Titration Curves. What is in the beaker at each stage of a titration? Beaker A Beaker B Beaker C Beaker D. 20 ml NaOH Added

Size: px
Start display at page:

Download "Titration Curves. What is in the beaker at each stage of a titration? Beaker A Beaker B Beaker C Beaker D. 20 ml NaOH Added"

Transcription

1 Why? Titration Curves What is in the beaker at each stage of a titration? Titration is a very useful technique for determining the properties of an unknown solution. The unknown is reacted with a known titrant solution by adding small volumes until an equivalence point is reached. Titrations can be done using an acid base reaction, redox reaction or precipitation. Most commonly it is used to find the concentration of a solute. D epending on the type of reaction used, a chemist might also be able to determine the strength of an unknown acid or base, the potential of a species to oxidize or reduce another species, or the solubility of a substance. This activity will focus on an acid base titration. Model 1 HCl Sample Titrated with NaOH Beaker A Beaker B Beaker C Beaker D H 2 O H 3 O + HCl NaOH 0 ml NaOH Added 10 ml NaOH Added 20 ml NaOH Added 30 ml NaOH Added Beaker A B C D H 2 O molecules H 3 O 1+ ions Cl 1 ions Na 1+ ions OH 1 ions 1. Consider the diagrams in Model 1. a. Which beaker illustrates the solution before the titration begins? b. Why does the volume increase from Beaker A to Beaker D? 2. Explain why there are no HCl molecules in any of the beakers. 3. Write a balanced net ionic equation for the reaction between HCl and NaOH during the titration. Titration Curves 1

2 4. Which species in the illustrations in Model 1 are simply spectator ions? 5. Complete the table in Model 1 by counting the number of each species in each of the four beakers. Record the numbers in the appropriate box in the table. The first column has been done for you as an example. 6. For each beaker in Model 1 determine if the solution would be acidic, basic or neutral when checked with a ph meter. Justify your reasoning. Beaker A Beaker B Beaker C Beaker D Model 2 A Titration Curve ph Volume of NaOH Added (ml) 7. The graph in Model 2 shows the ph of the resulting solution from the titration illustrated in Model 1. Label four points on the graph in Model 2 to correspond with the four beakers in Model 1. 2 POGIL Activities for AP* Chemistry

3 8. The sample for the titration shown in Models 1 and 2 was ml of M hydrochloric acid. Verify that the initial ph of this sample is correctly plotted in the graph in Model 2. Show a calculation to support your answer. 9. The solution in Beaker B of Model 1 was the result of ml of M sodium hydroxide solution being added to Beaker A. a. How many moles of HCl were initially in Beaker A? b. How many moles of NaOH were added to Beaker A to get Beaker B? c. After the reaction, which species is in excess HCl or NaOH? d. How many moles of excess reactant are left in Beaker B? e. Calculate the concentration of the excess HCl or excess NaOH. Make sure to consider the new volume of the solution (assume the volumes are additive). f. Verify the ph of Beaker B in the graph in Model 2. Show a calculation to support your answer. 10. The solution in Beaker C of Model 1 was the result of ml of M sodium hydroxide solution being added to Beaker A. a. How many moles of HCl were initially in Beaker A? b. How many moles of NaOH were added to Beaker A to get Beaker C? c. After the reaction, which species is in excess HCl or NaOH? d. Verify the ph of Beaker C in the graph in Model 2. Titration Curves 3

4 11. The solution in Beaker D of Model 1 was the result of ml of M sodium hydroxide solution being added to Beaker A. a. How many moles of HCl were initially in Beaker A? b. How many moles of NaOH were added to Beaker A to get Beaker D? c. After the reaction, which species is in excess HCl or NaOH? d. How many moles of excess reactant are left in Beaker D? e. Calculate the concentration of the excess HCl or excess NaOH. Make sure to consider the new volume of the solution (assume the volumes are additive). f. Verify the ph of Beaker D in the graph in Model 2. Show a calculation to support your answer. 12. The point on the graph in Model 2 corresponding to Beaker C is called the equivalence point. a. Label the equivalence point on the graph in Model 2. b. With your group, discuss why this point might be called the equivalence point. Be prepared to share your thoughts with the class. 4 POGIL Activities for AP* Chemistry

5 Model 3 Determining the Unknown Concentration ph Sample X Sample Y Sample Z Volume of NaOH Added (ml) 13. The graph in Model 3 shows the titration curves of three samples of hydrochloric acid, each having the same volume (20.00 ml) but different concentrations. All three samples were titrated with the same sodium hydroxide solution. What feature of the titration curve changes the most when samples with different concentrations are titrated? 14. Does changing the concentration of the sample have a significant effect on the initial or final ph for the titration curve? 15. Circle the equivalence point of each titration in Model 3. Notice that the ph at all three equivalence points is Explain how this can be the case even though the initial samples were different concentrations. Titration Curves 5

6 16. Refer to Model 3. a. Estimate the volume of M NaOH added to sample X to reach the equivalence point. b. Calculate the moles of base that were added to reach the equivalence point. c. Calculate the moles of acid that must have been present in sample X initially. d. Calculate the initial concentration of HCl in sample X. Recall the initial volume of the sample was ml. 17. Use an approach similar to that in Question 16 to calculate the concentration of HCl in sample Z before the titration. 6 POGIL Activities for AP* Chemistry

7 Extension Questions Model 4 Weak Acid Titration Curves ph HCl Acetic Acid Volume of NaOH Added (ml) 18. Consider Model 4. The two titration curves were produced using the same volume (20.00 ml) and concentration of acid (0.100 M). The titrant was M NaOH. What is the major difference in the shape of a titration curve for a weak acid compared to the curve for a strong acid? 19. Write the net ionic equation for acetic acid (HCH 3 COO) with sodium hydroxide. 20. Draw a particulate representation of the weak acid titration at each of the four stages. Refer to Model 1 as a guide, but think about how a weak acid would be different from a strong acid. Titration Curves 7

8 21. Notice that the same volume of NaOH is required to reach the equivalence point for both the strong and weak acid. Explain why this is the case. 22. Notice that the equivalence point for the acetic acid titration is closer to 8 than 7. Considering what species are in the beaker at that point in the titration, explain why the solution has a ph that is in the basic range. 23. Discuss with your group how the ph of the solution in the beaker might be determined at each stage of the titration. Actual calculations are not necessary, but consider that you would be provided the K a of the weak acid being titrated. Record notes for yourself to help with problems of this type later. Beaker A Initial sample Beaker B Between the initial sample and the equivalence point Beaker C At the equivalence point Beaker D Beyond the equivalence point 8 POGIL Activities for AP* Chemistry

Net Ionic Equations. Do all reactant species participate in a reaction?

Net Ionic Equations. Do all reactant species participate in a reaction? Net s Do all reactant species participate in a reaction? Why? If you were to attend a sporting event on any random weekend you would find there are two types of people in attendance players and spectators.

More information

Common Ion Effect on Solubility

Common Ion Effect on Solubility Common Ion Effect on Solubility How is the solubility of a solid affected by other ion species in solution? Why? The solubility product (K sp ) for a salt allows chemists to predict the concentration of

More information

Common Ion Effect on Acid Ionization

Common Ion Effect on Acid Ionization Common Ion Effect on Acid Ionization How is the ionization of a weak acid affected by other ion species in solution? Why? The ionization constant (K a ) for a weak acid allows chemists to predict the concentration

More information

Buffers. How can a solution neutralize both acids and bases? Beaker B: 100 ml of 1.00 M HCl. HCl (aq) + H 2 O H 3 O 1+ (aq) + Cl 1 (aq)

Buffers. How can a solution neutralize both acids and bases? Beaker B: 100 ml of 1.00 M HCl. HCl (aq) + H 2 O H 3 O 1+ (aq) + Cl 1 (aq) Buffers How can a solution neutralize both acids and bases? Why? Buffer solutions are a mixture of substances that have a fairly constant ph regardless of addition of acid or base. They are used in medicine,

More information

CHAPTER 4. Major Classes of Chemical Reactions

CHAPTER 4. Major Classes of Chemical Reactions CHAPTER 4 Major Classes of Chemical Reactions There are several types of reaction. 1. ADDITION REACTION A + B C 2. DECOMPOSITION A B + C 3. SINGLE DISPLACEMENT AB + C AC + B 4. DOUBLE DISPLACEMENT AB +

More information

5 Acid Base Reactions

5 Acid Base Reactions Aubrey High School AP Chemistry 5 Acid Base Reactions 1. Consider the formic acid, HCOOH. K a of formic acid = 1.8 10 4 a. Calculate the ph of a 0.20 M solution of formic acid. Name Period Date / / 5.2

More information

Acid-Base Titration Lab

Acid-Base Titration Lab Acid-Base Titration Lab Name Objectives: - To apply knowledge of molarity to properly dilute a concentrated base - To apply knowledge of solution stoichiometry in order to correctly determine the unknown

More information

Empirical formula C 4 H 6 O

Empirical formula C 4 H 6 O AP Chem Test- Titration and Gravimetric Analysis p. 2 Name date 4. Empirical Formula A compound is analyzed and found to contain 68.54% carbon, 8.63% hydrogen, and 22.83% oxygen. The molecular weight of

More information

AP Chemistry Review Packet # form B. How many grams of water are present in 1.00 mol of copper(ii) sulfate pentahydrate?

AP Chemistry Review Packet # form B. How many grams of water are present in 1.00 mol of copper(ii) sulfate pentahydrate? AP Chemistry Review Packet #4 Warmup: Reaction Prediction 2010 form B (a) Solid copper(ii) sulfate pentahydrate is gently heated. How many grams of water are present in 1.00 mol of copper(ii) sulfate pentahydrate?

More information

Understanding the shapes of acid-base titration curves AP Chemistry

Understanding the shapes of acid-base titration curves AP Chemistry Understanding the shapes of acidbase titration curves AP Chemistry Neutralization Reactions go to Completion Every acidbase reaction produces another acid and another base. A neutralization reaction is

More information

Chapter 4: Chemical Quantities and Aqueous Reactions

Chapter 4: Chemical Quantities and Aqueous Reactions Chapter 4: Chemical Quantities and Aqueous Reactions C (s) + O 2 (g) CO 2 (g) CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 0 (g) 2 C 8 H 18 (g) + 25 O 2 (g) 16 CO 2 (g) + 18 H 2 0 (g) Stoichiometry Calculations

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

(A) Composition (B) Decomposition (C) Single replacement (D) Double replacement: Acid-base (E) Combustion

(A) Composition (B) Decomposition (C) Single replacement (D) Double replacement: Acid-base (E) Combustion AP Chemistry - Problem Drill 08: Chemical Reactions No. 1 of 10 1. What type is the following reaction: H 2 CO 3 (aq) + Ca(OH) 2 (aq) CaCO 3 (aq) + 2 H 2 O (l)? (A) Composition (B) Decomposition (C) Single

More information

4.6 Describing Reactions in Solution

4.6 Describing Reactions in Solution 4.6 Describing Reactions in Solution The overall or formula equation for this reaction: K 2 CrO(aq) Ba(NO 3 ) 2 (aq) BaCrO 4 (s) 2KNO 3 (aq) Although the formula equation shows the reactants and products

More information

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Table of Contents 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition

More information

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS THE COMMON ION EFFECT The common ion effect occurs when the addition of an ion already present in the system causes the equilibrium to shift away

More information

AP Chemistry Laboratory #18: Buffering in Household Products. Lab days: Wed. and Thurs., March 21-22, 2018 Lab due: Friday, March 23, 2018

AP Chemistry Laboratory #18: Buffering in Household Products. Lab days: Wed. and Thurs., March 21-22, 2018 Lab due: Friday, March 23, 2018 AP Chemistry Laboratory #18: Buffering in Household Products Lab days: Wed. and Thurs., March 21-22, 2018 Lab due: Friday, March 23, 2018 Goals (list in your lab book): The goals of this lab are to experiment

More information

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry Chapter 4 Types of Chemical Reaction and Solution Stoichiometry Water, the Common Solvent One of the most important substances on Earth. Can dissolve many different substances. A polar molecule because

More information

Solutions 4a (Chapter 4 problems)

Solutions 4a (Chapter 4 problems) Solutions 4a (Chapter 4 problems) Chem151 [Kua] 4.10 A balanced chemical equation must have equal numbers of atoms of each element on each side of the arrow. Balance each element in turn, beginning with

More information

Chapter 4 Reactions in Aqueous Solution

Chapter 4 Reactions in Aqueous Solution Chapter 4 Reactions in Aqueous Solution Homework Chapter 4 11, 15, 21, 23, 27, 29, 35, 41, 45, 47, 51, 55, 57, 61, 63, 73, 75, 81, 85 1 2 Chapter Objectives Solution To understand the nature of ionic substances

More information

Student Exploration: Titration

Student Exploration: Titration Name: Date: Student Exploration: Titration Vocabulary: acid, analyte, base, dissociate, equivalence point, indicator, litmus paper, molarity, neutralize, ph, strong acid, strong base, titrant, titration,

More information

CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY

CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY Water, the common solvent Solution is a homogeneous mixture Solvent is the substance that does the dissolving Solute is the substance that

More information

AP Chemistry Big Idea Review

AP Chemistry Big Idea Review Name: AP Chemistry Big Idea Review Background The AP Chemistry curriculum is based on 6 Big Ideas and many Learning Objectives associated with each Big Idea. This review will cover all of the Big Ideas

More information

CA 47b Acid Base Titrations

CA 47b Acid Base Titrations CA 47b Acid Base Titrations Model 1 Titration of a strong acid with a strong base. 100. ml of 0.100 M HCl is titrated with 0.100 M NaOH; the species present in the aqueous solution at various volumes of

More information

Reactions (Chapter 4) Notes 2016.notebook. October 14, Chemical Reactions. Chapter 4 Notes. Oct 21 8:44 AM. Oct 22 10:14 AM

Reactions (Chapter 4) Notes 2016.notebook. October 14, Chemical Reactions. Chapter 4 Notes. Oct 21 8:44 AM. Oct 22 10:14 AM Chemical Reactions Chapter 4 Notes Oct 21 8:44 AM Oct 22 10:14 AM 1 There are several things to keep in mind writing reactions and predicting products: 1. States of matter of elements/compounds 2. Diatomics

More information

Double replacement reactions

Double replacement reactions 1. Learn to predict Double replacement reaction If and when a reaction occurs, what are the products? 2. Learn to write Double replacement reaction: (i) Balanced chemical reaction (ii) Net ionicreaction

More information

19.4 Neutralization Reactions > Chapter 19 Acids, Bases, and Salts Neutralization Reactions

19.4 Neutralization Reactions > Chapter 19 Acids, Bases, and Salts Neutralization Reactions Chapter 19 Acids, Bases, and Salts 19.1 Acid-Base Theories 19.2 Hydrogen Ions and Acidity 19.3 Strengths of Acids and Bases 19.4 Neutralization Reactions 19.5 Salts in Solution 1 Copyright Pearson Education,

More information

Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations

Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations Why? In addition to metathetical reactions, electron transfer reactions often occur in solutions.

More information

STOICHIOMETRY OF ACID-BASE NEUTRALIZATION REACTIONS. Ms. Grobsky

STOICHIOMETRY OF ACID-BASE NEUTRALIZATION REACTIONS. Ms. Grobsky STOICHIOMETRY OF ACID-BASE NEUTRALIZATION REACTIONS Ms. Grobsky ACID-BASE NEUTRALIZATION REACTIONS Remember, an acid-base neutralization reaction is a special type of double replacement reaction in which

More information

Buffer Effectiveness 19

Buffer Effectiveness 19 Buffer Effectiveness 19 Buffer Effectiveness What makes a buffer effective? A buffer should be able to neutralize small to moderate amounts of added acid or base Too much added acid or base will destroy

More information

Stoichiometry of Acid-Base Neutralization Reactions. Ms. Grobsky

Stoichiometry of Acid-Base Neutralization Reactions. Ms. Grobsky Stoichiometry of Acid-Base Neutralization Reactions Ms. Grobsky Revisit of Acid-Base Neutralization Reactions Remember, an acid-base neutralization reaction is a special type of double replacement reaction

More information

Acid Base Titrations

Acid Base Titrations ChemActivity CA47b Acid Base Titrations Model 1 Titration of a strong acid with a strong base. 20.00 ml of HNO 3 is titrated with 0.10 M NaOH. The acid-base reaction is The net ionic reaction is HNO 3

More information

CHM152LL Solution Chemistry Worksheet

CHM152LL Solution Chemistry Worksheet Name: Section: CHM152LL Solution Chemistry Worksheet Many chemical reactions occur in solution. Solids are often dissolved in a solvent and mixed to produce a chemical reaction that would not occur if

More information

capable of neutralizing both acids and bases

capable of neutralizing both acids and bases Buffers Buffer n any substance or mixture of compounds that, added to a solution, is capable of neutralizing both acids and bases without appreciably changing the original acidity or alkalinity of the

More information

Solving Stoichiometry Problems for Reactions in Solution

Solving Stoichiometry Problems for Reactions in Solution Section 4.7 Stoichiometry of Precipitation Reactions Solving Stoichiometry Problems for Reactions in Solution 1. Determine what reaction if any occurs. If a reaction occurs write a balanced molecular equation.

More information

Net Ionic Reactions. The reaction between strong acids and strong bases is one example:

Net Ionic Reactions. The reaction between strong acids and strong bases is one example: Net Ionic Reactions Model 1 Net Ionic Reactions. Net ionic reactions are frequently used when strong electrolytes react in solution to form nonelectrolytes or weak electrolytes. These equations let you

More information

CHAPTER 4 AQUEOUS REACTIONS AND SOLUTION STOICHIOMETRY: Electrolyte-a compound that conducts electricity in the melt or in solution (water)

CHAPTER 4 AQUEOUS REACTIONS AND SOLUTION STOICHIOMETRY: Electrolyte-a compound that conducts electricity in the melt or in solution (water) CHAPTER 4 AQUEOUS REACTIONS AND SOLUTION STOICHIOMETRY: Electrolyte-a compound that conducts electricity in the melt or in solution (water) STRONG ELEC. 100% Dissoc. WEAK ELEC..1-10% Dissoc. NON ELEC 0%

More information

Eye on Ions: Electrical Conductivity of Aqueous Solutions

Eye on Ions: Electrical Conductivity of Aqueous Solutions Eye on Ions: Electrical Conductivity of Aqueous Solutions Pre-lab Assignment: Reading: 1. Chapter sections 4.1, 4.3, 4.5 and 4.6 in your course text. 2. This lab handout. Questions: 1. Using table 1 in

More information

Acid-Base Titration. Volume NaOH (ml) Figure 1

Acid-Base Titration. Volume NaOH (ml) Figure 1 LabQuest 24 A titration is a process used to determine the volume of a solution needed to react with a given amount of another substance. In this experiment, you will titrate hydrochloric acid solution,

More information

Titration a solution of known concentration, called a standard solution

Titration a solution of known concentration, called a standard solution Acid-Base Titrations Titration is a form of analysis in which we measure the volume of material of known concentration sufficient to react with the substance being analyzed. Titration a solution of known

More information

-a base contains an OH group and ionizes in solutions to produce OH - ions: Neutralization: Hydrogen ions (H + ) in solution form

-a base contains an OH group and ionizes in solutions to produce OH - ions: Neutralization: Hydrogen ions (H + ) in solution form NOTES Acids, Bases & Salts Arrhenius Theory of Acids & Bases: an acid contains hydrogen and ionizes in solutions to produce H+ ions: a base contains an OH group and ionizes in solutions to produce OH ions:

More information

Chemistry with Mr. Faucher. Acid-Base Titration

Chemistry with Mr. Faucher. Acid-Base Titration Chemistry with Mr. Faucher Name Date Acid-Base Titration 24 A titration is a process used to determine the volume of a solution needed to react with a given amount of another substance. In this experiment,

More information

Titration Curves equivalence point

Titration Curves equivalence point 1 Here is an example of a titration curve, produced when a strong base is added to a strong acid. This curve shows how ph varies as 0.100 M NaOH is added to 50.0 ml of 0.100 M HCl. The equivalence point

More information

Chem II - Wed, 9/14/16

Chem II - Wed, 9/14/16 Chem II - Wed, 9/14/16 Do Now Drop off any study guides you want color coded Pull out stoich HW Homework See board Agenda Stoich Ch 4 Labish thing Chapter 4 Chemical Reactions & Solution Stoich Water Possesses

More information

Unit VI Stoichiometry. Applying Mole Town to Reactions

Unit VI Stoichiometry. Applying Mole Town to Reactions Unit VI Stoichiometry Applying Mole Town to Reactions Learning Goals I can apply mole town to reactions to determine the amount of product based on the amount of a reactant. I can apply mole town to reaction

More information

Titrations Worksheet and Lab

Titrations Worksheet and Lab Titrations Worksheet and Lab Vocabulary 1. Buret: a piece of glassware used for dispensing accurate volumes, generally reads to two places of decimal. 2. Titrant: the substance of known concentration added

More information

Student Exploration: Titration

Student Exploration: Titration Name: Date: www.explorelearning.com enroll in class class code: FPGJNNJE9R Student Exploration: Titration Vocabulary: acid, analyte, base, dissociate, equivalence point, indicator, litmus paper, molarity,

More information

Chemistry 12 UNIT 4 ACIDS AND BASES

Chemistry 12 UNIT 4 ACIDS AND BASES Chemistry 12 UNIT 4 ACIDS AND BASES PACKAGE #6 TITRATION -allows you to react measured amounts of a solution with a known volume of another solution until an equivalence point is reached. Recall from Indicators

More information

Chapter 17. Additional Aspects of Equilibrium

Chapter 17. Additional Aspects of Equilibrium Chapter 17. Additional Aspects of Equilibrium Sample Exercise 17.1 (p. 726) What is the ph of a 0.30 M solution of acetic acid? Be sure to use a RICE table, even though you may not need it. (2.63) What

More information

RUN TIME: 50 MIN POGIL 10 Page 1 of 5

RUN TIME: 50 MIN POGIL 10 Page 1 of 5 RUN TIME: 50 MIN POGIL 10 Page 1 of 5 POGIL EXERCISE 10 What Is a Mole and Why Do Chemists Need It? Each member should assume his or her role at this time. The new manager takes charge of the POGIL folder

More information

Chemistry 150/151 Review Worksheet

Chemistry 150/151 Review Worksheet Chemistry 150/151 Review Worksheet This worksheet serves to review concepts and calculations from first semester General Chemistry (CHM 150/151). Brief descriptions of concepts are included here. If you

More information

Name Period Date. Lab 9: Analysis of Commercial Bleach

Name Period Date. Lab 9: Analysis of Commercial Bleach Name Period Date Lab 9: Analysis of Commercial Bleach Introduction Many common products are effective because they contain oxidizing agents. Some products, which contain oxidizing agents, are bleaches,

More information

Titration Curves Name: Date: Period:

Titration Curves Name: Date: Period: Titration Curves Name: Date: Period: Understanding the shape of a titration curve There are four phases of a titration: Phase 1: Before the titration begins Phase 2: Before the equivalence point Phase

More information

acrylonitrile Calculate how many grams of acrylonitrile could be obtained from 651 kg of propylene, assuming there is excess NO present.

acrylonitrile Calculate how many grams of acrylonitrile could be obtained from 651 kg of propylene, assuming there is excess NO present. propylene acrylonitrile Calculate how many grams of acrylonitrile could be obtained from 651 kg of propylene, assuming there is excess NO present. 1 - Change the mass of propylene to moles propylene (formula

More information

2002 D Required 2001 D Required

2002 D Required 2001 D Required 2002 D Required A student is asked to determine the molar enthalpy of neutralization, H neut, for the reaction represented above. The student combines equal volumes of 1.0 M HCl and 1.0 M NaOH in an open

More information

Chapter Four. Chapter Four. Chemical Reactions in Aqueous Solutions. Electrostatic Forces. Conduction Illustrated

Chapter Four. Chapter Four. Chemical Reactions in Aqueous Solutions. Electrostatic Forces. Conduction Illustrated 1 Electrostatic Forces 2 Chemical Reactions in Aqueous Solutions Unlike charges (+ and ) attract one another. Like charges (+ and +, or and ) repel one another. Conduction Illustrated 3 Arrhenius s Theory

More information

Mole Ratios. How can the coefficients in a chemical equation be interpreted? (g) 2NH 3. (g) + 3H 2

Mole Ratios. How can the coefficients in a chemical equation be interpreted? (g) 2NH 3. (g) + 3H 2 Why? Mole Ratios How can the coefficients in a chemical equation be interpreted? A balanced chemical equation can tell us the number of reactant and product particles (ions, atoms, molecules or formula

More information

CHM 115 EXAM #3 Practice

CHM 115 EXAM #3 Practice Name CHM 115 EXAM #3 Practice Complete the following showing all of your work. When calculations are required, show the set-up, units, and report answers with the correct number of significant figures.

More information

Ions in Solution. Solvent and Solute

Ions in Solution. Solvent and Solute Adapted from Peer-led Team Learning Begin at the beginning and go on till you come to the end: then stop." Early ideas of atoms and compounds, developed primarily through the reactions of solids and gases,

More information

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Example 4.1 Stoichiometry During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Suppose that a particular plant consumes 37.8 g of CO 2

More information

Chapter 4 - Types of Chemical Reactions and Solution Chemistry

Chapter 4 - Types of Chemical Reactions and Solution Chemistry Chapter 4 - Types of Chemical Reactions and Solution Chemistry 4.1 Water, the Common Solvent - the water molecule is bent with and H-O-H angles of approx. 105 º - O-H bonds are covalent - O is slightly

More information

Activity Titrations & ph

Activity Titrations & ph Activity 151-15 Titrations & ph Directions: This Guided Learning Activity (GLA) focuses on chemical calculations related to acids, bases and ph. Part A gives basic information about acids and bases, and

More information

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY Advanced Chemistry Name Hour Advanced Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY Day Plans

More information

Partner: Alisa 1 March Preparation and Properties of Buffer Solutions

Partner: Alisa 1 March Preparation and Properties of Buffer Solutions Partner: Alisa 1 March 2012 Preparation and Properties of Buffer Solutions Purpose: The purpose of this experiment is to compare the ph effect on buffered and non-buffered solutions as well as making a

More information

Quiz I: Thermodynamics

Quiz I: Thermodynamics Quiz I: Thermodynamics SCH4U_2018-2019_V2 NAME: (Total Score: / 30) Multiple Choice (12) 1. What can be deduced from the following reaction profile? A. The reactants are less stable than the products and

More information

Chemistry 30 Mr. de Bruin Unit 3 Assignment.

Chemistry 30 Mr. de Bruin Unit 3 Assignment. NAME: Chemistry 30 Mr. de Bruin Unit 3 Assignment. All work must be fully shown in all questions to get process marks. As this is a summative assessment item, questions of clarification may be asked, but

More information

PRACTICE EXAM III CCBC-Catonsville. TOTAL 100 Bonus p.5 7. Adjusted total to Exam III = Current Course Total = Chem 107

PRACTICE EXAM III CCBC-Catonsville. TOTAL 100 Bonus p.5 7. Adjusted total to Exam III = Current Course Total = Chem 107 Chem 107 PRACTICE EXAM III CCBC-Catonsville *** ALWAYS ANSWER IN FULL SENTENCES! *** On numerical problems, you MUST show your set ups. When dimensional analysis is specified, you MUST set up the problem

More information

Acids & Bases. Tuesday, April 23, MHR Chemistry 11, ch. 10

Acids & Bases. Tuesday, April 23, MHR Chemistry 11, ch. 10 Acids & Bases 1 MHR Chemistry 11, ch. 10 Acid or base? 2 Make a chart like this: Strong v. Weak oncentrated v. Diluted 3 Acid Strength Acid strength depends on how much an acid dissociates. The more it

More information

Funsheet 9.1 [VSEPR] Gu 2015

Funsheet 9.1 [VSEPR] Gu 2015 Funsheet 9.1 [VSEPR] Gu 2015 Molecule Lewis Structure # Atoms Bonded to Central Atom # Lone Pairs on Central Atom Name of Shape 3D Lewis Structure NI 3 CF 4 OCl 2 C 2 F 2 HOF Funsheet 9.1 [VSEPR] Gu 2015

More information

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry Chapter 4: Types of Chemical Reactions and Solution Stoichiometry 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition of Solutions (MOLARITY!)

More information

Beaker A Beaker B Beaker C Beaker D NaCl (aq) AgNO 3(aq) NaCl (aq) + AgNO 3(aq) AgCl (s) + Na 1+ 1

Beaker A Beaker B Beaker C Beaker D NaCl (aq) AgNO 3(aq) NaCl (aq) + AgNO 3(aq) AgCl (s) + Na 1+ 1 CH 11 T49 MIXING SOLUTIONS 1 You have mastered this topic when you can: 1) define the terms precipitate, spectator ion, suspension, mechanical mixture, solution. 2) write formula equations, complete/total

More information

Chemistry 12 UNIT 4 ACIDS AND BASES

Chemistry 12 UNIT 4 ACIDS AND BASES Chemistry 12 UNIT 4 ACIDS AND BASES PACKAGE #6 TITRATION -allows you to react measured amounts of a solution with a known volume of another solution until an equivalence point is reached. Recall from Indicators

More information

Chapter 4: Stoichiometry of Chemical Reactions. 4.1 Writing and Balancing Chemical Equations

Chapter 4: Stoichiometry of Chemical Reactions. 4.1 Writing and Balancing Chemical Equations Chapter 4: Stoichiometry of Chemical Reactions 4.1 Writing and Balancing Chemical Equations A chemical equation represents or symbolizes a chemical reaction. o Substances are represents by their chemical

More information

CHM112 Lab Hydrolysis and Buffers Grading Rubric

CHM112 Lab Hydrolysis and Buffers Grading Rubric Name Team Name CHM112 Lab Hydrolysis and Buffers Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial calculations completed

More information

Chapter 4: Types of Chemical reactions and Solution Stoichiometry

Chapter 4: Types of Chemical reactions and Solution Stoichiometry Chapter 4: Types of Chemical reactions and Solution Stoichiometry 4.1 Water, The Common Solvent State why water acts as a common solvent. Draw the structure of water, including partial charge. Write equations

More information

AP Chemistry Unit #4. Types of Chemical Reactions & Solution Stoichiometry

AP Chemistry Unit #4. Types of Chemical Reactions & Solution Stoichiometry AP Chemistry Unit #4 Chapter 4 Zumdahl & Zumdahl Types of Chemical Reactions & Solution Stoichiometry Students should be able to: Predict to some extent whether a substance will be a strong electrolyte,

More information

Acid-Base Equilibria and Solubility Equilibria

Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Acid-Base Equilibria and Solubility Equilibria Homogeneous versus Heterogeneous Solution Equilibria (17.1) Buffer Solutions (17.2) A Closer Look at Acid-Base

More information

CH 4 AP. Reactions in Aqueous Solutions

CH 4 AP. Reactions in Aqueous Solutions CH 4 AP Reactions in Aqueous Solutions Water Aqueous means dissolved in H 2 O Moderates the Earth s temperature because of high specific heat H-bonds cause strong cohesive and adhesive properties Polar,

More information

Be able to derive chemical equations from narrative descriptions of chemical reactions.

Be able to derive chemical equations from narrative descriptions of chemical reactions. CHM 111 Chapter 4 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Electrolytes do conduct electricity, in proportion to the concentrations of their ions in solution.

Electrolytes do conduct electricity, in proportion to the concentrations of their ions in solution. Chapter 4 (Hill/Petrucci/McCreary/Perry Chemical Reactions in Aqueous Solutions This chapter deals with reactions that occur in aqueous solution these solutions all use water as the solvent. We will look

More information

CHEMISTRY 15 EXAM II-Version A (White)

CHEMISTRY 15 EXAM II-Version A (White) CHEMISTRY 15 EXAM II-Version A (White) Dr. M. Richards-Babb June 8, 2001 An optical scoring machine will grade this examination. The machine is not programmed to accept the correct one of two sensed answers

More information

General Chemistry 1 CHM201 Unit 2 Practice Test

General Chemistry 1 CHM201 Unit 2 Practice Test General Chemistry 1 CHM201 Unit 2 Practice Test 1. Which statement about the combustion of propane (C 3H 8) is not correct? C 3H 8 5O 2 3CO 2 4H 2O a. For every propane molecule consumed, three molecules

More information

Chemistry CP Putting It All Together II

Chemistry CP Putting It All Together II Chemistry CP Putting It All Together II Name: Date: Calculations in Chemistry It s time to pull out your calculators! In the first review sheet, you were able to write formulas of compounds when different

More information

HONORS CHEMISTRY Putting It All Together II

HONORS CHEMISTRY Putting It All Together II NAME: SECTION: HONORS CHEMISTRY Putting It All Together II Calculations in Chemistry It s time to pull out your calculators! In the first review sheet, you were able to write formulas of compounds when

More information

Review of Chemistry 11

Review of Chemistry 11 Review of Chemistry 11 HCl C 3 H 8 SO 2 NH 4 Cl KOH H 2 SO 4 H 2 O AgNO 3 PbSO 4 H 3 PO 4 Ca(OH) 2 Al(OH) 3 P 2 O 5 Ba(OH) 2 CH 3 COOH 1. Classify the above as ionic or covalent by making two lists. Describe

More information

Test: Acid Base. 2. The ph value of a 1.00 x 10-3 mol dm -3 solution of sodium hydroxide is: A. 3. B. 8. C. 11. D. 14.

Test: Acid Base. 2. The ph value of a 1.00 x 10-3 mol dm -3 solution of sodium hydroxide is: A. 3. B. 8. C. 11. D. 14. Test: Acid Base SCH3U_ 2010-2011 Name: (Test Score: / 40) Multiple Choice ( 6) 1. A Brønsted-Lowry base is defined as a substance which: A. accepts H +1 ions. B. produces OH -1 ions. C. conducts electricity.

More information

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS FV 1-21-16 MATERIALS: Eight 50 ml beakers, distilled water bottle, two 250 ml beakers, conductivity meter, ph paper (A/B/N), stirring

More information

Bellwork: Answer these in your notes. What is the [H + ] of a solution with a ph of 4.90? Name this acid: H 3 PO 4. Name this base: KOH

Bellwork: Answer these in your notes. What is the [H + ] of a solution with a ph of 4.90? Name this acid: H 3 PO 4. Name this base: KOH Bellwork: Answer these in your notes. What is the [H + ] of a solution with a ph of 4.90? Name this acid: H 3 PO 4 Name this base: KOH Stoichiometry The stoichiometry of an acid-base neutralization reaction

More information

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure

Shifting Equilibrium. Section 2. Equilibrium shifts to relieve stress on the system. > Virginia standards. Main Idea. Changes in Pressure Section 2 Main Ideas Equilibrium shifts to relieve stress on the system. Some ionic reactions seem to go to completion. Common ions often produce precipitates. > Virginia standards CH.3.f The student will

More information

Announcements. Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts!

Announcements. Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts! Announcements Please come to the front of the classroom and pick up a Solution Problems worksheet before class starts! Announcements 1. Mid-term grades will be posted soon (just used scaled exam 1 score

More information

Lecture #11-Buffers and Titrations The Common Ion Effect

Lecture #11-Buffers and Titrations The Common Ion Effect Lecture #11-Buffers and Titrations The Common Ion Effect The Common Ion Effect Shift in position of an equilibrium caused by the addition of an ion taking part in the reaction HA(aq) + H2O(l) A - (aq)

More information

CHEMpossible. 101 Exam 2 Review

CHEMpossible. 101 Exam 2 Review CHEMpossible 1. Circle each statement that applies to thermal energy and heat: a. Thermal energy is the average kinetic energy of its molecules due to their motion b. High thermal energy is reflected in

More information

CHEM 101 Exam 2. Page 1

CHEM 101 Exam 2. Page 1 Form 1 (White) October 12, 2001 Page 1 Section This exam consists of 7 pages. When the exam begins make sure you have one of each. Print your name at the top of each page now The last page is blank and

More information

AP Chemistry Honors Unit Chemistry #4 2 Unit 3. Types of Chemical Reactions & Solution Stoichiometry

AP Chemistry Honors Unit Chemistry #4 2 Unit 3. Types of Chemical Reactions & Solution Stoichiometry HO AP Chemistry Honors Unit Chemistry #4 2 Unit 3 Chapter 4 Zumdahl & Zumdahl Types of Chemical Reactions & Solution Stoichiometry Students should be able to:! Predict to some extent whether a substance

More information

TITRATION. Exercise 0. n c (mol dm V. m c (1) MV

TITRATION. Exercise 0. n c (mol dm V. m c (1) MV Exercise 0 TITRATION Theory: In chemistry a solution is a homogeneous mixture composed of two or more substances. In such a mixture:a solute is dissolved in another substance, known as a solvent. An aqueous

More information

Chapter Four: Reactions in Aqueous Solution

Chapter Four: Reactions in Aqueous Solution Chapter Four: Reactions in Aqueous Solution Learning Outcomes: Identify compounds as acids or bases, and as strong, weak, or nonelectrolytes Recognize reactions by type and be able to predict the products

More information

Acid-Base Titration Solution Key

Acid-Base Titration Solution Key Key CH3NH2(aq) H2O(l) CH3NH3 (aq) OH - (aq) Kb = 4.38 x 10-4 In aqueous solution of methylamine at 25 C, the hydroxide ion concentration is 1.50 x 10-3 M. In answering the following, assume that temperature

More information

9.1.2 AQUEOUS SOLUTIONS AND CHEMICAL REACTIONS

9.1.2 AQUEOUS SOLUTIONS AND CHEMICAL REACTIONS 9.1.2 AQUEOUS SOLUTIONS AND CHEMICAL REACTIONS Work directly from Zumdahl (Chapter 4). Work through exercises as required, then summarise the essentials of the section when complete. To understand the

More information

Buffered Solutions M HC 2 H 3 O 2 (acid) and 0.10M NaC 2 H 3 O 2 (conjugate base) 0.25 M NH 3 (base) and 0.20 M NH 4 Cl (conjugate acid)

Buffered Solutions M HC 2 H 3 O 2 (acid) and 0.10M NaC 2 H 3 O 2 (conjugate base) 0.25 M NH 3 (base) and 0.20 M NH 4 Cl (conjugate acid) Buffered Solutions Objective: Buffering of weak acid/weak base solutions is very important, especially in biological chemistry. In this experiment you will demonstrate the buffer effect to yourself, and

More information

Ch 8 Practice Problems

Ch 8 Practice Problems Ch 8 Practice Problems 1. What combination of substances will give a buffered solution that has a ph of 5.05? Assume each pair of substances is dissolved in 5.0 L of water. (K a for NH 4 = 5.6 10 10 ;

More information