Update in Material and Process Technologies for 2.5/3D IC Dr. Rainer Knippelmeyer CTO and VP R&D, SÜSS MicroTec AG

Size: px
Start display at page:

Download "Update in Material and Process Technologies for 2.5/3D IC Dr. Rainer Knippelmeyer CTO and VP R&D, SÜSS MicroTec AG"

Transcription

1 Update in Material and Process Technologies for 2.5/3D IC Dr. Rainer Knippelmeyer CTO and VP R&D, SÜSS MicroTec AG

2 TEMPORARY BONDING / DEBONDING AS THIN WAFER HANDLING SOLUTION FOR 3DIC & INTERPOSERS Device Manufacturing TSV Processing Temp Bonding Thinning Post Processing Temp Debonding Stacking C2C C2W W2W Thin Wafer Handling 2

3 STATUS OF TEMPORARY BONDING/DEBONDING PROCESSES AND MATERIALS Initial R&D Line R&D (Integration) Volume Ramp-up HVM Industry Feasibility Yield (Cost) Improvement 3

4 OUTLINE Introduction: Room Temperature Debonding Material/Process Optimization & Survey Conclusions & Roadmap 4

5 INDUSTRY TREND TOWARDS ROOM TEMPERATURE DEBONDING ROOM TEMPERATURE DEBONDING DEBOND METHOD / MATERIAL SOLVENT RELEASE THERMAL SLIDE SOLID STATE LASER RELEASE MECHANICAL EXCIMER LASER ASSISTED SIMPLE CARRIER LOW COO NO THERMAL STRESSES NO CARBONIZATION HIGH THROUGHPUT CAPABLE SUSS FOCUS 5

6 GENERAL MECHANICAL ROOM TEMPERATURE DEBOND PROCESS Temporary Bond Carrier Wafer Add & Prepare Release or Zoned Layer(s) Flip Wafer Bond Debond Device Wafer Spin Coat & Prepare Adhesive(s) Thinned Device Wafer Flip Wafer Carrier Wafer Attach to Dicing Frame (optional edge cut / for ZoneBond ) Mechanical Debond at Room Temperature Clean Device Wafer 6

7 EXCIMER LASER ASSISTED ROOM TEMPERATURE DEBONDING Laser beam Excimer laser debonding mechanism XeCl or KrF 308 / 248 nm Nanosecond laser pulses break bonds of polymer materials and create gaseous state Fast expansion of gas cuts material open Glas Carrier Adhesive Device Wafer Absorption in thin special layer Absorption layer Advantages w.r.t to Solid State Laser No carbonization / thermal stresses Flat top beam profile / 10x better stability no excess energy in substrate No laser energy near device Laser light absorbed in nm layer Glas Carrier Adhesive Device Wafer Absorption in first nm of adhesive Allows unobscured visible light inspection Adhesive only has to absorb in UV (308/248 nm) Works on a range of existing adhesives Glas carrier and wafer separated 7

8 GENERAL LASER ASSISTED ROOM TEMPERATURE DEBOND PROCESS Temporary Bond Carrier Wafer ( ) Optional Add & Prepare Release ABSORPTION or Zoned LAYER Layer(s) Flip Wafer Bond Debond Device Wafer Spin Coat & Prepare Adhesive(s) Thinned Device Wafer Flip Wafer Carrier Wafer Attach to Dicing Frame Excimer Laser Treatment (308nm) Mechanical Debond / (adjustable lift of force down to zero) at Room Temperature Clean Device Wafer 8

9 OUTLINE Introduction: Room Temperature Debonding Material/Process Optimization & Survey Conclusions & Roadmap 9

10 GENERAL ADHESIVE REQUIREMENTS FOR TEMPORARY BONDING/DEBONDING Vacuum process compatibility Temperature stability 250C (better 350C) Chemical compatibility Easy to de-bond (no thermal stress) Easy to clean (no chemical stress) Possibility to re-use / recycle carriers Total Thickness Variation before and after grinding Application Thinning / TSV exposure Chip stacking / Interposer Type of Topography Embedded in Adhesive Adhesive Thickness Today s Si TTV Requirements Pad / RDL 20µm 2µm Cu Nail / Micro Bump (10-40µm) 20-70µm 4µm Interposer C4 bump (70-80µm) 100µm 5-7µm Device Manufacturing TSV Processing Temp Bonding Stacking Thinning Post Processing Temp Debonding C2C C2W W2W 10

11 TEMP. BONDING/DEBONDING PROCESS SURVEY Production Readiness Cost of Ownership Performance 1 :: Qualified /used for for high volume manufacturing 2: 2: Integration tests in in line at at institute 3: 3: Qualified by by SUSS internal tests Equipment cost Process times & cycles Other consumables: e.g. Cost of of Tape (Cost of of materials) Process latitude (Survivability // Debondability) Achievable min. wafer thickness (TTV) WaferBOND WSS laser free ZoneBOND 11

12 SUSS OPEN EQUIPMENT PLATFORM AND SUPPORTED MATERIALS Other Material Suppliers WaferBOND WSS laser free ZoneBOND Different material classes: +Thermoplastic +Thermoset +Photoset 10 Material suppliers & processes: 9 enable mechanical Debonding 4 enable Laser Asstisted Room Temp. Debonding 12

13 TTV OPTIMIZATION - INFLUENCING FACTORS Optimization parameters are varying between material classes Release layer coating Release layer treatment Adhesive Coating Adhesive Curing Leveling Processes Bond Process Post Bond Curing Material Main influencing factors Thermoset Thermoplastic 13

14 TTV OPTIMIZATION EXAMPLE WITH THIN MATERIALS (TMAT) ADHESIVE TTV improvement from 10-15µm down to 2µm for C4 bumped wafers with 70µm bump height and 115µm adhesive thickness Before process optimization: bonded stack TTV = 10-15µm After process optimization: bonded stack TTV = 2µm Device Adhesive Carrier Bonded stack TTV 14

15 SCANNING ACOUSTIC MICROSCOPE IMAGES AFTER BONDING AND THINNING 300mm wafers with 8µm bumps, 60µm adhesive Si - TTV = 1.3 µm after thinning to 50µm SAM image post bond (full thickness) shows no voids SAM image after thinning to 50µm shows no defects 15

16 SUCCESFULL PROCESS FLOW INTEGRATION RESULTS AT IMEC Temp. Bond Adhesive Adhesive Thickness TTV after thinning on 50µm Si TTV[%] as a function of Adh. Thickness A 55µm 3µm 5,5% A 20µm 2µm 10% B 100µm 7µm 7% C 45µm 4µm 8,9% D 50µm 2µm 4,0% E 60µm 5µm 8,3% Device Carrier Device Carrier Thinned Device Wafer TTV of 50µm Si wafer 16

17 COST OF OWNERSHIP: OPTIMIZATION OF CLEANING PROCEDURES Solvent Dispense Spin Off Rinse Dry Process Steps Nozzle Flow Rate Nozzle Flow Rate Time // Spin Time Speed // Puddle Spin Speed Number of cycles Time Time Spin Speed Spin Speed Influencing Parameters Solves Adhesive Tape Frame Wafer Chemical #1 #1 Chemical #2 #2 Chemical #3 #3 Chemical #4 #4 Solvent Compability 17

18 COST OF OWNERSHIP: EXAMPLE FOR 8X IMPROVEMENT OF CLEANING COO Solvent Glue thickness Cleaning time Consumption of the solvent Origin POR 110 µm 100% 100% Improved POR 110 µm 72% 66% Comparison of the cleaning time and solvent consumption Solvent Price per liter Consumption of the solvent Volume Costs Origin POR Improved POR 100% 100% 100% 1,5 30% 66% 12,5% Comparison of the solvent consumption and the costs 8 18

19 DICING TAPE INTEGRITY CRITICAL FOR RESULTS SPECIAL RESISTANT TAPES INCREASE COO Solvent exposure can lead to substantial tape degradation Wrinkled tape increases the risk of thin wafer damage during handling 19

20 COST OF OWNERSHIP REDUCTION: TAPE PROTECTION ALLOWS TO USE STANDARD TAPES FOR MOST CLEANING CHEMICALS SUSS thin wafer cleaning module allows to protect the tape and frame + Good chance to use existing and qualified tapes (cost benefit) + Higher flexibility for cleaning solvents 20

21 HIGH TEMPERATURE / HIGH THROUGHPUT LOW COO CAPABLE LASER ASSISTED DEBONDING Optimization / Collaboration results: Adhesive stable at high postprocessing temperatures > 350 C Based on mature temporary bonding material composition Transparent adhesive allowing optical inspection Very simple & residueless cleaning Throughput: > 40wph Debonding time < 45sec for 300mm wafer (160mJ/cm2) In collaboration with Wafer stack after excimer laser debonding Wafer stack with glass carrier removed Wafer after cleaning 21

22 OUTLINE Introduction: Room Temperature Debonding Material/Process Optimization & Survey Conclusions & Roadmap 22

23 EXAMPLES OF COST EQUIPMENT / MATURITY FOR 2.5D / 3D PROCESSES Normalized Cost of Equipment / Wafer + 4 materials qualifed for or in volume manuf. + Cost reduction potential factor (from currently qualified process flows) + Main limitation: process latitude Maturity Qualified or in Production / Process Integration at Institutes / Customer Samples Internal Qual. Cost of Equipment includes: Bonder / Debonder / Device Wafer Cleaner, Carrier cleaning / recycling is not considered 23

24 LASER ASSISTED DEBONDING VS. MECHANICAL DEBONDING ROOM TEMP. DEBONDING REQUIREMENT MECHANICAL EXCIMER LASER ASSISTED 2.5D Interposer DUAL CARRIER PROCESS FLOW (SELECTIVE DEBONDING) * GLAS CARRIER 3D Memory Logic SILICON CARRIER RISK OF LASER ENERGY NEAR ACTIVE DEVICE ** * Limited Process window/latitude ** Risk can be significantly reduced by proper choice of adhesive/absorption layer Both processes suited to 3D and 2.5D requirements Mechanical debonding seems closest fit to 3D requirements Laser assisted process originally used only for high performance logic in very high volume it seems closest fit to 2.5D interposer requirements 24

25 ROADMAP: DRIVERS & LEVERS Bump size and density Final device wafer thickness Temperature and chemical load Choice of materials Material consumption Process timing and flow Equipment optimization Further TTV Optimization Extend room temp. debonding Extended process specifications New/Improved bond materials Close collaborations and JDPs with: Institutes, Adhesive and tape manufacturers IDMs, Foundries, OSATs 25

26 ROADMAP: SUSS MICROTEC/ITRI: 5µM ULTRA THIN WAFER 300mm 50µm thickness with TSV wafer SUSS XBS300 5µm Ultra Thin Wafer 26

27 SUMMARY Trend towards room temperature debonding Mechanical debonding mainly 3D processes Laser assisted debonding mostly 2.5 D processes 10 materials/processes available for room temperature debonding 4 in or qualified for Volume Manufacturing x Cost of Equipment reductions in nearterm roadmap Main optimization topic: process latitude Close collaborations enable roadmap Equipment vendors, material vendors IDMs, Foundries, OSATs, institutes 27

28 See you next time at: SUSS TECHNOLOGY FORUM ASIA 2013 Taiwan, Hsinchu November 13 China, Shanghai November 15 Korea November 19 28

LATEST INSIGHTS IN MATERIAL AND PROCESS TECHNOLOGIES FOR INTERPOSER AND 3D STACKING

LATEST INSIGHTS IN MATERIAL AND PROCESS TECHNOLOGIES FOR INTERPOSER AND 3D STACKING LATEST INSIGHTS IN MATERIAL AND PROCESS TECHNOLOGIES FOR INTERPOSER AND 3D STACKING European 3D TSV Summit, January 22-23, 2013, Grenoble Dr. Rainer Knippelmeyer, CTO and VP of R&D, GM Product Line Bonder

More information

XBC300 Gen2. Fully-automated debonder and Cleaner

XBC300 Gen2. Fully-automated debonder and Cleaner XBC300 Gen2 Fully-automated debonder and Cleaner XBC300 Gen2 FULLY AUTOMATED DEBONDER AND CLEANER The SUSS XBC300 Gen2 debonder and cleaner platform is designed for process development as well as high

More information

Thin Wafer Handling Debonding Mechanisms

Thin Wafer Handling Debonding Mechanisms Thin Wafer Handling Debonding Mechanisms Jonathan Jeauneau, Applications Manager Alvin Lee, Technology Strategist Dongshun Bai, Scientist, 3-D IC R&D Materials Outline Requirements of Thin Wafer Handling

More information

A Temporary Bonding and Debonding Technology for TSV Fabrication

A Temporary Bonding and Debonding Technology for TSV Fabrication A Temporary Bonding and Debonding Technology for TSV Fabrication Taku Kawauchi, Masatoshi Shiraishi, Satoshi Okawa, Masahiro Yamamoto Tokyo Electron Ltd, Japan Taku Kawauchi, Tokyo Electron Ltd./Slide

More information

Thin Wafer Handling Challenges and Emerging Solutions

Thin Wafer Handling Challenges and Emerging Solutions 1 Thin Wafer Handling Challenges and Emerging Solutions Dr. Shari Farrens, Mr. Pete Bisson, Mr. Sumant Sood and Mr. James Hermanowski SUSS MicroTec, 228 Suss Drive, Waterbury Center, VT 05655, USA 2 Thin

More information

Passionately Innovating With Customers To Create A Connected World

Passionately Innovating With Customers To Create A Connected World Passionately Innovating With Customers To Create A Connected World Multi Die Integration Can Material Suppliers Meet the Challenge? Nov 14, 2012 Jeff Calvert - R&D Director, Advanced Packaging Technologies

More information

EV Group. Enabling processes for 3D interposer. Dr. Thorsten Matthias EV Group

EV Group. Enabling processes for 3D interposer. Dr. Thorsten Matthias EV Group EV Group Enabling processes for 3D interposer Dr. Thorsten Matthias EV Group EV Group in a Nutshell st Our philosophy Our mission in serving next generation application in semiconductor technology Equipment

More information

Temporary Wafer Bonding - Key Technology for 3D-MEMS Integration

Temporary Wafer Bonding - Key Technology for 3D-MEMS Integration Temporary Wafer Bonding - Key Technology for 3D-MEMS Integration 2016-06-15, Chemnitz Chemnitz University of Technology Basic Research Fraunhofer ENAS System-Packaging (SP) Back-End of Line (BEOL) Applied

More information

SHRINK. STACK. INTEGRATE.

SHRINK. STACK. INTEGRATE. SHRINK. STACK. INTEGRATE. SUSS MICROTEC PRODUCT PORTFOLIO SHAPING THE FUTURE With more than 60 years of engineering experience SUSS MicroTec is a leading supplier of process equipment for microstructuring

More information

1

1 Process methodologies for temporary thin wafer handling solutions By Justin Furse, Technology Strategist, Brewer Science, Inc. Use of temporary bonding/debonding as part of thin wafer handling processes

More information

2017 IEEE 67th Electronic Components and Technology Conference

2017 IEEE 67th Electronic Components and Technology Conference 2017 IEEE 67th Electronic Components and Technology Conference A Unique Temporary Bond Solution Based on a Polymeric Material Tacky at Room Temperature and Highly Thermally Resistant Application Extension

More information

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM

CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM U.S. -KOREA Forums on Nanotechnology 1 CURRENT STATUS OF NANOIMPRINT LITHOGRAPHY DEVELOPMENT IN CNMM February 17 th 2005 Eung-Sug Lee,Jun-Ho Jeong Korea Institute of Machinery & Materials U.S. -KOREA Forums

More information

Structuring and bonding of glass-wafers. Dr. Anke Sanz-Velasco

Structuring and bonding of glass-wafers. Dr. Anke Sanz-Velasco Structuring and bonding of glass-wafers Dr. Anke Sanz-Velasco Outline IMT Why glass? Components for life science Good bond requirements and evaluation Wafer bonding 1. Fusion bonding 2. UV-adhesive bonding

More information

Hybrid Wafer Level Bonding for 3D IC

Hybrid Wafer Level Bonding for 3D IC Hybrid Wafer Level Bonding for 3D IC An Equipment Perspective Markus Wimplinger, Corporate Technology Development & IP Director History & Roadmap - BSI CIS Devices???? 2013 2 nd Generation 3D BSI CIS with

More information

BONDING PARAMETERS OPTIMIZATION IN LOW TEMPERATURE ADHESIVE WAFER BONDING PROCESS USING SU-8 AS AN INTERMEDIATE ADHESIVE LAYER

BONDING PARAMETERS OPTIMIZATION IN LOW TEMPERATURE ADHESIVE WAFER BONDING PROCESS USING SU-8 AS AN INTERMEDIATE ADHESIVE LAYER BONDING PARAMETERS OPTIMIZATION IN LOW TEMPERATURE ADHESIVE WAFER BONDING PROCESS USING SU-8 AS AN INTERMEDIATE ADHESIVE LAYER Srinivasulu Korrapati B.E., Anna University, India, 2005 PROJECT Submitted

More information

Wet Chemical Processing with Megasonics Assist for the Removal of Bumping Process Photomasks

Wet Chemical Processing with Megasonics Assist for the Removal of Bumping Process Photomasks Wet Chemical Processing with Megasonics Assist for the Removal of Bumping Process Photomasks Hongseong Sohn and John Tracy Akrion Systems 6330 Hedgewood Drive, Suite 150 Allentown, PA 18106, USA Abstract

More information

Thermal Interface Materials (TIMs) for IC Cooling. Percy Chinoy

Thermal Interface Materials (TIMs) for IC Cooling. Percy Chinoy Thermal Interface Materials (TIMs) for IC Cooling Percy Chinoy March 19, 2008 Outline Thermal Impedance Interfacial Contact Resistance Polymer TIM Product Platforms TIM Design TIM Trends Summary 2 PARKER

More information

EUVL Readiness for High Volume Manufacturing

EUVL Readiness for High Volume Manufacturing EUVL Readiness for High Volume Manufacturing Britt Turkot Intel Corporation Outline Exposure Tool Progress Power Availability Intel demo results Reticle Defectivity Pellicle Materials Conclusion 2 Source

More information

Next-Generation Packaging Technology for Space FPGAs

Next-Generation Packaging Technology for Space FPGAs Power Matters. Next-Generation Packaging Technology for Space FPGAs Microsemi Space Forum Russia November 2013 Raymond Kuang Director of Packaging Engineering, SoC Products Group Agenda CCGA (ceramic column

More information

A Cost and Yield Analysis of Wafer-to-wafer Bonding. Amy Palesko SavanSys Solutions LLC

A Cost and Yield Analysis of Wafer-to-wafer Bonding. Amy Palesko SavanSys Solutions LLC A Cost and Yield Analysis of Wafer-to-wafer Bonding Amy Palesko amyp@savansys.com SavanSys Solutions LLC Introduction When a product requires the bonding of two wafers or die, there are a number of methods

More information

Slide 1 Raymond Jin, Adcon Lab, Inc.

Slide 1 Raymond Jin, Adcon Lab, Inc. Volume Production Proven Advanced Nanometer Slurries for CMP Applications, Capable of Recycling and Extendable to Larger Si Wafer Sizes and Future IC Technology Nodes Raymond R. Jin, X. L. Song, S. M.

More information

EV Group. Engineered Substrates for future compound semiconductor devices

EV Group. Engineered Substrates for future compound semiconductor devices EV Group Engineered Substrates for future compound semiconductor devices Engineered Substrates HB-LED: Engineered growth substrates GaN / GaP layer transfer Mobility enhancement solutions: III-Vs to silicon

More information

A Temporary Bonding and Debonding Technology for TSV Fabrication. Masahiro Yamamoto TEL 3DI Dept. ATS BU

A Temporary Bonding and Debonding Technology for TSV Fabrication. Masahiro Yamamoto TEL 3DI Dept. ATS BU A Temporary Bonding and Debonding Technology for TSV Fabrication Masahiro Yamamoto TEL 3DI Dept. ATS BU Contents About TEL Temporary Bonder Debonder Process Trends Bonder/Debonder System Outlook Summary

More information

Chapter 3 : ULSI Manufacturing Technology - (c) Photolithography

Chapter 3 : ULSI Manufacturing Technology - (c) Photolithography Chapter 3 : ULSI Manufacturing Technology - (c) Photolithography 1 Reference 1. Semiconductor Manufacturing Technology : Michael Quirk and Julian Serda (2001) 2. - (2004) 3. Semiconductor Physics and Devices-

More information

SCB10H Series Pressure Elements PRODUCT FAMILY SPEFICIFATION. Doc. No B

SCB10H Series Pressure Elements PRODUCT FAMILY SPEFICIFATION. Doc. No B PRODUCT FAMILY SPEFICIFATION SCB10H Series Pressure Elements SCB10H Series Pressure Elements Doc. No. 82 1250 00 B Table of Contents 1 General Description... 3 1.1 Introduction... 3 1.2 General Description...

More information

Solliance. Perovskite based PV (PSC) Program. TKI Urban Energy Days l e d b y i m e c, E C N a n d T N O

Solliance. Perovskite based PV (PSC) Program. TKI Urban Energy Days l e d b y i m e c, E C N a n d T N O Solliance Perovskite based PV (PSC) Program TKI Urban Energy Days - 2017-06-21 l e d b y i m e c, E C N a n d T N O 2 Bringing together research and industry Providing insight and know-how to all partners

More information

A Novel Approach to TSV Metallization based on Electrografted Copper Nucleation Layers. Claudio Truzzi, PhD Chief Technology Officer Alchimer

A Novel Approach to TSV Metallization based on Electrografted Copper Nucleation Layers. Claudio Truzzi, PhD Chief Technology Officer Alchimer A Novel Approach to TSV Metallization based on Electrografted Copper Nucleation Layers Claudio Truzzi, PhD Chief Technology Officer Alchimer Overview Introduction Electrografting (eg) Technology Description

More information

Current status, challenges, and outlook of EUV Lithography for High Volume Manufacturing

Current status, challenges, and outlook of EUV Lithography for High Volume Manufacturing Current status, challenges, and outlook of EUV Lithography for High Volume Manufacturing Britt Turkot Intel Corporation Outline Milestone Progress Exposure Tool Reticle Pellicle Infrastructure HVM Considerations

More information

Effects of Chrome Pattern Characteristics on Image Placement due to the Thermomechanical Distortion of Optical Reticles During Exposure

Effects of Chrome Pattern Characteristics on Image Placement due to the Thermomechanical Distortion of Optical Reticles During Exposure Effects of Chrome Pattern Characteristics on Image Placement due to the Thermomechanical Distortion of Optical Reticles During Exposure A. Abdo, ab L. Capodieci, a I. Lalovic, a and R. Engelstad b a Advanced

More information

Photolithography II ( Part 1 )

Photolithography II ( Part 1 ) 1 Photolithography II ( Part 1 ) Chapter 14 : Semiconductor Manufacturing Technology by M. Quirk & J. Serda Bjørn-Ove Fimland, Department of Electronics and Telecommunication, Norwegian University of Science

More information

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD Supplementary figure 1 Graphene Growth and Transfer Graphene PMMA FeCl 3 DI water Copper foil CVD growth Back side etch PMMA coating Copper etch in 0.25M FeCl 3 DI water rinse 1 st transfer DI water 1:10

More information

TCAD Modeling of Stress Impact on Performance and Reliability

TCAD Modeling of Stress Impact on Performance and Reliability TCAD Modeling of Stress Impact on Performance and Reliability Xiaopeng Xu TCAD R&D, Synopsys March 16, 2010 SEMATECH Workshop on Stress Management for 3D ICs using Through Silicon Vias 1 Outline Introduction

More information

Technologies VII. Alternative Lithographic PROCEEDINGS OF SPIE. Douglas J. Resnick Christopher Bencher. Sponsored by. Cosponsored by.

Technologies VII. Alternative Lithographic PROCEEDINGS OF SPIE. Douglas J. Resnick Christopher Bencher. Sponsored by. Cosponsored by. PROCEEDINGS OF SPIE Alternative Lithographic Technologies VII Douglas J. Resnick Christopher Bencher Editors 23-26 February 2015 San Jose, California, United States Sponsored by SPIE Cosponsored by DNS

More information

1W, 1206, Low Resistance Chip Resistor (Lead free / Halogen Free)

1W, 1206, Low Resistance Chip Resistor (Lead free / Halogen Free) 1W, 1206, (Lead free / Halogen Free) 1. Scope This specification applies to 1.6mm x 3.2mm size 1W, fixed metal film chip resistors rectangular type for use in electronic equipment. 2. Type Designation

More information

WTSC144.xxx Wire Bonding Temperature Silicon Vertical Capacitor

WTSC144.xxx Wire Bonding Temperature Silicon Vertical Capacitor WTSC144.xxx Wire Bonding Temperature Silicon Vertical Capacitor Rev 3.1 Key features Full compatible to monolithic ceramic capacitors Ultra high stability of capacitance value: Temperature ±1.5% (-55 C

More information

Three Approaches for Nanopatterning

Three Approaches for Nanopatterning Three Approaches for Nanopatterning Lithography allows the design of arbitrary pattern geometry but maybe high cost and low throughput Self-Assembly offers high throughput and low cost but limited selections

More information

F R A U N H O F E R I N

F R A U N H O F E R I N FRAUNHOFER Institute FoR Electronic NAno systems ENAS System Packaging 1 2 3 4 5 The actual developments of micro and nano technologies are fascinating. Undoubted they are playing a key role in today s

More information

MOCVD Carrier Emissivity and Temperature Uniformity Characterization

MOCVD Carrier Emissivity and Temperature Uniformity Characterization Carrier emissivity and temperature maps reveal carrier micro cracks and emissivity variation that can directly affect thin-film deposition and device performance Introduction and Motivation MOCVD wafer

More information

Fiducial Marks for EUV mask blanks. Jan-Peter Urbach, James Folta, Cindy Larson, P.A. Kearney, and Thomas White

Fiducial Marks for EUV mask blanks. Jan-Peter Urbach, James Folta, Cindy Larson, P.A. Kearney, and Thomas White Fiducial Marks for EUV mask blanks Jan-Peter Urbach, James Folta, Cindy Larson, P.A. Kearney, and Thomas White Fiducial marks are laser scribed on 200 mm wafers to enable defect registration on metrology

More information

Lecture 14 Advanced Photolithography

Lecture 14 Advanced Photolithography Lecture 14 Advanced Photolithography Chapter 14 Wolf and Tauber 1/74 Announcements Term Paper: You are expected to produce a 4-5 page term paper on a selected topic (from a list). Term paper contributes

More information

TTC-1001 Thermal Test Chip Application Information

TTC-1001 Thermal Test Chip Application Information TTC-1001 Thermal Test Chip Application Information Thermal Engineeringa Associates 3287 Kifer Road Santa Clara, CA 95051 Tel: 650-961-5900 Email: info@thermenger.com www.thermengr.com Rev. 4 160125 TTC-1001

More information

Thermal aspects of 3D and 2.5D integration

Thermal aspects of 3D and 2.5D integration Thermal aspects of 3D and 2.5D integration Herman Oprins Sr. Researcher Thermal Management - imec Co-authors: Vladimir Cherman, Geert Van der Plas, Eric Beyne European 3D Summit 23-25 January 2017 Grenoble,

More information

Process Modeling and Thermal/Mechanical Behavior of ACA/ACF Type Flip-Chip Packages

Process Modeling and Thermal/Mechanical Behavior of ACA/ACF Type Flip-Chip Packages Process Modeling and Thermal/Mechanical Behavior of ACA/ACF Type Flip-Chip Packages K. N. Chiang Associate Professor e-mail: knchiang@pme.nthu.edu.tw C. W. Chang Graduate Student C. T. Lin Graduate Student

More information

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun

UNIT 3. By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun UNIT 3 By: Ajay Kumar Gautam Asst. Prof. Dev Bhoomi Institute of Technology & Engineering, Dehradun 1 Syllabus Lithography: photolithography and pattern transfer, Optical and non optical lithography, electron,

More information

ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL

ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL Anthony Paris Kevin Anderson Jet Propulsion Laboratory Prasanna Chandrasekhar, Brian Zay, Terrance McQueeney Ashwin-Ushas Corporation, Inc.,

More information

1 INTRODUCTION 2 SAMPLE PREPARATIONS

1 INTRODUCTION 2 SAMPLE PREPARATIONS Chikage NORITAKE This study seeks to analyze the reliability of three-dimensional (3D) chip stacked packages under cyclic thermal loading. The critical areas of 3D chip stacked packages are defined using

More information

UPDATED 7 SEPTEMBER 2018

UPDATED 7 SEPTEMBER 2018 UPDATED 7 SEPTEMBER 2018 A-PhI FAQ 1. Are FFRDCs allowed to serve as a PI? a. As mentioned in the BAA (p. 15), FFRDCs may serve as either the prime or subcontractor (team members) as long as they meet

More information

SPECIFICATION. - Contents -

SPECIFICATION. - Contents - SPECIFICATION Device Type Model Customer Top View LED U56-3REN - Contents - 1. Outline Drawing And Dimension 2. Material Informations 3. Feature & Applications 4. Absolute Maximum Ratings 5. Initial Electrical/Optical

More information

New Die Attach Adhesives Enable Low-Stress MEMS Packaging

New Die Attach Adhesives Enable Low-Stress MEMS Packaging New Die Attach Adhesives Enable Low-Stress MEMS Packaging Dr. Tobias Königer DELO Industrial Adhesives DELO-Allee 1; 86949 Windach; Germany Tobias.Koeniger@DELO.de Phone +49 8193 9900 365 Abstract High

More information

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Supporting Information Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Kamran Khajehpour,* a Tim Williams, b,c Laure Bourgeois b,d and Sam Adeloju a

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES a b c Supplementary Figure 1 Fabrication of the near-field radiative heat transfer device. a, Main fabrication steps for the bottom Si substrate. b, Main fabrication steps for the

More information

Deposition of polymeric thin films by PVD process. Hachet Dorian 09/03/2016

Deposition of polymeric thin films by PVD process. Hachet Dorian 09/03/2016 Deposition of polymeric thin films by PVD process Hachet Dorian 09/03/2016 Polymeric Thin Films nowadays The evaporation of polymers Ionization-Assisted Method Vacuum deposition 0,055eV/molecule at 1000

More information

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13

Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Self-study problems and questions Processing and Device Technology, FFF110/FYSD13 Version 2016_01 In addition to the problems discussed at the seminars and at the lectures, you can use this set of problems

More information

Through-Wafer Interconnects for High Degree of Freedom MEMS Deformable Mirrors

Through-Wafer Interconnects for High Degree of Freedom MEMS Deformable Mirrors Through-Wafer Interconnects for High Degree of Freedom MEMS Deformable Mirrors Alioune Diouf 1, Thomas G. Bifano 1, Jason B. Stewart 2, Steven Cornelissen 2, Paul Bierden 2 1 Boston University Photonics

More information

RoHS. Specification CUD8DF1A. Drawn Approval Approval. 서식 Rev: 00

RoHS. Specification CUD8DF1A. Drawn Approval Approval.  서식 Rev: 00 Specification RoHS CUD8DF1A SVC Customer Drawn Approval Approval 1 [ Contents ] 1. Description 2. Outline dimensions 3. Characteristics of CUD8DF1A 4. Characteristic diagrams 5. Binning & Labeling 6. Reel

More information

PREFERRED RELIABILITY PRACTICES. Practice:

PREFERRED RELIABILITY PRACTICES. Practice: PREFERRED RELIABILITY PRACTICES Practice No. PD-ED-1239 Page 1 of 6 October 1995 SPACECRAFT THERMAL CONTROL COATINGS DESIGN AND APPLICATION Practice: Select and apply thermal coatings for control of spacecraft

More information

FRAUNHOFER INSTITUTE FOR SURFACE ENGINEERING AND THIN FILMS IST ATMOSPHERIC PRESSURE PLASMA PROCESSES

FRAUNHOFER INSTITUTE FOR SURFACE ENGINEERING AND THIN FILMS IST ATMOSPHERIC PRESSURE PLASMA PROCESSES FRAUNHOFER INSTITUTE FOR SURFACE ENGINEERING AND THIN FILMS IST ATMOSPHERIC PRESSURE PLASMA PROCESSES 1 2 ATMOSPHERIC PRESSURE PLASMA PROCESSES AT THE FRAUNHOFER IST Today, atmospheric pressure plasma

More information

No. 3, Gongye E. 3rd Road, Hsinchu Science Park, Hsinchu 30075, Taiwan TEL: Lextar.com PC56H01 V4. Product Specification

No. 3, Gongye E. 3rd Road, Hsinchu Science Park, Hsinchu 30075, Taiwan TEL: Lextar.com PC56H01 V4. Product Specification Lextar.com Product Specification Approval Sheet Product Specification Product Part Number White SMD LED Issue Date 2013/11/01 Feature White SMD LED (L x W x H) of 5.6 x 3.0 x 0.77 mm ASNI binning Dice

More information

LPSC424.xxx Low Profile Silicon Capacitor

LPSC424.xxx Low Profile Silicon Capacitor LPSC424.xxx - 42 Low Profile Silicon Capacitor Rev 3. Key features Ultra low profile (1µm) High stability of capacitance value: Temperature

More information

Surface Mount UV LED. NUVA33 Series PART NUMBERING SYSTEM. WAVELENGTH CODES Code Nominal Wavelength

Surface Mount UV LED. NUVA33 Series PART NUMBERING SYSTEM. WAVELENGTH CODES Code Nominal Wavelength FEATURES SURFACE MOUNT 3.4mm x 3.4mm x 2.37mm WAVELENGTH 365 ~ 45nm FOR UV CURING, PHOTO CATALYST & SENSOR LIGHTING RoHS COMPLIANT COMPATIBLE WITH REFLOW SOLDERING TAPE AND REEL PACKAGING SPECIFICATIONS

More information

EHP-AX08EL/UB01H-P01/B7B8/F3

EHP-AX08EL/UB01H-P01/B7B8/F3 Data Sheet Features Feature of the device: Small package with high efficiency Typical wavelength: 465nm Typical view angle: 150 Typical light flux output: 17 lm @ 350mA. ESD protection. Soldering methods:

More information

No. 3, Gongye E. 3rd Road, Hsinchu Science Park, Hsinchu 30075, Taiwan TEL: Lextar.com PC30U10 V0. Product Specification Preliminary

No. 3, Gongye E. 3rd Road, Hsinchu Science Park, Hsinchu 30075, Taiwan TEL: Lextar.com PC30U10 V0. Product Specification Preliminary Lextar.com PC30U10 V0 Preliminary Approval Sheet PC30U10 V0 Product White SMD LED Part Number PC30U10 V0 Issue Date 2014/01/20 Feature White SMD LED (L x W x H) of 3.0 x 1.4 x 0.8 mm ASNI Binning Dice

More information

FEM Analysis on Mechanical Stress of 2.5D Package Interposers

FEM Analysis on Mechanical Stress of 2.5D Package Interposers Hisada et al.: FEM Analysis on Mechanical Stress of 2.5D Package Interposers (1/8) [Technical Paper] FEM Analysis on Mechanical Stress of 2.5D Package Interposers Takashi Hisada, Toyohiro Aoki, Junko Asai,

More information

True Room Temperature Bonding a novel process for the creation of health tech consumables ATB. ir. Richard Bijlard Technogation - Invenios

True Room Temperature Bonding a novel process for the creation of health tech consumables ATB. ir. Richard Bijlard Technogation - Invenios True Room Temperature Bonding a novel process for the creation of health tech consumables ATB ir. Richard Bijlard Technogation - Invenios Technogation Invenios Dec 2014 Presentation Overview Invenios Group

More information

RS INDUSTRY LIMITED. RS Chip Single ESD Suppressor APPROVAL SHEET. Customer Information. Part No. : Model No. : COMPANY PURCHASE R&D

RS INDUSTRY LIMITED. RS Chip Single ESD Suppressor APPROVAL SHEET. Customer Information. Part No. : Model No. : COMPANY PURCHASE R&D APPROVAL SHEET Customer Information Customer : Part Name : Part No. : Model No. : COMPANY PURCHASE R&D Vendor Information Name: Part Name RS INDUSTRY LIMITED Chip ESD Part No. RS 0402-5V500S Lot No. PART

More information

EHP-A23/RGB33-P01/TR. Data Sheet. Materials. High Power LED 1W. 1 of 12 Release Date: :11:33.0 Expired Period: Forever

EHP-A23/RGB33-P01/TR. Data Sheet. Materials. High Power LED 1W. 1 of 12 Release Date: :11:33.0 Expired Period: Forever Data Sheet Features Feature of the device: Small package with high efficiency Typical view angle: 120. ESD protection. Soldering methods: SMT Grouping parameter: Brightness, Forward Voltage and wavelength.

More information

Vertically-Integrated Array-Type Miniature Interferometer as a Core Optical Component of a Coherence Tomography System for Tissue Inspection

Vertically-Integrated Array-Type Miniature Interferometer as a Core Optical Component of a Coherence Tomography System for Tissue Inspection Vertically-Integrated Array-Type Miniature Interferometer as a Core Optical Component of a Coherence Tomography System for Tissue Inspection Wei-Shan Wang a, Maik Wiemer *a, Joerg Froemel a, Tom Enderlein

More information

P8D1 P8D1. Features. Applications. Power UV LED Series is designed for high current operation and high flux output applications.

P8D1 P8D1. Features. Applications. Power UV LED Series is designed for high current operation and high flux output applications. P8D1 Power UV LED Series is designed for high current operation and high flux output applications. P8D1 Features Super high Flux output and high Luminance Furthermore, its thermal management characteristic

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. Fall 2009.

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. Fall 2009. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EE143 Professor Ali Javey Fall 2009 Exam 1 Name: SID: Closed book. One sheet of notes is allowed.

More information

Dainippon Screen Mfg. Co., Ltd , Takamiya, Hikone, Shiga , Japan. IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium

Dainippon Screen Mfg. Co., Ltd , Takamiya, Hikone, Shiga , Japan. IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium Solid State Phenomena Vols. 145-146 (2009) pp 285-288 Online available since 2009/Jan/06 at www.scientific.net (2009) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.145-146.285

More information

P8D137. Features. Applications. Power UV LED Series is designed for high current operation and high flux output applications. Super high Flux output

P8D137. Features. Applications. Power UV LED Series is designed for high current operation and high flux output applications. Super high Flux output P8D137 Power UV LED Series is designed for high current operation and high flux output applications. P8D137 Features Super high Flux output and high Luminance Furthermore, its thermal management characteristic

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

Lecture 8. Photoresists and Non-optical Lithography

Lecture 8. Photoresists and Non-optical Lithography Lecture 8 Photoresists and Non-optical Lithography Reading: Chapters 8 and 9 and notes derived from a HIGHLY recommended book by Chris Mack, Fundamental Principles of Optical Lithography. Any serious student

More information

Page Films. we support your innovation

Page Films. we support your innovation Page Films we support your innovation Page Films SAES Thin Film Technology: the Evolution of the Getter Integration Pioneering the development of getter technology, the SAES Getters Group is the world

More information

Guide Specifications Section

Guide Specifications Section Guide Specifications Section 08 87 23 SAFETY-AND-SECURITY FILMS LLumar Safety-and-Security Series Note: Click on Show/Hide button to reveal "Specifier Notes" throughout section. Delete this text when editing

More information

Developer-soluble Gap fill materials for patterning metal trenches in Via-first Dual Damascene process

Developer-soluble Gap fill materials for patterning metal trenches in Via-first Dual Damascene process Developer-soluble Gap fill materials for patterning metal trenches in Via-first Dual Damascene process Mandar Bhave, Kevin Edwards, Carlton Washburn Brewer Science, Inc., 2401 Brewer Dr., Rolla, MO 65401,

More information

ASML Approach to Euv Reticle Handling

ASML Approach to Euv Reticle Handling ASML Approach to Euv Reticle Handling Mask Workshop Antwerp Henk Meijer 3-October-2003 / Slide 1 Presentation Agenda Unique features of EUV reticles Contamination

More information

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors HIGH VOLTAGE SERIES JARO high voltage series Multilayer Ceramic Capacitors are constructed by depositing alternative layers of ceramic dielectric materials and internal metallic electrodes, by using advanced

More information

Agilent HLMP-FWxx 5mm Extra Bright Flat Top InGaN White LED Lamps. Data Sheet

Agilent HLMP-FWxx 5mm Extra Bright Flat Top InGaN White LED Lamps. Data Sheet Agilent HLMP-FWxx 5mm Extra Bright Flat Top InGaN White LED Lamps. Data Sheet HLMP-FW66, HLMP-FW67 Description These high intensity white LED lamps are based on InGaN material technology. A blue LED die

More information

Chapter 10 3D Integration Based upon Dielectric Adhesive Bonding

Chapter 10 3D Integration Based upon Dielectric Adhesive Bonding Chapter 10 3D Integration Based upon Dielectric Adhesive Bonding Jian-Qiang Lu, Timothy S. Cale, and Ronald J. Gutmann 10.1 Introduction Wafer bonding with intermediate polymer adhesives is one of the

More information

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition

Supporting Information. Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition 1 Supporting Information Fast Synthesis of High-Performance Graphene by Rapid Thermal Chemical Vapor Deposition Jaechul Ryu, 1,2, Youngsoo Kim, 4, Dongkwan Won, 1 Nayoung Kim, 1 Jin Sung Park, 1 Eun-Kyu

More information

Specification SPW08F0D

Specification SPW08F0D Specification SPW08F0D Drawn SSC Approval Customer Approval SPW08F0D 1. Description 2. Absolute Maximum Ratings 3. Electro Optical Characteristics 4. Characteristic Diagram 5. Reliability 6. CIE Chromaticity

More information

AC-829A. Issued on Apr. 15 th 2013 (Version 1.0)

AC-829A. Issued on Apr. 15 th 2013 (Version 1.0) Hitachi Chemical Co., Ltd. Hitachi Anisotropic Conductive Film ANISOLM AC-829A Issued on Apr. 15 th 2013 (Version 1.0) 1. Standard specification, bonding condition, storage condition and characteristic.....1

More information

High Optical Density Photomasks For Large Exposure Applications

High Optical Density Photomasks For Large Exposure Applications High Optical Density Photomasks For Large Exposure Applications Dan Schurz, Warren W. Flack, Makoto Nakamura Ultratech Stepper, Inc. San Jose, CA 95134 Microlithography applications such as advanced packaging,

More information

Reliability of 3D IC with Via-Middle TSV: Characterization and Modeling

Reliability of 3D IC with Via-Middle TSV: Characterization and Modeling Reliability of 3D IC with Via-Middle TSV: Characterization and Modeling Victor Moroz *, Munkang Choi *, Geert Van der Plas, Paul Marchal, Kristof Croes, and Eric Beyne * Motivation: Build Reliable 3D IC

More information

No. 3, Gongye E. 3rd Road, Hsinchu Science Park, Hsinchu 30075, Taiwan TEL: Lextar.com PC55H10 V2. Product Specification

No. 3, Gongye E. 3rd Road, Hsinchu Science Park, Hsinchu 30075, Taiwan TEL: Lextar.com PC55H10 V2. Product Specification Lextar.com Approval Sheet Product White SMD LED Part Number Issue Date 2016/06/24 Feature White SMD LED (L x W x H) of 5.8 x 5.2 x 0.7 mm ANSI binning Dice Technology : InGaN Qualified according to JEDEC

More information

ULTRAFAST COMPONENTS

ULTRAFAST COMPONENTS ULTRAFAST COMPONENTS Mirrors CVI Laser Optics offers both the PulseLine family of optical components and other existing product lines that are ideal for use with femtosecond lasers and associated applications.

More information

No. 3, Gongye E. 3rd Road, Hsinchu Science Park, Hsinchu 30075, Taiwan TEL: Lextar.com PC56H19 V2. Product Specification

No. 3, Gongye E. 3rd Road, Hsinchu Science Park, Hsinchu 30075, Taiwan TEL: Lextar.com PC56H19 V2. Product Specification Lextar.com PC56H19 V2 Product Specification Approval Sheet PC56H19 V2 Product Specification Product Part Number White SMD LED PC56H19 V2 Issue Date 2015/10/03 Feature White SMD LED (L x W x H) of 5.6 x

More information

Effect of Pump Induced Particle Agglomeration On CMP of Ultra Low k Dielectrics

Effect of Pump Induced Particle Agglomeration On CMP of Ultra Low k Dielectrics Effect of Pump Induced Particle Agglomeration On CMP of Ultra Low k Dielectrics Rajiv K. Singh, F.C. Chang and S. Tanawade, Gary Scheiffele Materials Science and Engineering Particle Science Engineering

More information

Introduction. Photoresist : Type: Structure:

Introduction. Photoresist : Type: Structure: Photoresist SEM images of the morphologies of meso structures and nanopatterns on (a) a positively nanopatterned silicon mold, and (b) a negatively nanopatterned silicon mold. Introduction Photoresist

More information

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Richard Haight IBM TJ Watson Research Center PO Box 218 Yorktown Hts., NY 10598 Collaborators Al Wagner Pete Longo Daeyoung

More information

http://kth.diva-portal.org This is an author produced version of a paper published in IEEE 6th International Conference on Micro Electro Mechanical Systems (MEMS), 013. This paper has been peer-reviewed

More information

RoHS. Specification CUD8AF1C. 서식 Rev: 00

RoHS. Specification CUD8AF1C.   서식 Rev: 00 Specification RoHS CUD8AF1C 1 [ Contents ] 1. Description 2. Outline dimensions 3. Characteristics of CUD8AF1C 4. Characteristic diagrams 5. Binning & Labeling 6. Reel packing 7. Recommended solder pad

More information

Sensors and Metrology. Outline

Sensors and Metrology. Outline Sensors and Metrology A Survey 1 Outline General Issues & the SIA Roadmap Post-Process Sensing (SEM/AFM, placement) In-Process (or potential in-process) Sensors temperature (pyrometry, thermocouples, acoustic

More information

Research Challenges and Opportunities. in 3D Integrated Circuits. Jan 30, 2009

Research Challenges and Opportunities. in 3D Integrated Circuits. Jan 30, 2009 Jan 3, 29 Research Challenges and Opportunities in 3D Integrated Circuits Ankur Jain ankur.jain@freescale.com, ankurjain@stanfordalumni.org Freescale Semiconductor, Inc. 28. 1 What is Three-dimensional

More information

EHP-A07/UB01-P01. Technical Data Sheet High Power LED 1W

EHP-A07/UB01-P01. Technical Data Sheet High Power LED 1W Technical Data Sheet High Power LED 1W Features feature of the device: small package with high efficiency View angle: 120. high luminous flux output: more than 9lm@350mA. ESD protection. soldering methods:

More information

Technology offer: Environmentally friendly holographic recording material

Technology offer: Environmentally friendly holographic recording material Technology offer: Environmentally friendly holographic recording material Technology offer: Environmentally friendly holographic recording material SUMMARY Our research group has developed a new photopolymer

More information

Analyzing & Testing. Photocalorimetry Photo-DSC. Method, Technique, Applications. Photo-DSC 204 F1. Leading Thermal Analysis

Analyzing & Testing. Photocalorimetry Photo-DSC. Method, Technique, Applications. Photo-DSC 204 F1. Leading Thermal Analysis Analyzing & Testing Photocalorimetry Photo-DSC Method, Technique, Applications Photo-DSC 204 F1 Leading Thermal Analysis Photo-DSC 204 F1 Phoenix Method and Technique Advantages of Photocalorimetry Besides

More information

Freescale Semiconductor

Freescale Semiconductor Freescale Semiconductor Pressure Rev 14, 10/2008 + 10 kpa Uncompensated Silicon Pressure The series silicon piezoresistive pressure sensors provide a very accurate and linear voltage output, directly proportional

More information

Dan Smith 2016 EUV Mask Pellicle TWG San Jose CA 21 Feb 2016

Dan Smith 2016 EUV Mask Pellicle TWG San Jose CA 21 Feb 2016 ASML NXE Pellicle progress update Dan Smith 2016 EUV Mask Pellicle TWG San Jose CA 21 Feb 2016 Contents Slide 2 Introduction: a look back at 2015 NXE Pellicle update Pellicle film development NXE Scanner

More information