reaction Engineering

Chemical Reaction Engineering CHPTE 7 Chemical eaction Engineering (Gate 00). The conversion for a second order, irreversible reaction (constant volume) () k B, in batch mode is given by k C t o ( kcot) (C) k C t o + (D) kcot (B) k

More information

1. Starting of a project and entering of basic initial data.

1. Starting of a project and entering of basic initial data. PROGRAM VISIMIX TURBULENT SV. Example 1. Contents. 1. Starting of a project and entering of basic initial data. 1.1. Opening a Project. 1.2. Entering dimensions of the tank. 1.3. Entering baffles. 1.4.

More information

DARS overview, IISc Bangalore 18/03/2014

DARS overview, IISc Bangalore 18/03/2014 www.cd-adapco.com CH2O Temperatur e Air C2H4 Air DARS overview, IISc Bangalore 18/03/2014 Outline Introduction Modeling reactions in CFD CFD to DARS Introduction to DARS DARS capabilities and applications

More information

A First Course on Kinetics and Reaction Engineering Unit 19. Analysis of Batch Reactors

A First Course on Kinetics and Reaction Engineering Unit 19. Analysis of Batch Reactors Unit 19. Analysis of Batch Reactors Overview As noted in Unit 18, batch reactor processing often follows an operational protocol that involves sequential steps much like a cooking recipe. In general, each

More information

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS INTRODUCTION TO CHEMICAL PROCESS SIMULATORS DWSIM Chemical Process Simulator A. Carrero, N. Quirante, J. Javaloyes October 2016 Introduction to Chemical Process Simulators Contents Monday, October 3 rd

More information

A Unit Operations Lab Project that Combines the Concepts of Reactor Design and Transport Phenomena

A Unit Operations Lab Project that Combines the Concepts of Reactor Design and Transport Phenomena Session #2313 A Unit Operations Lab Project that Combines the Concepts of Reactor Design and Transport Phenomena Benjamin J. Lawrence, Sundararajan V. Madihally, R. Russell Rhinehart School of Chemical

More information

Applied chemical process

Applied chemical process Applied chemical process s Chemical reactor The most important reaction-related factors for the design of a reactor are: 1) The activation principle selected, together with the states of aggregation of

More information

THE USE OF FIBRE OPTIC PROBES FOR FLOW MONITORING WITHIN A SMALL-SCALE TUBE

THE USE OF FIBRE OPTIC PROBES FOR FLOW MONITORING WITHIN A SMALL-SCALE TUBE 3rd International Symposium on Two-Phase Flow Modelling and Experimentation Pisa, 22-24 September 24 THE USE OF FIBRE OPTIC PROBES FOR FLOW MONITORING WITHIN A SMALL-SCALE TUBE N. Reis*, A.A. Vicente*,

More information

Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi

Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi Heterogeneous Catalysis and Catalytic Processes Prof. K. K. Pant Department of Chemical Engineering Indian Institute of Technology, Delhi Lecture - 34 Good afternoon, so in the last lecture I was talking

More information

Chemical Reaction Engineering II Prof. Ganesh Vishwanathan. Department of Chemical Engineering Indian Institute of Technology, Bombay

Chemical Reaction Engineering II Prof. Ganesh Vishwanathan. Department of Chemical Engineering Indian Institute of Technology, Bombay Chemical Reaction Engineering II Prof. Ganesh Vishwanathan. Department of Chemical Engineering Indian Institute of Technology, Bombay Lecture -17 Packed-bed reactor design Friends, let us look at how to

More information

A First Course on Kinetics and Reaction Engineering Unit 30.Thermal Back-Mixing in a PFR

A First Course on Kinetics and Reaction Engineering Unit 30.Thermal Back-Mixing in a PFR Unit 30.Thermal Back-Mixing in a PFR Overview One advantage offered by a CSTR when running an exothermic reaction is that the cool feed gets heated by mixing with the contents of the reactor. As a consequence

More information

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19 A First Course on Kinetics and Reaction Engineering Class 20 on Unit 19 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going Part III - Chemical Reaction Engineering A. Ideal

More information