Removing bias from solvent atoms in electron density maps

Size: px
Start display at page:

Download "Removing bias from solvent atoms in electron density maps"

Transcription

1 Journal of Applied Crystallography ISSN Editor: Anke R. Pyzalla Removing bias from solvent atoms in electron density maps Eric N. Brown J. Appl. Cryst. (2008). 41, Copyright c International Union of Crystallography Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr. For further information see Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusioncontrolled phase transformations, structure property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published. Crystallography Journals Online is available from journals.iucr.org J. Appl. Cryst. (2008). 41, Eric N. Brown Solvent omit-map

2 Journal of Applied Crystallography ISSN Received 22 February 2008 Accepted 30 May 2008 Removing bias from solvent atoms in electron density maps Eric N. Brown Department of Biochemistry, University of Iowa, Iowa City, IA, USA. Correspondence # 2008 International Union of Crystallography Printed in Singapore all rights reserved Atomic structures of proteins determined via protein crystallography contain numerous solvent atoms. The experimental data for the determination of a water molecule s O-atom position is often a small contained blob of unidentified electron density. Unfortunately, the nature of crystallographic refinement lets poorly placed solvent atoms bias the future refined positions of all atoms in the crystal structure. This research article presents the technique of omit-maps applied to remove the bias introduced by poorly determined solvent atoms, enabling the identification of incorrectly placed water molecules in partially refined crystal structures. A total of 160 protein crystal structures with distinct water molecules were processed using this technique. Most of the water molecules in the deposited structures were well justified. However, a few of the solvent atoms in this test data set changed appreciably in position, displacement parameter or electron density when fitted to the solvent omit-map, raising questions about how much experimental support exists for these solvent atoms. 1. Introduction Unlike small-molecule crystals, protein crystals contain a large quantity of water (Matthews, 1968). Water molecules that are ordered or semi-ordered in the crystal lattice contribute greatly to the X-ray diffraction but are not as tightly restrained during refinement as the protein components of the crystal. Thus, incorrectly placed water molecules can bias electron density maps and, through further model-building refinement, the protein structure. Techniques such as simulated annealing and omit-maps can be used to remove or identify bias in crystal structures (Artymiuk & Blake, 1981; Bhat & Cohen, 1984; Bhat, 1988; Hodel et al., 1992; Adams et al., 1999; Terwilliger et al., 2008). In the building of X-ray crystallographic structures, prior structures can be utilized to generate initial phases for structure building (Read, 2001). Often, all solvent atoms are removed and protein side chains are trimmed to include only the conserved side chains or atoms (Schwarzenbacher et al., 2004). Although it is rare to include water molecules in traditional molecular-replacement techniques, when determining the structure of mutant proteins or proteins with ligands bound, an earlier structure including water molecules can be used to increase the efficiency of the crystallographer. If water molecules are retained, they may bias the final model structure. Here we present an omit-map method developed exclusively for the unbiasing of solvent atoms in protein crystal structures. It is implemented as a straightforward Perl script whose inputs are the structure factors and coordinates of the crystallographic structure and whose output is an unbiased electron density map covering the solvent in the structure. This map can be used to identify and remove the biasing effects of misplaced solvent molecules. Finally, a statistical model is presented that estimates the log-likelihood of a given set of water molecules and can be used to make objective decisions about which water molecules to remove from the structure. The initial use for this method was for identification of poorly resolved solvent atoms in numerous crystal structures of proteins with active-site mutations. Ferraro et al. (2006, 2007) used the all-atom wild-type model as the starting structure for each active-site mutation. After introducing active-site mutations in the correct locations, the solvent omitmap method was used to eliminate water molecules that were absent in the mutant crystals prior to further model building and refinement. A primary use for this method is to simplify the solvent content of protein crystal structures. It is important for crystallographers to refine and publish protein crystal structures that are well supported by statistically significant experimental diffraction data. Excess, unsupported water molecules included in refinement introduce bias during the refinement by highlighting noise present in the solvent region of the crystal. Finally, their presence can cause future interpretation issues. This solvent omit-map technique presents a method by which unlikely and unsupported water molecules can be identified and removed from a crystal structure prior to structure deposition and publication. By removing water molecules whose presence does not contribute to the quality of the structure, simplified protein crystal structures are created, thus easing their future interpretation. J. Appl. Cryst. (2008). 41, doi: /s

3 1.1. Omit-maps All omit-map techniques attempt to remove the bias introduced by a set of atoms from the electron density map (Artymiuk & Blake, 1981; Bhat & Cohen, 1984; Langs et al., 2001a,b; Terwilliger et al., 2008). These methods basically (1) ignore a subset of either observed amplitudes or modeled atoms (the omit step), (2) shake up the remaining model to remove any bias introduced by the ignored information, (3) re-refine the remaining model to optimize the model on the basis of the diffraction data, and (4) predict the ignored model data on the basis of the newly refined model. There are numerous points in the omit-map technique where the crystallographer makes choices. The first step is choosing a subset of the data to omit. The data selected to omit could be geometrically neighboring atoms (Artymiuk & Blake, 1981; Bhat & Cohen, 1984; Bhat, 1988) or geometrically close solvent atoms (this method). The second step involves removing the existing bias of those data omitted from the remaining model. Commonly used methods to remove bias include randomly displacing every remaining atom and simulated annealing (Hodel et al., 1992). Thirdly, the remaining model is refined. A common procedure is to refine the coordinates of remaining atoms in the structure using existing techniques (Terwilliger et al., 2008). This completely ignores the impact of the atomic details that have been omitted (Bhat & Cohen, 1984). Other procedures utilize simulated annealing or density refinement on the remaining data to refine the electron density and hence the model (Hodel et al., 1992). The fourth step in the omit-map technique is to predict the data that had initially been omitted. The traditional method is to extract the electron density for the region of space covered by the atoms that had been omitted (Vellieux & Dijkstra, 1997). Each of these steps is repeated multiple times, each time omitting different subsets of the data. The final output is the average of the electron density maps predicted in the last step of each iteration. This electron density map is then presented to the crystallographer for manual model building or comparison with electron density maps calculated by alternative means Identification of solvent atoms A general rule of thumb is that one water molecule can be found for every residue in a protein structure at 2.0 Å resolution (Carugo & Bordo, 1999). Using a set of low-temperature crystal structures, Carugo and Bordo estimated the number of water molecules, N H2 O, as N H2 O ¼ N at ð0:334 0:11r max Þ, where r max is the resolution (in ångströms but used without units) and N at is the total number of protein atoms. The standard error of this estimate is 0.043[ (r max 2.2) 2 ] 1=2. A thorough analysis of the effect of temperature on the structure of lysozyme found that the number of water molecules bound to main-chain atoms was temperature independent, while the number of water molecules near side chains varied inversely with temperature (Kurinov & Harrison, 1995). Most of the well ordered solvent atoms were within 4.0 Å of the protein surface and had on average 2.6 neighboring atoms. Automated methods exist to insert solvent atoms into X-ray crystallographic structures. The ARP/wARP method iteratively adds water molecules (Morris et al., 2004). During each iteration, it identifies positive density regions in the difference electron density map that are within a set distance, r protein,of existing O and N atoms (2:3 r protein 3:5Å). Additional water molecules are then added in the maximal density regions. This is followed by the removal of the water molecules fitting other criteria. The water_ pick method of CNS (Brünger et al., 1998; Brunger, 2007), the ordered_ solvent method PHENIX (Afonine et al., 2005), and the CCP4 programs peakmax and watpeak (Collaborative Computational Project, Number 4, 1994) work in a similar manner but with different distance constraints. SHELX also contains a program, SHELXWAT, that finds peaks in the difference electron density map and classifies them as water molecules (Sheldrick, 2008). The crystallography editing software O (Jones et al., 1991) and COOT (Emsley & Cowtan, 2004) also implement water molecule finding functions. Similar to a single iteration of the ARP/wARP water molecule finding algorithm, they search for peaks in the electron density map that are near the protein. In addition to using an electron density cutoff to identify peaks, both programs use the spherical shape of the electron density around a prospective peak to choose candidate water molecules. This limits the placement of water molecules in the electron density of larger ligands. The present study, in addition to proposing a solvent omitmap methodology, utilizes the electron density of the solvent atoms to determine their validity. The interpolated solvent omit-map electron densities at the positions of all solvent atoms are extracted. Since the aim here is to detect incorrect water molecules rather than locate additional solvent molecules, distance restraints similar to those used by ARP/wARP and COOT are not employed. Instead, the statistical distribution of interpolated electron density and difference electron density is used to estimate the likelihood of a solvent atom having those characteristics. 2. Methods 2.1. Solvent omit-map The solvent omit-map method iteratively builds up an electron density map in the region covered by existing solvent atoms that is not biased by any prior water molecule locations. The algorithm has been coded in Perl and utilizes the existing CCP4 programs MTZDUMP, MAPMASK, NCSMASK, REFMAC, OVERLAPMAP, PDBSET and FFT (Collaborative Computational Project, Number 4, 1994; Murshudov et al., 1997; Pannu et al., 1999; Ten Eyck, 1973). The algorithm created here proceeds in iterations as follows: a solvent atom that has not been previously processed, 762 Eric N. Brown Solvent omit-map J. Appl. Cryst. (2008). 41,

4 s i, is chosen at random. An intermediate Protein Data Bank (PDB) file containing all atoms except solvent atoms within r þ 4Åof s i is created. The locations of all of these atoms are randomly perturbed and then refined using REFMAC. Finally, FFT is used to generate an electron density map. The electron density values within r þ 2Åof s i are extracted and represent the nonbiased electron density for all solvent atoms within r Å of s i. This density is merged with the growing omit-map and all solvent atoms within r Å of s i are marked as processed. Finally, an unprocessed solvent atom, s iþ1, is chosen and the procedure is repeated until all solvent atoms have been processed. The algorithm run-time is a function of the number of iterations needed to cover all water molecules and the number of cycles of maximum likelihood refinement performed by REFMAC. Each iteration updates the omit-map electron density for a volume equal to ð4=3þðr þ 2Þ 3 Å 3. To minimize the number of iterations, the radius of the omit-map region created at each iteration, r, can be increased. The default omitmap radius of r ¼ 20:0 Å was chosen to balance run-time versus the quality of the resulting omit-map. The algorithm has been implemented in parallel to accelerate omit-map generation on multi-core and multi-processor workstations Statistical modeling All protein structures that had coordinates and structure factors deposited in the PDB in the first three months of 2006 were downloaded and tested with the solvent omit-map method. Structures that did not contain water molecules, contained ligands unknown to REFMAC, lacked a FREE column in the deposited structure factors, contained unit cells too large for MAPMASK, or refined with REFMAC to unrealistically high R or R free factors were excluded from the analysis. A modified version of NCSMASK was compiled that allowed for larger maps to be used. This required the modification of just one parameter, maxsec, in the source code. Each structure was subjected to the solvent omit-map method using a radius of r ¼ 20:0 Å. This generated an electron density map covering all existing solvent atoms. The COOT (Version 0.3.1) scripting function fit-waters was then used to real-space refine the positions of each water molecule into the solvent omit electron density map (Emsley & Cowtan, 2004). This was followed by five cycles of maximum likelihood refinement against the original diffraction data using REFMAC. The changes in position and in the isotropic displacement parameters (B values) were monitored for every water molecule in each structure. Since the structures had been deposited by crystallographers utilizing differing refinement protocols, the original structure was also run through five cycles of REFMAC refinement for comparison with the refined structures. To identify superfluous water molecules, a statistical model was constructed that estimated the likelihood of observing each water molecule in the structure. This likelihood was based on the electron density at the water molecule in the solvent omit-map ( i ), the distance the water molecule moved upon refinement against the solvent omit-map (x i ) and the Table 1 Statistics for the 160 structures used in validation of the solvent omit-map procedure. The quality metric is defined by Brown & Ramaswamy (2007); lower is better. This quality metric has a mean of zero and a standard deviation of one computed over structures in the PDB. Average Range Resolution (Å) Atoms Water molecules Quality metric change in B value upon refinement against the solvent omitmap ( i ). The interpolated electron density from the solvent-atom positions was extracted from the omit-map by the Uppsala Software Factory program MAPMAN (Kleywegt & Jones, 1996). It is assumed that water molecules with little experimental support will have little electron density in the solvent omit-map, a large change in position or a large change in B value. The statistical distributions of these three measures were determined from all monitored water molecules using the statistical software R (R Development Core Team, 2006). The likelihood of each individual water molecule was then computed using the determined probability distributions: Pð i ; x i ; i Þ Pð i Þ Pðx x i Þ Pð i Þ. The computed likelihoods of all water molecules were ranked to identify the least likely 5% of the water molecules. These water molecules were removed from the structures and the structures re-refined. Finally, the quality metric developed by Brown & Ramaswamy (2007) was used to compare the qualities of a structure before and after excluding water molecules. A paired Student s t-test was employed in R. 3. Results A total of 160 protein crystal structures with distinct water molecules were processed. Summary information for those structures is presented in Table 1. The number of iterations required to generate the density for all solvent atoms ranged from 1 to 68 (Fig. 1) and appears to be weakly correlated with the number of water molecules in the structure Figure 1 Number of iterations required for solvent omit-map creation. J. Appl. Cryst. (2008). 41, Eric N. Brown Solvent omit-map 763

5 but not all, of the water molecules. There does not appear to be any correlation between these displacements and the changes in B values (Fig. 3). Water molecule number 432 in the crystal structure of the cofactor-binding domain of the Cbl transcription factor (PDB code 2fyi; Stec et al., 2006) is used as an example of a poor Figure 2 Distribution of peak electron density in the solvent omit-map at the solvent atom s refined position. The line labeled Fit is a scaled Student s t-distribution with parameters m ¼ 1:152, s ¼ 0:668 and d f; ¼ 6:2. (cycles ¼ 3:8 þ 0:02N H2 O, R 2 ¼ 0:401). For example, the protocol took 68 iterations to generate an electron density map for all 642 water molecules present in the structure of the G6 antivascular endothelial growth factor antibody (PDB code 2fjf; Fuh et al., 2006). On the other hand, only a single iteration was required to process all 103 water molecules of the -PIX SH3 domain (PDB code 2g6f; Hoelz et al., 2006). The electron density in the solvent omit-map is a measure of how much experimental support exists for each water molecule in the original protein structure. To compare the likelihood of individual water molecules, the logarithm of the omit-map electron density of the refined solvent atoms was fitted to a shifted and scaled Student s t-distribution. 1 The fitted distributional parameters were shift m ¼ 1:152 (4), scale s ¼ 0:668 (4) and degrees of freedom d f; ¼ 6:2 (2) (Fig. 2). This t-distribution was chosen since it generalizes both Cauchy and normal distributions: a Cauchy distribution is a t-distribution with one degree of freedom, while a normal distribution is a t-distribution with infinite degrees of freedom. Following refinement of the structure using the solvent omit-map, the coordinates and B values for water molecules changed. The set of water molecule displacements obtained from the solvent omit-map algorithm was fitted to a lognormal distribution with mean x ¼ 2:549 (9) Å and standard deviation x ¼ 1:056 (6) (Fig. 3). The vast majority of the water molecules shifted position very little when refined using the solvent omit-map s electron density. Changes in B values were fitted to a Cauchy distribution [location 0 ¼ 0:192 (6) Å 2 and scale ¼ 0:601 (7); Fig. 3]. More than 97% of the isotropic displacement parameters changed by less than 5 Å 2. The water molecules that had an increase in displacement parameter by more than 5 Å 2 were statistically farther displaced (0.66 versus 0.06 Å shift in coordinates, p < 0:001) and less electron dense (0.27 versus 0.40 e Å 3, p < 0:001) compared with the average water molecule. This indicates that the original electron density with which the solvent atoms were refined was acceptable for most, 1 t ðx; m; s; d f Þ¼ð1=sÞt½ðx mþ=s; d f Š where t ðx; d f Þ is the t-distribution with d f degrees of freedom. Figure 3 Change in (a) position and (b) B value for solvent atoms following fitting to the solvent omit-map. Water molecule displacements were fitted to a lognormal distribution with mean x ¼ 2:549 Å and standard deviation x ¼ 1:056. Changes in B value were fitted to a Cauchy distribution with location 0 ¼ 0:192 Å 2 and scale ¼ 0:601. (c) Correlation between the changes in position and B value. 764 Eric N. Brown Solvent omit-map J. Appl. Cryst. (2008). 41,

6 quality water molecule. In the traditional 2F o F c electron density map (Fig. 4a), this water molecule has reasonable electron density. However, in the solvent omit-map (Fig. 4b), there is no density for this particular water molecule. After refining water molecule positions against the solvent omitmap, this molecule shifted position by over 1 Å and increased its B value by over 20 Å 2. All water molecules were then ranked on the basis of the probability of observing another water molecule in the data set that is at least as poorly justified as the water molecule being considered. The least likely 5% (2294) were then excluded and the structures re-refined. This included removing water molecule number 432 in structure 2fyi. The overall quality metrics computed after re-refining the structures were not statistically different from the original structure quality (p > 0:7), despite having fewer solvent molecules in the structure. Thus the re-refined, simpler structures are better protein models given the diffraction data. 4. Discussion Ordered water molecules contribute significantly to the total X-ray scattering in a diffraction experiment. Unfortunately, given the dearth of restraints upon the positions of water molecules, modeling water molecules in a protein structure too early can easily result in over-fitting noise, biasing the structure and subsequent refinement. Ultimately, this results in complicated structures with superfluous atoms. The solvent omit-map algorithm presented in this paper provides a method to remove bias from over-fitting noise in protein crystal structures by identifying unnecessary solvent atoms. This program s run-time is dependent on the number of water molecules in the structure. A larger radius results in fewer iterations and thus faster completion. However, a larger radius also omits more atomic data (including the positions of correct water molecules) that could be used in the refinement step of the protocol, lowering the quality of the predicted electron density. Thus a balance is needed between run-time and too few iterations. Users of the program are free to adjust the radius to optimize this trade-off for their particular structure. Tests of the algorithm on the 160 deposited protein structures show that most of the water molecules in the deposited structures are well justified. A few of the solvent atoms in the test data set changed appreciably in position, displacement parameter or electron density when fitted to the solvent omitmap. Thus these atoms are probably not true water molecules in the original structure but rather over-fit noise in the electron density. Their removal can thus be justified. Removal of the least likely 5% of water molecules present in these 160 structures produced structures with no significant decrease in overall structural quality [when compared with the quality measure presented by Brown & Ramaswamy (2007)]. The resulting simpler structural models, containing fewer atoms, are as good as the original deposited protein structures. We assert that a simpler structural model, containing fewer water molecules in this instance, with fewer adjustable parameters is a better overall structure. The recommended use of our solvent omit-map program would be for crystallographers to begin by refining a structure using traditional crystallographic techniques. Prior to deposition in the PDB and publication, the crystallographer would run the solvent omit-map algorithm to rank the likelihood of all water molecules. The least likely water molecules would be iteratively removed while monitoring a quality metric. Only those water molecules whose removal did not decrease the structure s overall quality would be excluded. The final structure would contain only those water molecules that are strongly supported by the experimental diffraction data, thus making it easier for future users to interpret the structure. As described above, the solvent omit-map method presents a process by which the likelihood of every water molecule can be assessed in a protein crystal structure. In summary, the probability of observing a set of water molecules (with densities up to i, change in position of at least x i and change in B values of at least i )is p ¼ pð 1 ; 2 ;...; N ;x 1 ;x 2 ;...;x N ; 1 ; 2 ;...; N Þ Q pð i ; x i ; i Þ; i where pð i ; x i ; i Þ pð< i Þ pðx > x i Þ pð> i Þ; tðm ; s ; d f; Þ; Figure 4 Stereoview comparison of (a) a traditional A -weighted 2F o F c (Srinivasan, 1966) electron density map with (b) a solvent omit-map. Water molecule number 432 in structure 2fyi is centered. Maps are thresholded at 1. x lognormalð x ; x Þ; Cauchyð 0 ; Þ J. Appl. Cryst. (2008). 41, Eric N. Brown Solvent omit-map 765

7 and parameters for these distributions have been given previously. Extensions of the statistical model are possible by including additional information. After incorporating the number of water molecules expected for a given resolution (Carugo & Bordo, 1999), two possible choices for water molecule sets (such as after the addition or deletion of water molecules) can be compared. The traditionally calculated electron density peak height used by ARP/wARP and COOT and the variance measure used by COOT could also be useful additions to the likelihood calculation. One benefit from such an extension would be to help identify electron density that would be better modeled as belonging to ligands, cryoprotectants or alternative conformations of neighboring side chains. It should be recognized that correct water molecules cannot be associated with incorrect side-chain placement. For example, consider a structure containing an amino acid with two alternative conformations, only one of which is modeled, and a water molecule where the second conformation should be. The solvent omit-map procedure may not identify the water molecule as suspect even though the observed electron density results from an alternative side-chain conformation and not a water molecule. Similar problems would occur when a water molecule is incorrectly placed in electron density belonging to small molecules such as ligands or cryoprotectants. Use of an electron density variance measure or a shape measure, as utilized by O and COOT, may assist in these cases. 5. Availability The source code for the solvent omit-map program is available from the S. Ramaswamy laboratory website at the University of Iowa: It uses Perl and the CCP4 collection of crystallography programs and is executed using a command-line form similar to other CCP4 programs. Work on integration into the CCP4i graphical interface and the COOT structure refinement program, and on the use of PHENIX in place of REFMAC, is currently underway. 6. Conclusion A method is presented for removing bias introduced by arbitrary placement of solvent atoms in X-ray protein crystal structures during the refinement process. This is accomplished by neglecting the contribution of solvent atoms when generating the electron density of the region surrounding the solvent atom the classical omit-map approach. This solvent omit-map method can be used to validate the presence and position of solvent atoms in published X-ray crystal structures. When tested on 160 deposited crystal structures, this method identified approximately 5% of water molecules as having questionable validity. When refining and depositing protein crystal structures, it is important to remember that the ultimate goal of protein crystallography is to obtain a structure that will answer a useful biological question. Extra water molecules with poor justification not only introduce bias during refinement but hinder later interpretation. Deposited protein crystal structures should contain only water molecules with sufficient experimental evidence. The assistance of S. Ramaswamy, Daniel Ferraro, Lokesh Gakhar, Adam Okerlund and Bryce Plapp was instrumental in tuning the protocol and finding bugs. Elizabeth Kamp was crucial in proofreading the manuscript. ENB is a University of Iowa MSTP trainee and would like to acknowledge financial support through a fellowship from the University of Iowa Center for Biocatalysis and Bioprocessing. References Adams, P. D., Pannu, N. S., Read, R. J. & Brunger, A. T. (1999). Acta Cryst. D55, Afonine, P. V., Grosse-Kunstleve, R. W. & Adams, P. D. (2005). CCP4 Newsl. 42, 8. Artymiuk, P. J. & Blake, C. C. F. (1981). J. Mol. Biol. 152, Bhat, T. N. (1988). J. Appl. Cryst. 21, Bhat, T. N. & Cohen, G. H. (1984). J. Appl. Cryst. 17, Brown, E. N. & Ramaswamy, S. (2007). Acta Cryst. D63, Brünger, A. T. (2007). Nat. Protoc. 2, Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Acta Cryst. D54, Carugo, O. & Bordo, D. (1999). Acta Cryst. D55, Collaborative Computational Project, Number 4 (1994). Acta Cryst. D50, Emsley, P. & Cowtan, K. (2004). Acta Cryst. D60, Ferraro, D. J., Brown, E. N., Yu, C. L., Parales, R. E., Gibson, D. T. & Ramaswamy, S. (2007). BMC Struct. Biol. 7, 10. Ferraro, D. J., Okerlund, A. L., Mowers, J. C. & Ramaswamy, S. (2006). J. Bacteriol. 188, Fuh, G., Wu, P., Liang, W.-C., Ultsch, M., Lee, C. V. & Moffat, B. (2006). J. Biol. Chem. 281, Hodel, A., Kim, S.-H. & Brünger, A. T. (1992). Acta Cryst. A48, Hoelz, A., Janz, J. M., Lawrie, S. D., Corwin, B., Lee, A. & Sakmar, T. P. (2006). J. Mol. Biol. 358, Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta Cryst. A47, Kleywegt, G. J. & Jones, T. A. (1996). Acta Cryst. D52, Kurinov, I. V. & Harrison, R. W. (1995). Acta Cryst. D51, Langs, D. A., Blessing, R. H. & Guo, D. (2001a). Acta Cryst. D57, Langs, D. A., Blessing, R. H. & Guo, D. (2001b). Acta Cryst. D57, Matthews, B. W. (1968). J. Mol. Biol. 33, Morris, R. J., Zwart, P. H., Cohen, S., Fernandez, F. J., Kakaris, M., Kirillova, O., Vonrhein, C., Perrakis, A. & Lamzin, V. S. (2004). J. Synchrotron Rad. 11, Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst. D53, Murshudov, G. N., Vagin, A. A., Lebedev, A., Wilson, K. S. & Dodson, E. J. (1999). Acta Cryst. D55, R Development Core Team (2006). R Foundation for Statistical Computing, Vienna, Austria. Read, R. J. (2001). Acta Cryst. D57, Schwarzenbacher, R., Godzik, A., Grzechnik, S. K. & Jaroszewski, L. (2004). Acta Cryst. D60, Sheldrick, G. M. (2008). Acta Cryst. A64, Eric N. Brown Solvent omit-map J. Appl. Cryst. (2008). 41,

8 Srinivasan, R. (1966). Acta Cryst. 20, Stec, E., Witkowska-Zimny, M., Hryniewicz, M. M., Neumann, P., Wilkinson, A. J., Brzozowski, A. M., Verma, C. S., Zaim, J., Wysocki, S. & Bujacz, G. D. (2006). J. Mol. Biol. 364, Ten Eyck, L. F. (1973). Acta Cryst. A29, Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty, N. W., Adams, P. D., Read, R. J., Zwart, P. H. & Hung, L.-W. (2008). Acta Cryst. D64, Vellieux, F. M. D. & Dijkstra, B. W. (1997). J. Appl. Cryst. 30, J. Appl. Cryst. (2008). 41, Eric N. Brown Solvent omit-map 767

Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat

Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat Electronic Supplementary Information (ESI) for Chem. Commun. Unveiling the three- dimensional structure of the green pigment of nitrite- cured meat Jun Yi* and George B. Richter- Addo* Department of Chemistry

More information

research papers Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias 1.

research papers Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias 1. Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias Thomas C. Terwilliger,

More information

This is an author produced version of Privateer: : software for the conformational validation of carbohydrate structures.

This is an author produced version of Privateer: : software for the conformational validation of carbohydrate structures. This is an author produced version of Privateer: : software for the conformational validation of carbohydrate structures. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/95794/

More information

SOLVE and RESOLVE: automated structure solution, density modification and model building

SOLVE and RESOLVE: automated structure solution, density modification and model building Journal of Synchrotron Radiation ISSN 0909-0495 SOLVE and RESOLVE: automated structure solution, density modification and model building Thomas Terwilliger Copyright International Union of Crystallography

More information

Direct-method SAD phasing with partial-structure iteration: towards automation

Direct-method SAD phasing with partial-structure iteration: towards automation Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Editors: E. N. Baker and Z. Dauter Direct-method SAD phasing with partial-structure iteration: towards automation J. W. Wang,

More information

Likelihood and SAD phasing in Phaser. R J Read, Department of Haematology Cambridge Institute for Medical Research

Likelihood and SAD phasing in Phaser. R J Read, Department of Haematology Cambridge Institute for Medical Research Likelihood and SAD phasing in Phaser R J Read, Department of Haematology Cambridge Institute for Medical Research Concept of likelihood Likelihood with dice 4 6 8 10 Roll a seven. Which die?? p(4)=p(6)=0

More information

research papers Detecting outliers in non-redundant diffraction data 1. Introduction Randy J. Read

research papers Detecting outliers in non-redundant diffraction data 1. Introduction Randy J. Read Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Detecting outliers in non-redundant diffraction data Randy J. Read Department of Haematology, University of Cambridge, Cambridge

More information

Supporting Information

Supporting Information Supporting Information Structural Basis of the Antiproliferative Activity of Largazole, a Depsipeptide Inhibitor of the Histone Deacetylases Kathryn E. Cole 1, Daniel P. Dowling 1,2, Matthew A. Boone 3,

More information

research papers Reduction of density-modification bias by b correction 1. Introduction Pavol Skubák* and Navraj S. Pannu

research papers Reduction of density-modification bias by b correction 1. Introduction Pavol Skubák* and Navraj S. Pannu Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Reduction of density-modification bias by b correction Pavol Skubák* and Navraj S. Pannu Biophysical Structural Chemistry, Leiden

More information

Phaser: Experimental phasing

Phaser: Experimental phasing Phaser: Experimental phasing Using SAD data in Phaser R J Read, Department of Haematology Cambridge Institute for Medical Research Diffraction with anomalous scatterers SAD: single-wavelength anomalous

More information

Supporting Information. Synthesis of Aspartame by Thermolysin : An X-ray Structural Study

Supporting Information. Synthesis of Aspartame by Thermolysin : An X-ray Structural Study Supporting Information Synthesis of Aspartame by Thermolysin : An X-ray Structural Study Gabriel Birrane, Balaji Bhyravbhatla, and Manuel A. Navia METHODS Crystallization. Thermolysin (TLN) from Calbiochem

More information

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP)

Joana Pereira Lamzin Group EMBL Hamburg, Germany. Small molecules How to identify and build them (with ARP/wARP) Joana Pereira Lamzin Group EMBL Hamburg, Germany Small molecules How to identify and build them (with ARP/wARP) The task at hand To find ligand density and build it! Fitting a ligand We have: electron

More information

Phase Improvement by Multi-Start Simulated Annealing Re nement and Structure-Factor Averaging

Phase Improvement by Multi-Start Simulated Annealing Re nement and Structure-Factor Averaging 798 J. Appl. Cryst. (1998). 31, 798±805 Phase Improvement by Multi-Start Simulated Annealing Re nement and Structure-Factor Averaging Luke M. Rice, a Yousif Shamoo a and Axel T. BruÈ nger a,b * a Department

More information

Pipelining Ligands in PHENIX: elbow and REEL

Pipelining Ligands in PHENIX: elbow and REEL Pipelining Ligands in PHENIX: elbow and REEL Nigel W. Moriarty Lawrence Berkeley National Laboratory Physical Biosciences Division Ligands in Crystallography Drug design Biological function studies Generate

More information

Molecular Biology Course 2006 Protein Crystallography Part II

Molecular Biology Course 2006 Protein Crystallography Part II Molecular Biology Course 2006 Protein Crystallography Part II Tim Grüne University of Göttingen Dept. of Structural Chemistry December 2006 http://shelx.uni-ac.gwdg.de tg@shelx.uni-ac.gwdg.de Overview

More information

Author's personal copy

Author's personal copy Methods 52 (2010) 168 172 Contents lists available at ScienceDirect Methods journal homepage: www. elsevier. com/ locate/ ymeth Review Article Solving novel RNA structures using only secondary structural

More information

Acta Crystallographica Section F

Acta Crystallographica Section F Supporting information Acta Crystallographica Section F Volume 70 (2014) Supporting information for article: Chemical conversion of cisplatin and carboplatin with histidine in a model protein crystallised

More information

Web-based Auto-Rickshaw for validation of the X-ray experiment at the synchrotron beamline

Web-based Auto-Rickshaw for validation of the X-ray experiment at the synchrotron beamline Web-based Auto-Rickshaw for validation of the X-ray experiment at the synchrotron beamline Auto-Rickshaw http://www.embl-hamburg.de/auto-rickshaw A platform for automated crystal structure determination

More information

electronic reprint (2,4,6-Trinitrophenyl)guanidine Graham Smith, Urs D. Wermuth and Jonathan M. White Editors: W. Clegg and D. G.

electronic reprint (2,4,6-Trinitrophenyl)guanidine Graham Smith, Urs D. Wermuth and Jonathan M. White Editors: W. Clegg and D. G. Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson (2,4,6-Trinitrophenyl)guanidine Graham Smith, Urs D. Wermuth and Jonathan M. White Copyright

More information

Experimental phasing in Crank2

Experimental phasing in Crank2 Experimental phasing in Crank2 Pavol Skubak and Navraj Pannu Biophysical Structural Chemistry, Leiden University, The Netherlands http://www.bfsc.leidenuniv.nl/software/crank/ X-ray structure solution

More information

Molecular replacement. New structures from old

Molecular replacement. New structures from old Molecular replacement New structures from old The Phase Problem phase amplitude Phasing by molecular replacement Phases can be calculated from atomic model Rotate and translate related structure Models

More information

Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190

Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190 Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190 Programs for NMR Based Structure Determination CNS - Brünger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve,

More information

Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190

Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190 Protein Structure Determination Using NMR Restraints BCMB/CHEM 8190 Programs for NMR Based Structure Determination CNS - Brunger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve,

More information

Supplementary materials. Crystal structure of the carboxyltransferase domain. of acetyl coenzyme A carboxylase. Department of Biological Sciences

Supplementary materials. Crystal structure of the carboxyltransferase domain. of acetyl coenzyme A carboxylase. Department of Biological Sciences Supplementary materials Crystal structure of the carboxyltransferase domain of acetyl coenzyme A carboxylase Hailong Zhang, Zhiru Yang, 1 Yang Shen, 1 Liang Tong Department of Biological Sciences Columbia

More information

electronic reprint (P)-Tetra-μ 3 -iodido-tetrakis[(cyclohexyldiphenylphosphine-»p)silver(i)] John F. Young and Glenn P. A. Yap

electronic reprint (P)-Tetra-μ 3 -iodido-tetrakis[(cyclohexyldiphenylphosphine-»p)silver(i)] John F. Young and Glenn P. A. Yap Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson (P)-Tetra-μ 3 -iodido-tetrakis[(cyclohexyldiphenylphosphine-»p)silver(i)] John F. Young and Glenn

More information

Experimental phasing in Crank2

Experimental phasing in Crank2 Experimental phasing in Crank2 Pavol Skubak and Navraj Pannu Biophysical Structural Chemistry, Leiden University, The Netherlands http://www.bfsc.leidenuniv.nl/software/crank/ Crank2 for experimental phasing

More information

PAN-modular Structure of Parasite Sarcocystis muris Microneme Protein SML-2 at 1.95 Å Resolution and the Complex with 1-Thio-β-D-Galactose

PAN-modular Structure of Parasite Sarcocystis muris Microneme Protein SML-2 at 1.95 Å Resolution and the Complex with 1-Thio-β-D-Galactose Supplementary Material to the paper: PAN-modular Structure of Parasite Sarcocystis muris Microneme Protein SML-2 at 1.95 Å Resolution and the Complex with 1-Thio-β-D-Galactose Jürgen J. Müller, a Manfred

More information

PROTEIN'STRUCTURE'DETERMINATION'

PROTEIN'STRUCTURE'DETERMINATION' PROTEIN'STRUCTURE'DETERMINATION' USING'NMR'RESTRAINTS' BCMB/CHEM'8190' Programs for NMR Based Structure Determination CNS - Brünger, A. T.; Adams, P. D.; Clore, G. M.; DeLano, W. L.; Gros, P.; Grosse-Kunstleve,

More information

Jimmy U. Franco, Marilyn M. Olmstead and Justin C. Hammons

Jimmy U. Franco, Marilyn M. Olmstead and Justin C. Hammons Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson Tetra-μ 2 -acetato-» 8 O:O -bisf[1-(1-adamantyliminiomethyl)-2-naphtholato-»o]rhodium(ii)g 0

More information

4. Constraints and Hydrogen Atoms

4. Constraints and Hydrogen Atoms 4. Constraints and ydrogen Atoms 4.1 Constraints versus restraints In crystal structure refinement, there is an important distinction between a constraint and a restraint. A constraint is an exact mathematical

More information

Pathogenic C9ORF72 Antisense Repeat RNA Forms a Double Helix with Tandem C:C Mismatches

Pathogenic C9ORF72 Antisense Repeat RNA Forms a Double Helix with Tandem C:C Mismatches Supporting Information Pathogenic C9ORF72 Antisense Repeat RNA Forms a Double Helix with Tandem C:C Mismatches David W. Dodd, Diana R. Tomchick, David R. Corey, and Keith T. Gagnon METHODS S1 RNA synthesis.

More information

Supplemental Data. Structure of the Rb C-Terminal Domain. Bound to E2F1-DP1: A Mechanism. for Phosphorylation-Induced E2F Release

Supplemental Data. Structure of the Rb C-Terminal Domain. Bound to E2F1-DP1: A Mechanism. for Phosphorylation-Induced E2F Release Supplemental Data Structure of the Rb C-Terminal Domain Bound to E2F1-DP1: A Mechanism for Phosphorylation-Induced E2F Release Seth M. Rubin, Anne-Laure Gall, Ning Zheng, and Nikola P. Pavletich Section

More information

MR model selection, preparation and assessing the solution

MR model selection, preparation and assessing the solution Ronan Keegan CCP4 Group MR model selection, preparation and assessing the solution DLS-CCP4 Data Collection and Structure Solution Workshop 2018 Overview Introduction Step-by-step guide to performing Molecular

More information

Garib N Murshudov MRC-LMB, Cambridge

Garib N Murshudov MRC-LMB, Cambridge Garib N Murshudov MRC-LMB, Cambridge Contents Introduction AceDRG: two functions Validation of entries in the DB and derived data Generation of new ligand description Jligand for link description Conclusions

More information

Automated ligand fitting by core-fragment fitting and extension into density

Automated ligand fitting by core-fragment fitting and extension into density Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Editors: E. N. Baker and Z. Dauter Automated ligand fitting by core-fragment fitting and extension into density Thomas C. Terwilliger,

More information

A tutorial for learning and teaching macromolecular crystallography

A tutorial for learning and teaching macromolecular crystallography A tutorial for learning and teaching macromolecular crystallography Annette Faust, Santosh Panjikar, Uwe Mueller, Venkataraman Parthasarathy, Andrea Schmidt, Victor S. Lamzin and Manfred S. Weiss Reference:

More information

Protein Crystallography Part II

Protein Crystallography Part II Molecular Biology Course 2007 Protein Crystallography Part II Tim Grüne University of Göttingen Dept. of Structural Chemistry November 2007 http://shelx.uni-ac.gwdg.de tg@shelx.uni-ac.gwdg.de Overview

More information

Direct Method. Very few protein diffraction data meet the 2nd condition

Direct Method. Very few protein diffraction data meet the 2nd condition Direct Method Two conditions: -atoms in the structure are equal-weighted -resolution of data are higher than the distance between the atoms in the structure Very few protein diffraction data meet the 2nd

More information

Computational aspects of high-throughput crystallographic macromolecular structure determination

Computational aspects of high-throughput crystallographic macromolecular structure determination Cop[Book Title], Edited by [Editor s Name]. ISBN 0-471-XXXXX-X Copyright 2007 Wiley[Imprint], Inc. Chapter 4 Computational aspects of high-throughput crystallographic macromolecular structure determination

More information

catena-poly[[[bis(cyclohexyldiphenylphosphine-»p)silver(i)]-μ-cyano-» 2 N:C-silver(I)-μ-cyano-» 2 C:N] dichloromethane solvate]

catena-poly[[[bis(cyclohexyldiphenylphosphine-»p)silver(i)]-μ-cyano-» 2 N:C-silver(I)-μ-cyano-» 2 C:N] dichloromethane solvate] Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson catena-poly[[[bis(cyclohexyldiphenylphosphine-»p)silver(i)]-μ-cyano-» 2 N:C-silver(I)-μ-cyano-»

More information

CCP4 Diamond 2014 SHELXC/D/E. Andrea Thorn

CCP4 Diamond 2014 SHELXC/D/E. Andrea Thorn CCP4 Diamond 2014 SHELXC/D/E Andrea Thorn SHELXC/D/E workflow SHELXC: α calculation, file preparation SHELXD: Marker atom search = substructure search SHELXE: density modification Maps and coordinate files

More information

Experimental Phasing with SHELX C/D/E

Experimental Phasing with SHELX C/D/E WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Dr. Tim Grüne :: Paul Scherrer Institut :: tim.gruene@psi.ch Experimental Phasing with SHELX C/D/E CCP4 / APS School Chicago 2017 22 nd June 2017 1 - The Phase Problem

More information

research papers 1. Introduction Thomas C. Terwilliger a * and Joel Berendzen b

research papers 1. Introduction Thomas C. Terwilliger a * and Joel Berendzen b Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Discrimination of solvent from protein regions in native Fouriers as a means of evaluating heavy-atom solutions in the MIR and

More information

shelxl: Refinement of Macromolecular Structures from Neutron Data

shelxl: Refinement of Macromolecular Structures from Neutron Data ESS Neutron Protein Crystallography 2013 Aarhus, Denmark shelxl: Refinement of Macromolecular Structures from Neutron Data Tim Grüne University of Göttingen Dept. of Structural Chemistry http://shelx.uni-ac.gwdg.de

More information

electronic reprint 3,5-Di-p-toluoyl-1,2-dideoxy-fi-1-(imidazol-1-yl)-D-ribofuranose Nicole Düpre, Wei-Zheng Shen, Pablo J. Sanz Miguel and Jens Müller

electronic reprint 3,5-Di-p-toluoyl-1,2-dideoxy-fi-1-(imidazol-1-yl)-D-ribofuranose Nicole Düpre, Wei-Zheng Shen, Pablo J. Sanz Miguel and Jens Müller Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson 3,5-Di-p-toluoyl-1,2-dideoxy-fi-1-(imidazol-1-yl)-D-ribofuranose Nicole Düpre, Wei-Zheng Shen,

More information

Macromolecular Crystallography Part II

Macromolecular Crystallography Part II Molecular Biology Course 2009 Macromolecular Crystallography Part II Tim Grüne University of Göttingen Dept. of Structural Chemistry November 2009 http://shelx.uni-ac.gwdg.de tg@shelx.uni-ac.gwdg.de From

More information

electronic reprint 5,12-Bis(4-tert-butylphenyl)-6,11-diphenylnaphthacene

electronic reprint 5,12-Bis(4-tert-butylphenyl)-6,11-diphenylnaphthacene Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson 5,12-Bis(4-tert-butylphenyl)-6,11-diphenylnaphthacene Götz Schuck, Simon Haas, Arno F. Stassen,

More information

TLS and all that. Ethan A Merritt. CCP4 Summer School 2011 (Argonne, IL) Abstract

TLS and all that. Ethan A Merritt. CCP4 Summer School 2011 (Argonne, IL) Abstract TLS and all that Ethan A Merritt CCP4 Summer School 2011 (Argonne, IL) Abstract We can never know the position of every atom in a crystal structure perfectly. Each atom has an associated positional uncertainty.

More information

Preparing a PDB File

Preparing a PDB File Figure 1: Schematic view of the ligand-binding domain from the vitamin D receptor (PDB file 1IE9). The crystallographic waters are shown as small spheres and the bound ligand is shown as a CPK model. HO

More information

research papers Development of a force field for conditional optimization of protein structures

research papers Development of a force field for conditional optimization of protein structures Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Development of a force field for conditional optimization of protein structures Sjors H. W. Scheres and Piet Gros* Department

More information

Tools for Cryo-EM Map Fitting. Paul Emsley MRC Laboratory of Molecular Biology

Tools for Cryo-EM Map Fitting. Paul Emsley MRC Laboratory of Molecular Biology Tools for Cryo-EM Map Fitting Paul Emsley MRC Laboratory of Molecular Biology April 2017 Cryo-EM model-building typically need to move more atoms that one does for crystallography the maps are lower resolution

More information

Small-Angle Scattering Atomic Structure Based Modeling

Small-Angle Scattering Atomic Structure Based Modeling Small-Angle Scattering Atomic Structure Based Modeling Alejandro Panjkovich EMBL Hamburg 07.12.2017 A. Panjkovich (EMBL) BioSAS atomic modeling 07.12.2017 1 / 49 From the forest to the particle accelerator

More information

ID14-EH3. Adam Round

ID14-EH3. Adam Round Bio-SAXS @ ID14-EH3 Adam Round Contents What can be obtained from Bio-SAXS Measurable parameters Modelling strategies How to collect data at Bio-SAXS Procedure Data collection tests Data Verification and

More information

Crystals, X-rays and Proteins

Crystals, X-rays and Proteins Crystals, X-rays and Proteins Comprehensive Protein Crystallography Dennis Sherwood MA (Hons), MPhil, PhD Jon Cooper BA (Hons), PhD OXFORD UNIVERSITY PRESS Contents List of symbols xiv PART I FUNDAMENTALS

More information

research papers ARP/wARP and molecular replacement 1. Introduction

research papers ARP/wARP and molecular replacement 1. Introduction Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 ARP/wARP and molecular replacement Anastassis Perrakis, a * Maria Harkiolaki, b Keith S. Wilson b and Victor S. Lamzin c a Department

More information

N-[(Diphenylamino)methyl]acetamide

N-[(Diphenylamino)methyl]acetamide Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson N-[(Diphenylamino)methyl]acetamide Ganesan Venkatesa Prabhu, Nagarajan Vembu, Loganathan Muruganandam

More information

Rietveld Structure Refinement of Protein Powder Diffraction Data using GSAS

Rietveld Structure Refinement of Protein Powder Diffraction Data using GSAS Rietveld Structure Refinement of Protein Powder Diffraction Data using GSAS Jon Wright ESRF, Grenoble, France Plan This is a users perspective Cover the protein specific aspects (assuming knowledge of

More information

research papers A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives

research papers A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives Michael P. Robertson and William

More information

Fast, Intuitive Structure Determination IV: Space Group Determination and Structure Solution

Fast, Intuitive Structure Determination IV: Space Group Determination and Structure Solution Fast, Intuitive Structure Determination IV: Space Group Determination and Structure Solution November 25, 2013 Welcome I I Dr. Michael Ruf Product Manager Crystallography Bruker AXS Inc. Madison, WI, USA

More information

Modelling Macromolecules with Coot

Modelling Macromolecules with Coot Modelling Macromolecules with Coot Overview Real Space Refinement A Sample of Tools Tools for Cryo-EM Tools for Ligands [Carbohydrates] Paul Emsley MRC Laboratory of Molecular Biology Acknowldegments,

More information

Manipulating Ligands Using Coot. Paul Emsley May 2013

Manipulating Ligands Using Coot. Paul Emsley May 2013 Manipulating Ligands Using Coot Paul Emsley May 2013 Ligand and Density... Ligand and Density... Ligand and Density... Protein-ligand complex models are often a result of subjective interpretation Scoring

More information

Approximation of the structure factor for nonspherical hard bodies using polydisperse spheres

Approximation of the structure factor for nonspherical hard bodies using polydisperse spheres Journal of Applied Crystallography ISSN 21-8898 Approximation of the structure factor for nonspherical hard bodies using polydisperse spheres Steen Hansen J. Appl. Cryst. (213). 46, 18 116 Copyright c

More information

3-methoxyanilinium 3-carboxy-4-hydroxybenzenesulfonate dihydrate.

3-methoxyanilinium 3-carboxy-4-hydroxybenzenesulfonate dihydrate. 3-methoxyanilinium 3-carboxy-4-hydroxybenzenesulfonate dihydrate. Author Smith, Graham, D. Wermuth, Urs, Healy, Peter Published 2006 Journal Title Acta crystallographica. Section E, Structure reports online

More information

Direct Methods and Many Site Se-Met MAD Problems using BnP. W. Furey

Direct Methods and Many Site Se-Met MAD Problems using BnP. W. Furey Direct Methods and Many Site Se-Met MAD Problems using BnP W. Furey Classical Direct Methods Main method for small molecule structure determination Highly automated (almost totally black box ) Solves structures

More information

Unexpected crystallization of 1,3-bis(4-fluorophenyl)propan-2-one in paratone oil

Unexpected crystallization of 1,3-bis(4-fluorophenyl)propan-2-one in paratone oil Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W. Clegg and D. G. Watson Unexpected crystallization of 1,3-bis(4-fluorophenyl)propan-2-one in paratone oil Ilia A. Guzei,

More information

Anisotropy in macromolecular crystal structures. Andrea Thorn July 19 th, 2012

Anisotropy in macromolecular crystal structures. Andrea Thorn July 19 th, 2012 Anisotropy in macromolecular crystal structures Andrea Thorn July 19 th, 2012 Motivation Courtesy of M. Sawaya Motivation Crystal structures are inherently anisotropic. X-ray diffraction reflects this

More information

A tutorial for learning and teaching macromolecular crystallography version 2010

A tutorial for learning and teaching macromolecular crystallography version 2010 A tutorial for learning and teaching macromolecular crystallography version 2010 Annette Faust, Sandra Puehringer, Nora Darowski, Santosh Panjikar, Venkataraman Parthasarathy, Andrea Schmidt, Victor S.

More information

Introduction to single crystal X-ray analysis VI. About CIFs Alerts and how to handle them

Introduction to single crystal X-ray analysis VI. About CIFs Alerts and how to handle them Technical articles Introduction to single crystal X-ray analysis VI. About CIFs Alerts and how to handle them Akihito Yamano* 1. Introduction CIF is an abbreviation for Crystallographic Information File,

More information

2-Methoxy-1-methyl-4-nitro-1H-imidazole

2-Methoxy-1-methyl-4-nitro-1H-imidazole University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2007 2-Methoxy-1-methyl-4-nitro-1H-imidazole Maciej Kubicki

More information

Scattering Lecture. February 24, 2014

Scattering Lecture. February 24, 2014 Scattering Lecture February 24, 2014 Structure Determination by Scattering Waves of radiation scattered by different objects interfere to give rise to an observable pattern! The wavelength needs to close

More information

Ethylenediaminium pyridine-2,5-dicarboxylate dihydrate

Ethylenediaminium pyridine-2,5-dicarboxylate dihydrate Ethylenediaminium pyridine-2,5-dicarboxylate dihydrate Author Smith, Graham, D. Wermuth, Urs, Young, David, Healy, Peter Published 2006 Journal Title Acta crystallographica. Section E, Structure reports

More information

Supporting Information. Structural Insights into Substrate Specificity and Solvent Tolerance in Alcohol

Supporting Information. Structural Insights into Substrate Specificity and Solvent Tolerance in Alcohol Supporting Information Structural Insights into Substrate Specificity and Solvent Tolerance in Alcohol Dehydrogenase ADH- A from Rhodococcus ruber DSM 44541 Martin Karabec 1, Andrzej Łyskowski, 1 Katharina

More information

SHELXC/D/E. Andrea Thorn

SHELXC/D/E. Andrea Thorn SHELXC/D/E Andrea Thorn What is experimental phasing? Experimental phasing is what you do if MR doesn t work. What is experimental phasing? Experimental phasing methods depend on intensity differences.

More information

electronic reprint To B or not to B: a question of resolution? Ethan A. Merritt Crystallography Journals Online is available from journals.iucr.

electronic reprint To B or not to B: a question of resolution? Ethan A. Merritt Crystallography Journals Online is available from journals.iucr. Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Editors: E. N. Baker and Z. Dauter To B or not to B: a question of resolution? Ethan A. Merritt Acta Cryst. (2012). D68, 468 477

More information

MRSAD: using anomalous dispersion from S atoms collected at CuKffwavelength in molecular-replacement structure determination

MRSAD: using anomalous dispersion from S atoms collected at CuKffwavelength in molecular-replacement structure determination Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 MRSAD: using anomalous dispersion from S atoms collected at CuKffwavelength in molecular-replacement structure determination Jonathan

More information

1.b What are current best practices for selecting an initial target ligand atomic model(s) for structure refinement from X-ray diffraction data?!

1.b What are current best practices for selecting an initial target ligand atomic model(s) for structure refinement from X-ray diffraction data?! 1.b What are current best practices for selecting an initial target ligand atomic model(s) for structure refinement from X-ray diffraction data?! Visual analysis: Identification of ligand density from

More information

Resolution and data formats. Andrea Thorn

Resolution and data formats. Andrea Thorn Resolution and data formats Andrea Thorn RESOLUTION Motivation Courtesy of M. Sawaya Map resolution http://www.bmsc.washington.edu/people/verlinde/experiment.html Data quality indicators Resolution accounts

More information

GC376 (compound 28). Compound 23 (GC373) (0.50 g, 1.24 mmol), sodium bisulfite (0.119 g,

GC376 (compound 28). Compound 23 (GC373) (0.50 g, 1.24 mmol), sodium bisulfite (0.119 g, Supplemental Material Synthesis of GC376 GC376 (compound 28). Compound 23 (GC373) (0.50 g, 1.24 mmol), sodium bisulfite (0.119 g, 1.12 mmol), ethyl acetate (2 ml), ethanol (1 ml) and water (0.40 ml) were

More information

Structure solution from weak anomalous data

Structure solution from weak anomalous data Structure solution from weak anomalous data Phenix Workshop SBGrid-NE-CAT Computing School Harvard Medical School, Boston June 7, 2014 Gábor Bunkóczi, Airlie McCoy, Randy Read (Cambridge University) Nat

More information

Sodium 3,5-dinitrobenzoate

Sodium 3,5-dinitrobenzoate metal-organic papers Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Helen P. Jones,* Amy L. Gillon and Roger J. Davey Colloids, Crystals and Interfaces Group, School of Chemical

More information

Exploiting Protein Conformational Change to Optimize Adenosine-Derived Inhibitors of HSP70

Exploiting Protein Conformational Change to Optimize Adenosine-Derived Inhibitors of HSP70 SUPPRTIG IFRMATI Exploiting Protein Conformational Change to ptimize Adenosine-Derived Inhibitors of HSP70 Matthew D. Cheeseman, 1 Isaac M. Westwood, 1,2 livier Barbeau, 1 Martin Rowlands, 1 Sarah Dobson,

More information

Model and data. An X-ray structure solution requires a model.

Model and data. An X-ray structure solution requires a model. Model and data An X-ray structure solution requires a model. This model has to be consistent with: The findings of Chemistry Reflection positions and intensities Structure refinement = Model fitting by

More information

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE

Examples of Protein Modeling. Protein Modeling. Primary Structure. Protein Structure Description. Protein Sequence Sources. Importing Sequences to MOE Examples of Protein Modeling Protein Modeling Visualization Examination of an experimental structure to gain insight about a research question Dynamics To examine the dynamics of protein structures To

More information

Image definition evaluation functions for X-ray crystallography: A new perspective on the phase. problem. Hui LI*, Meng HE* and Ze ZHANG

Image definition evaluation functions for X-ray crystallography: A new perspective on the phase. problem. Hui LI*, Meng HE* and Ze ZHANG Image definition evaluation functions for X-ray crystallography: A new perspective on the phase problem Hui LI*, Meng HE* and Ze ZHANG Beijing University of Technology, Beijing 100124, People s Republic

More information

research papers Simulated-annealing real-space refinement as a tool in model building 1. Introduction

research papers Simulated-annealing real-space refinement as a tool in model building 1. Introduction Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Simulated-annealing real-space refinement as a tool in model building Andrei Korostelev, a,b Richard Bertram c,b and Michael S.

More information

Ab initio molecular-replacement phasing for symmetric helical membrane proteins

Ab initio molecular-replacement phasing for symmetric helical membrane proteins Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Editors: E. N. Baker and Z. Dauter Ab initio molecular-replacement phasing for symmetric helical membrane proteins Pavel Strop,

More information

Better Bond Angles in the Protein Data Bank

Better Bond Angles in the Protein Data Bank Better Bond Angles in the Protein Data Bank C.J. Robinson and D.B. Skillicorn School of Computing Queen s University {robinson,skill}@cs.queensu.ca Abstract The Protein Data Bank (PDB) contains, at least

More information

electronic reprint Sr 5 (V IV OF 5 ) 3 F(H 2 O) 3 refined from a non-merohedrally twinned crystal Armel Le Bail, Anne-Marie Mercier and Ina Dix

electronic reprint Sr 5 (V IV OF 5 ) 3 F(H 2 O) 3 refined from a non-merohedrally twinned crystal Armel Le Bail, Anne-Marie Mercier and Ina Dix ISSN 1600-5368 Inorganic compounds Metal-organic compounds Organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Editors: W.T. A. Harrison, J. Simpson and M. Weil Sr

More information

Francisco Melo, Damien Devos, Eric Depiereux and Ernest Feytmans

Francisco Melo, Damien Devos, Eric Depiereux and Ernest Feytmans From: ISMB-97 Proceedings. Copyright 1997, AAAI (www.aaai.org). All rights reserved. ANOLEA: A www Server to Assess Protein Structures Francisco Melo, Damien Devos, Eric Depiereux and Ernest Feytmans Facultés

More information

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 N 0 -(3,4-Dimethylbenzylidene)furan-2- carbohydrazide Yu-Feng Li a and Fang-Fang Jian b * a Microscale Science

More information

PHENIX Wizards and Tools

PHENIX Wizards and Tools PHENIX Wizards and Tools Tom Terwilliger Los Alamos National Laboratory terwilliger@lanl.gov l The PHENIX project Computational Crystallography Initiative (LBNL) Paul Adams, Ralf Grosse-Kunstleve, Peter

More information

X- ray crystallography. CS/CME/Biophys/BMI 279 Nov. 12, 2015 Ron Dror

X- ray crystallography. CS/CME/Biophys/BMI 279 Nov. 12, 2015 Ron Dror X- ray crystallography CS/CME/Biophys/BMI 279 Nov. 12, 2015 Ron Dror 1 Outline Overview of x-ray crystallography Crystals Electron density Diffraction patterns The computational problem: determining structure

More information

Acta Cryst. (2017). D73, doi: /s

Acta Cryst. (2017). D73, doi: /s Acta Cryst. (2017). D73, doi:10.1107/s2059798317010932 Supporting information Volume 73 (2017) Supporting information for article: Designing better diffracting crystals of biotin carboxyl carrier protein

More information

CHEM 463: Advanced Inorganic Chemistry Modeling Metalloproteins for Structural Analysis

CHEM 463: Advanced Inorganic Chemistry Modeling Metalloproteins for Structural Analysis CHEM 463: Advanced Inorganic Chemistry Modeling Metalloproteins for Structural Analysis Purpose: The purpose of this laboratory is to introduce some of the basic visualization and modeling tools for viewing

More information

research papers Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution 1.

research papers Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution 1. Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution Jeffrey J. Headd, a

More information

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 92 parameters

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 92 parameters organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 1,1 0 -(Butane-1,4-diyl)dipyridinium dibromide dihydrate Ming-Qiang Wu, a Xin Xiao, a Yun-Qian Zhang, a * Sai-Feng

More information

research papers An introduction to molecular replacement 1. Introduction Philip Evans a * and Airlie McCoy b

research papers An introduction to molecular replacement 1. Introduction Philip Evans a * and Airlie McCoy b Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 An introduction to molecular replacement Philip Evans a * and Airlie McCoy b a MRC Laboratory of Molecular Biology, Hills Road,

More information

Alchemical free energy calculations in OpenMM

Alchemical free energy calculations in OpenMM Alchemical free energy calculations in OpenMM Lee-Ping Wang Stanford Department of Chemistry OpenMM Workshop, Stanford University September 7, 2012 Special thanks to: John Chodera, Morgan Lawrenz Outline

More information

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 1-(3-Amino-1H-inden-2-yl)ethanone Dong-Yue Hu and Zhi-Rong Qu* Ordered Matter Science Research Center, College

More information

Diammonium biphenyl-4,4'-disulfonate. Author. Published. Journal Title DOI. Copyright Statement. Downloaded from. Link to published version

Diammonium biphenyl-4,4'-disulfonate. Author. Published. Journal Title DOI. Copyright Statement. Downloaded from. Link to published version Diammonium biphenyl-4,4'-disulfonate Author Smith, Graham, Wermuth, Urs, Healy, Peter Published 2008 Journal Title Acta Crystallographica. Section E: Structure Reports Online DOI https://doi.org/10.1107/s1600536807061995

More information