In situ TEM studies of helium bubble/platelet evolution in Si based materials

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "In situ TEM studies of helium bubble/platelet evolution in Si based materials"

Transcription

1 In situ TEM studies of helium bubble/platelet evolution in Si based materials M. Vallet 1, M.F. Beaufort 1, J.F. Barbot 1, E. Oliviero 2 and S.E. Donnelly 3 1 Institut Pprime, CNRS-Université de Poitiers, France. 2 CSNSM, CNRS-IN2P3, Orsay, France. 3 Electron Microscopy and Materials Analysis Group, University of Huddersfield, UK. Institut P UPR CNRS 3346 SP2MI Téléport 2 Boulevard Marie et Pierre Curie BP F86962 FUTUROSCOPE CHASSENEUIL Cedex

2 Part I. In Silicon Carbide Study the effects of the Au irradiation on the stability of He bubbles in the complex environment of a reactor Part II. In Silicon Study the interaction between implanted H ions with He platelets 2

3 Silicon Carbide SiC is a wide-band gap semi-conductor and a ceramic Excellent physical and chemical properties (High temperature stability, chemical inertness, small neutron capture cross section) Promising material for several applications Used as structural component for the first wall of the nuclear reactor (fusion)/ Encapsulating material for nuclear fuel (fission) - High temperature - Production of He atoms - Fast neutron fluxes (damage) No studies on the effect of neutron irradiation on He bubbles have been reported 3

4 Experimental details Preliminary step: Formation of He bubbles Wafers of n-type 4H-SiC (0001) Single crystal «Cree Inc.» 8 off-axis Thickness : 400 µm Helium implantation T impl : 400 C E = 160 kev Fluence: He.cm -2 Annealed at 1400 C during 30 min Layer of bubbles: 200 nm Bubble diameter: 4 12 nm In-situ irradiation in a TEM JANNuS Facility in Orsay + = XTEM BF image underfocused Use of the reactor Aramis Characterization in situ in a TEM 4

5 Experimental details In-situ irradiation in a TEM JANNuS Facility in Orsay 2 MeV Au irradiation Flux: /cm 2 /s Specimen normal to the ion line T irr : 350 C -Develop levels of atomic displacements in few hours -Equivalent to damage levels that reactor components will receive in an operating lifetime R p : 310 nm ΔR p : 56 nm Going through the samples V/A-ion 0.27 dpa/10 15 Au 5

6 Results XTEM BF images Off-zone Recorded with the objective lens underfocused Fluence Steps x10 15 Au.cm

7 Results XTEM BF images Off-zone Recorded with the objective lens underfocused Fluence Steps x10 15 Au.cm Shrinkage of bubbles 7

8 Results XTEM BF images Off-zone Recorded with the objective lens underfocused Fluence Steps x10 15 Au.cm Shrinkage of bubbles Quick shrinkage Sputtering effects 8

9 Shrinkage of He bubbles Determination of the radius of each bubble for each step Shrinkage rate 0.09 nm / Au.cm -2 XTEM BF images Off-zone Recorded with the objective lens underfocused 9

10 Toward a qualitative understanding of the effect of Au irradiation on He bubbles System was simulated by 1D model using the SRIM code: Experiment SRIM model Au Irradiation Au Irradiation He He He He SiC He He He He layer He SiC SiC Thickness of the He layer d of He bubbles Bubbles modeled by a layer of He + Dpa constant => no influence of the position of the He layer + Observation in very thin area (no overlapping of He bubbles) 10

11 Toward a qualitative understanding of the effect of Au irradiation on He bubbles System was simulated using the SRIM code: SRIM model Au Irradiation SiC SiC He Helium density obtained from the equation of state corresponds to pressure of an equilibrium bubble with r = 3.35 nm RL. Mills, PRB 21, 5137 (1980) He recoiled out of bubble Stopping of He ejected from a 6.7nm-thick helium layer following irradiation with Au ions at 2MeV. 11

12 Comparison with experiment Experimental rate : Model 1 : average rate

13 Comparison with experiment Experimental rate : Model 2: average rate Number of ejected He atoms is corrected by the number of recoiled He retrapping by the bubble layer Equilibrium radius calculated at each step by using EOS from Mills et al. Good agreement with the experimental result Model 1 : average rate Incertitude Position of the bubbles Measurement of the mean radius 13

14 Summary By the expulsion of He from bubbles, Au irradiation induces a linear shrinkage of bubbles The re-trapping of He in bubbles should be taken into account to explain the shrinkage of bubbles 14

15 Part II. Effects of the interaction between H ions and He platelet-like defects in Si 15

16 Effects of the interaction between H ions and He platelet-like defects in Si Smart-Cut process / Ion-cut technology Based on H defects to initiate cracks Application for the transfer of thin film (production of SOI structures) BUT He defects could replace H defects as precursor H ions And annealing (500 C) for H diffusion + = Bright field image of edge-on He-plates in (001)-oriented substrate Reboh S, APL 96, (2010) Study in-situ the effects of the interaction H/He-plates 16

17 Effects of the interaction between H ions and He platelet-like defects in Si Experimental details Preliminary step: formation of He-plates Helium implantation T impl : RT E = 45 kev Fluence: He.cm -2 Annealing at 350 C + = during 15 min H 2 + implantation in JANNuS facility T impl : RT E = 30 kev Inclination/Ion beam: 45 Fluence: He.cm -2 R p = 140 nm ΔR p = 48 nm Direct insertion of H in the defect Implantation performed thanks to the reactor IRMA 17

18 Effects of the interaction between H ions and He platelet-like defects in Si Results As-implanted observations No effect on the morphology of He-plates XTEM BF image of the asimplanted sample An in-situ thermal annealing up to 500 C To determine the position of H ions 18

19 Effects of the interaction between H ions and He platelet-like defects in Si Results In-situ thermal annealing up to 500 C Evolution of He-plates at 500 C without H After annealing at 500 C Cluster of bubbles 19

20 Effects of the interaction between H ions and He platelet-like defects in Si Results In-situ thermal annealing up to 500 C Stability in T of the platelet structure increases up to 500 C 20

21 Effects of the interaction between H ions and He platelet-like defects in Si Results Increase of the mean diameter by addition of H2 in He-plates from 200 C 150 nm 170 nm 210 nm 280 nm It is favorable for the formation of cracks Work in progress 21

22 Conclusions Studied the shrinkage of He bubbles under Au irradiation Specified the role of the H in He-plate THANK YOU FOR YOUR ATTENTION 22

23 Effects of the interaction between H ions and He platelet-like defects in Si Results No modification of the structure after H implantation a RT 23

24 Experimental details In-situ irradiation in a TEM JANNuS Facility in Orsay Electron beam off during irradiation Possible synergistic effects under electrons/ions co-irradiation (200 kev electrons and 4MeV Au) Pawley CJ, J. Phys.: Conf. Ser. 371, (2011) He desorption from bubbles under e - beam (EELS experiments) David ML, APL 98, (2011) Step at given fluence to study the evolution of bubbles ϕ = 1, 2, 4, 7, 10, 13, Au.cm -2 24

Performance of MAX phase Ti 3 SiC 2 under the irradiation of He/H :

Performance of MAX phase Ti 3 SiC 2 under the irradiation of He/H : Performance of MAX phase Ti 3 SiC 2 under the irradiation of He/H : Elaboration from DFT Yuexia Wang Institute of Modern Physics Fudan University Hefei-2016 Materials Issues Neutron flux (14MeV, 0.5-0.8

More information

Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten

Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten J. Plasma Fusion Res. SERIES, Vol. 10 (2013) Implantation Energy Dependence on Deuterium Retention Behaviors for the Carbon Implanted Tungsten Yasuhisa Oya 1) *, Makoto Kobayashi 1), Naoaki Yoshida 2),

More information

Interaction of ion beams with matter

Interaction of ion beams with matter Interaction of ion beams with matter Introduction Nuclear and electronic energy loss Radiation damage process Displacements by nuclear stopping Defects by electronic energy loss Defect-free irradiation

More information

Multiscale modelling of D trapping in W

Multiscale modelling of D trapping in W CMS Multiscale modelling of D trapping in W Kalle Heinola, Tommy Ahlgren and Kai Nordlund Department of Physics and Helsinki Institute of Physics University of Helsinki, Finland Contents Background Plasma-wall

More information

Experience with Moving from Dpa to Changes in Materials Properties

Experience with Moving from Dpa to Changes in Materials Properties Experience with Moving from Dpa to Changes in Materials Properties Meimei Li, Argonne National Laboratory N. V. Mokhov, Fermilab 46 th ICFA Advanced Beam Dynamics Workshop Sept. 27 Oct. 1, 2010 Morschach,

More information

Radiation damage I. Steve Fitzgerald.

Radiation damage I. Steve Fitzgerald. Radiation damage I Steve Fitzgerald http://defects.materials.ox.ac.uk/ Firstly an apology Radiation damage is a vast area of research I cannot hope to cover much in any detail I will try and introduce

More information

Serge Bouffard EMIR User days

Serge Bouffard EMIR User days facilities Serge Bouffard EMIR User days October 20 th, 2011 EMIR network a national network of accelerators dedicated to material irradiation EMIR network gathers the French facilities for material irradiation

More information

), nano-objects (nano-particles, nano-wires, nano-bubbles) and the simulation of neutron irradiation effects in nuclear materials (UO 2.

), nano-objects (nano-particles, nano-wires, nano-bubbles) and the simulation of neutron irradiation effects in nuclear materials (UO 2. SEMIRAMIS Since the sixties, SEMIRAMIS has developed skills in ion source and ion beam handling ranging from a few hundred ev to around 10 MeV, with the goal of materials implantation, irradiation and

More information

Special Scientific Workshops»Microscopy of Ion Radiation Induced Defects and changes in structure and properties of materials (MIRID)

Special Scientific Workshops»Microscopy of Ion Radiation Induced Defects and changes in structure and properties of materials (MIRID) Scientific Program Special Scientific Workshops»Microscopy of Ion Radiation Induced Defects and changes in structure and properties of materials (MIRID) Moderated by Elena I. Suvorova (A.V. Shubnikov Institute

More information

Test Simulation of Neutron Damage to Electronic Components using Accelerator Facilities

Test Simulation of Neutron Damage to Electronic Components using Accelerator Facilities Test Simulation of Neutron Damage to Electronic Components using Accelerator Facilities Donald King, Patrick Griffin, Ed Bielejec, William Wampler, Chuck Hembree, Kyle McDonald, Tim Sheridan, George Vizkelethy,

More information

Are mesoporous silicas resistant to radiation damage?

Are mesoporous silicas resistant to radiation damage? INSTITUT DE CHIMIE SEPARATIVE DE MARCOULE Are mesoporous silicas resistant to radiation damage? X. Deschanels, Y. Lou, S. Dourdain, C. Rey Xavier.deschanels@cea.fr CEA, ICSM UMR 5257 CEA-CNRS-UM-ENSCM,

More information

Ion irradiation induced damage and dynamic recovery in single crystal silicon carbide and strontium titanate

Ion irradiation induced damage and dynamic recovery in single crystal silicon carbide and strontium titanate University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2015 Ion irradiation induced damage and dynamic recovery in single crystal silicon

More information

Fast Monte-Carlo Simulation of Ion Implantation. Binary Collision Approximation Implementation within ATHENA

Fast Monte-Carlo Simulation of Ion Implantation. Binary Collision Approximation Implementation within ATHENA Fast Monte-Carlo Simulation of Ion Implantation Binary Collision Approximation Implementation within ATHENA Contents Simulation Challenges for Future Technologies Monte-Carlo Concepts and Models Atomic

More information

Depth profiles of helium and hydrogen in tungsten nano-tendril surface morphology using Elastic Recoil Detection

Depth profiles of helium and hydrogen in tungsten nano-tendril surface morphology using Elastic Recoil Detection PSFC/JA-12-82 Depth profiles of helium and hydrogen in tungsten nano-tendril surface morphology using Elastic Recoil Detection K.B. Woller, D.G. Whyte, G.M. Wright, R.P. Doerner*, G. de Temmerman** * Center

More information

Understanding of corrosion mechanisms after irradiation : effect of ion irradiation of the oxide layer on the corrosion rate of M5 alloy

Understanding of corrosion mechanisms after irradiation : effect of ion irradiation of the oxide layer on the corrosion rate of M5 alloy Understanding of corrosion mechanisms after irradiation : effect of ion irradiation of the oxide layer on the corrosion rate of M5 alloy M. Tupin, R. Verlet, S. Miro, G. Baldacchino, M. Jublot, K. Colas

More information

Correction of the electric resistivity distribution of Si wafers using selective neutron transmutation doping (SNTD) in MARIA nuclear research reactor

Correction of the electric resistivity distribution of Si wafers using selective neutron transmutation doping (SNTD) in MARIA nuclear research reactor NUKLEONIKA 2012;57(3):363 367 ORIGINAL PAPER Correction of the electric resistivity distribution of Si wafers using selective neutron transmutation doping (SNTD) in MARIA nuclear research reactor Mikołaj

More information

In-vessel Tritium Inventory in ITER Evaluated by Deuterium Retention of Carbon Dust

In-vessel Tritium Inventory in ITER Evaluated by Deuterium Retention of Carbon Dust FT/P1-19 In-vessel Tritium Inventory in ITER Evaluated by Deuterium Retention of Carbon Dust T. Hino 1), H. Yoshida 1), M. Akiba 2), S. Suzuki 2), Y. Hirohata 1) and Y. Yamauchi 1) 1) Laboratory of Plasma

More information

, MgAl 2. and MgO irradiated with high energy heavy ions O 3

, MgAl 2. and MgO irradiated with high energy heavy ions O 3 Surface defects in Al 2, MgAl 2 O 4 and MgO irradiated with high energy heavy ions V.A.Skuratov 1, S.J. Zinkle 2 A.E.Efimov 1, K.Havancsak 3 1 Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia

More information

Comparison of deuterium retention for ion-irradiated and neutronirradiated

Comparison of deuterium retention for ion-irradiated and neutronirradiated 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications / 1st International Conference on Fusion Energy Materials Science Comparison of deuterium retention for ion-irradiated

More information

Electrically active defects in semiconductors induced by radiation

Electrically active defects in semiconductors induced by radiation Electrically active defects in semiconductors induced by radiation Ivana Capan Rudjer Boskovic Institute, Croatia http://www.irb.hr/users/capan Outline Radiation damage Capacitance transient techniques

More information

Atomistic Simulation of Nuclear Materials

Atomistic Simulation of Nuclear Materials BEAR Launch 2013 24 th June 2013 Atomistic Simulation of Nuclear Materials Dr Mark S D Read School of Chemistry Nuclear Education and Research Centre www.chem.bham.ac.uk Birmingham Centre for Nuclear Education

More information

The New Sorgentina Fusion Source Project

The New Sorgentina Fusion Source Project The New Sorgentina Fusion Source Project P. Agostini, P. Console Camprini, D. Bernardi, M. Pillon, M. Frisoni, M. Angelone, A. Pietropaolo, P. Batistoni, A. Pizzuto ENEA Agenzia Nazionale per le Nuove

More information

Fission Enhanced diffusion of uranium in zirconia

Fission Enhanced diffusion of uranium in zirconia Fission Enhanced diffusion of uranium in zirconia N. Bérerd, A. Chevarier, N. Moncoffre, Institut de Physique Nucléaire de Lyon, 4, rue Enrico Fermi, 69622 Villeurbanne Cedex, France, Ph. Sainsot, Institut

More information

Tailoring of optical properties of LiNbO 3 by ion implantation

Tailoring of optical properties of LiNbO 3 by ion implantation SMR/1758-14 "Workshop on Ion Beam Studies of Nanomaterials: Synthesis, Modification and Characterization" 26 June - 1 July 2006 Tailoring of Optical Properties of LiNbO3 by ion implantation Cinzia SADA

More information

Radioactivity - Radionuclides - Radiation

Radioactivity - Radionuclides - Radiation Content of the lecture Introduction Particle/ion-atom atom interactions - basic processes on on energy loss - stopping power, range Implementation in in Nucleonica TM TM Examples Origin and use of particles

More information

JANNUS: A multi-irradiation platform for experimental validation at the scale of the atomistic. modelling

JANNUS: A multi-irradiation platform for experimental validation at the scale of the atomistic. modelling JANNUS: A multi-irradiation platform for experimental validation at the scale of the atomistic modelling Y. Serruys 1, P. Trocellier 1, S. Miro 1, E. Bordas 1, M.O. Ruault 2, O. Kaïtasov 2, S. Henry 2,

More information

Opportunities for Advanced Plasma and Materials Research in National Security

Opportunities for Advanced Plasma and Materials Research in National Security Opportunities for Advanced Plasma and Materials Research in National Security Prof. J.P. Allain allain@purdue.edu School of Nuclear Engineering Purdue University Outline: Plasma and Materials Research

More information

Ion Implantation ECE723

Ion Implantation ECE723 Ion Implantation Topic covered: Process and Advantages of Ion Implantation Ion Distribution and Removal of Lattice Damage Simulation of Ion Implantation Range of Implanted Ions Ion Implantation is the

More information

Improvement of depth resolution of VEPAS by a sputtering technique

Improvement of depth resolution of VEPAS by a sputtering technique Martin Luther University Halle Improvement of depth resolution of VEPAS by a sputtering technique R. Krause Rehberg, M. John, R. Böttger, W. Anwand and A. Wagner Martin Luther University Halle & HZDR Dresden

More information

Review of Semiconductor Fundamentals

Review of Semiconductor Fundamentals ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 1 Semiconductor A semiconductor is an almost insulating material,

More information

EE 212 FALL ION IMPLANTATION - Chapter 8 Basic Concepts

EE 212 FALL ION IMPLANTATION - Chapter 8 Basic Concepts EE 212 FALL 1999-00 ION IMPLANTATION - Chapter 8 Basic Concepts Ion implantation is the dominant method of doping used today. In spite of creating enormous lattice damage it is favored because: Large range

More information

Identification of Getter Defects in high-energy self-implanted Silicon at Rp/2

Identification of Getter Defects in high-energy self-implanted Silicon at Rp/2 Identification of Getter Defects in high-energy self-implanted Silicon at Rp R. Krause-Rehberg 1, F. Börner 1, F. Redmann 1, J. Gebauer 1, R. Kögler 2, R. Kliemann 2, W. Skorupa 2, W. Egger 3, G. Kögel

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

NTD-Ge development in the LUMINEU project for Rare Events searches with cryogenic detectors

NTD-Ge development in the LUMINEU project for Rare Events searches with cryogenic detectors NTD-Ge development in the LUMINEU project for Rare Events searches with cryogenic detectors Xavier-Francois Navick 1, Cyril Bachelet 2, David Bouville, Noel Coron 2, Laurent Devoyon 1, Andrea Giuliani

More information

LOW-TEMPERATURE Si (111) HOMOEPITAXY AND DOPING MEDIATED BY A MONOLAYER OF Pb

LOW-TEMPERATURE Si (111) HOMOEPITAXY AND DOPING MEDIATED BY A MONOLAYER OF Pb LOW-TEMPERATURE Si (111) HOMOEPITAXY AND DOPING MEDIATED BY A MONOLAYER OF Pb O.D. DUBON, P.G. EVANS, J.F. CHERVINSKY, F. SPAEPEN, M.J. AZIZ, and J.A. GOLOVCHENKO Division of Engineering and Applied Sciences,

More information

Optimizing Graphene Morphology on SiC(0001)

Optimizing Graphene Morphology on SiC(0001) Optimizing Graphene Morphology on SiC(0001) James B. Hannon Rudolf M. Tromp Graphene sheets Graphene sheets can be formed into 0D,1D, 2D, and 3D structures Chemically inert Intrinsically high carrier mobility

More information

ALERT Proposals: Tagged EMC Nuclear DVCS (Φ production) (others)

ALERT Proposals: Tagged EMC Nuclear DVCS (Φ production) (others) ALERT Proposals: Tagged EMC Nuclear DVCS (Φ production) (others) Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud 91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70 http://ipnweb.in2p3.fr

More information

Ion Implantation. alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages:

Ion Implantation. alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages: Ion Implantation alternative to diffusion for the introduction of dopants essentially a physical process, rather than chemical advantages: mass separation allows wide varies of dopants dose control: diffusion

More information

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter.

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter. 2359-3 Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter 13-24 August 2012 Electrically active defects in semiconductors induced by radiation

More information

Neutron Damage in the Plasma Chamber First Wall of the GCFTR-2 Fusion-Fission Hybrid Reactor

Neutron Damage in the Plasma Chamber First Wall of the GCFTR-2 Fusion-Fission Hybrid Reactor Journal of Physics: Conference Series PAPER OPEN ACCESS Neutron Damage in the Plasma Chamber First Wall of the GCFTR-2 Fusion-Fission Hybrid Reactor To cite this article: L N Pinto et al 2015 J. Phys.:

More information

High voltage electron microscopy facility. Jannus-Saclay facility (GIS with Jannus-Orsay) SRMA

High voltage electron microscopy facility. Jannus-Saclay facility (GIS with Jannus-Orsay) SRMA SRMA Jannus-Saclay facility (GIS with Jannus-Orsay) High voltage electron microscopy facility Lucile Beck - JANNUS laboratory - SRMP Jean Henry SRMA CEA Saclay CEA 10 AVRIL 2012 PAGE 1 Programs and objectives

More information

EV Group. Engineered Substrates for future compound semiconductor devices

EV Group. Engineered Substrates for future compound semiconductor devices EV Group Engineered Substrates for future compound semiconductor devices Engineered Substrates HB-LED: Engineered growth substrates GaN / GaP layer transfer Mobility enhancement solutions: III-Vs to silicon

More information

Tagged EMC Effect. Nathan Baltzel Raphaël Dupré Kawtar Hafidi Stepan Stepanyan. Unité mixte de recherche. CNRS-IN2P3 Université Paris-Sud

Tagged EMC Effect. Nathan Baltzel Raphaël Dupré Kawtar Hafidi Stepan Stepanyan. Unité mixte de recherche. CNRS-IN2P3 Université Paris-Sud Tagged EMC Effect Nathan Baltzel Raphaël Dupré Kawtar Hafidi Stepan Stepanyan Unité mixte de recherche CNRS-IN2P3 Université Paris-Sud 91406 Orsay cedex Tél. : +33 1 69 15 73 40 Fax : +33 1 69 15 64 70

More information

NUCLEAR TRANSMUTATION IN DEUTERED PD FILMS IRRADIATED BY AN UV LASER

NUCLEAR TRANSMUTATION IN DEUTERED PD FILMS IRRADIATED BY AN UV LASER Castellano, et al. Nuclear Transmutation in Deutered Pd Films Irradiated by an UV Laser. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna,

More information

Basic Effects of Radiation. J. M. Perlado Director Instituto de Fusión Nuclear

Basic Effects of Radiation. J. M. Perlado Director Instituto de Fusión Nuclear Basic Effects of Radiation J. M. Perlado Director Instituto de Fusión Nuclear R&D in Advanced Materials Materials Science Investigating the relationship between structure and properties of materials. Materials

More information

Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation

Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation Ettore Vittone Physics Department University of Torino - Italy 1 IAEA Coordinate Research

More information

S1. X-ray photoelectron spectroscopy (XPS) survey spectrum of

S1. X-ray photoelectron spectroscopy (XPS) survey spectrum of Site-selective local fluorination of graphene induced by focused ion beam irradiation Hu Li 1, Lakshya Daukiya 2, Soumyajyoti Haldar 3, Andreas Lindblad 4, Biplab Sanyal 3, Olle Eriksson 3, Dominique Aubel

More information

GaN for use in harsh radiation environments

GaN for use in harsh radiation environments 4 th RD50 - Workshop on radiation hard semiconductor devices for very high luminosity colliders GaN for use in harsh radiation environments a (W Cunningham a, J Grant a, M Rahman a, E Gaubas b, J Vaitkus

More information

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source E. Hoffman, W. Stacey, G. Kessler, D. Ulevich, J. Mandrekas, A. Mauer, C. Kirby, D. Stopp, J. Noble

More information

Thomas Schwarz-Selinger Max-Planck-Institut für Plasmaphysik, Garching, Germany

Thomas Schwarz-Selinger Max-Planck-Institut für Plasmaphysik, Garching, Germany Deuterium retention and isotope exchange studies in self-ion damaged tungsten exposed to neutral atoms Project: Hydrogen retention in self-damaged and Heirradiated tungsten and alloys for PFC Sabina Markelj,

More information

Swift heavy ion irradiation effects. in condensed matter. K. Havancsák

Swift heavy ion irradiation effects. in condensed matter. K. Havancsák Swift heavy ion irradiation effects in condensed matter K. Havancsák HAS-JINR Workshop 2004 Hungarian Academy of Sciences Joint Institute for Nuclear Research Use of heavy ions High energy heavy ion beams

More information

ITEP HEAVY ION RFQ OUTPUT LINE UPGRADE FOR EXPERIMENTS OF REACTOR MATERIAL INVESTIGATION UNDER IRRADIATION*

ITEP HEAVY ION RFQ OUTPUT LINE UPGRADE FOR EXPERIMENTS OF REACTOR MATERIAL INVESTIGATION UNDER IRRADIATION* ITEP HEAVY ION RFQ OUTPUT LINE UPGRADE FOR EXPERIMENTS OF REACTOR MATERIAL INVESTIGATION UNDER IRRADIATION* G.N. Kropachev, R.P. Kuibeda, A.I. Semennikov, A.A. Aleev, A.D. Fertman, T.V. Kulevoy, A.A. Nikitin,

More information

A Project for High Fluence 14 MeV Neutron Source

A Project for High Fluence 14 MeV Neutron Source A Project for High Fluence 14 MeV Neutron Source Mario Pillon 1, Maurizio Angelone 1, Aldo Pizzuto 1, Antonino Pietropaolo 1 1 Associazione ENEA-EURATOM Sulla Fusione, ENEA C.R. Frascati, via E. Fermi,

More information

ION IMPLANTATION - Chapter 8 Basic Concepts

ION IMPLANTATION - Chapter 8 Basic Concepts ION IMPLANTATION - Chapter 8 Basic Concepts Ion implantation is the dominant method of doping used today. In spite of creating enormous lattice damage it is favored because: Large range of doses - 1 11

More information

Helium effects on Tungsten surface morphology and Deuterium retention

Helium effects on Tungsten surface morphology and Deuterium retention 1 Helium effects on Tungsten surface morphology and Deuterium retention Y. Ueda, H.Y. Peng, H. T. Lee (Osaka University) N. Ohno, S. Kajita (Nagoya University) N. Yoshida (Kyushu University) R. Doerner

More information

Evolution of hydrogen and helium co-implanted single-crystal silicon during annealing

Evolution of hydrogen and helium co-implanted single-crystal silicon during annealing JOURNAL OF APPLIED PHYSICS VOLUME 90, NUMBER 8 15 OCTOBER 2001 Evolution of hydrogen and helium co-implanted single-crystal silicon during annealing Xinzhong Duo, a) Weili Liu, Miao Zhang, Lianwei Wang,

More information

A new protocol to evaluate the charge collection efficiency degradation in semiconductor devices induced by MeV ions

A new protocol to evaluate the charge collection efficiency degradation in semiconductor devices induced by MeV ions Session 12: Modification and Damage: Contribute lecture O-35 A new protocol to evaluate the charge collection efficiency degradation in semiconductor devices induced by MeV ions Ettore Vittone Physics

More information

Hydrogen retention in RAFMs Current status of investigation

Hydrogen retention in RAFMs Current status of investigation Anna V. Golubeva NRC Kurchatov Institute, Moscow, Russia Hydrogen retention in RAFMs Current status of investigation Perspectives of fusion research in Russia Fusion investigations (tokamaks) give no visible

More information

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur Nova 600 NanoLab Dual beam Focused Ion Beam system @ IITKanpur Dual Beam Nova 600 Nano Lab From FEI company (Dual Beam = SEM + FIB) SEM: The Electron Beam for SEM Field Emission Electron Gun Energy : 500

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS. Byungha Shin Dept. of MSE, KAIST

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS. Byungha Shin Dept. of MSE, KAIST 2015 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Xing Sheng, 微纳光电子材料与器件工艺原理. Doping 掺杂. Xing Sheng 盛兴. Department of Electronic Engineering Tsinghua University

Xing Sheng, 微纳光电子材料与器件工艺原理. Doping 掺杂. Xing Sheng 盛兴. Department of Electronic Engineering Tsinghua University 微纳光电子材料与器件工艺原理 Doping 掺杂 Xing Sheng 盛兴 Department of Electronic Engineering Tsinghua University xingsheng@tsinghua.edu.cn 1 Semiconductor PN Junctions Xing Sheng, EE@Tsinghua LEDs lasers detectors solar

More information

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter.

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter. 2359-23 Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter 13-24 August 2012 Overview of non-metallic materials for fusion applications S. M. González

More information

Radiation Damage Effects in Solids. Los Alamos National Laboratory. Materials Science & Technology Division

Radiation Damage Effects in Solids. Los Alamos National Laboratory. Materials Science & Technology Division Radiation Damage Effects in Solids Kurt Sickafus Los Alamos National Laboratory Materials Science & Technology Division Los Alamos, NM Acknowledgements: Yuri Osetsky, Stuart Maloy, Roger Smith, Scott Lillard,

More information

Nanostructures induced by highly charged ions

Nanostructures induced by highly charged ions Nanostructures induced by highly charged ions R. Heller, R. Wilhelm, A. S. ElSaid, S. Facsko Institute for Ion Beam Physics and Materials Research in cooperation with: group of F. Aumayr: W. Meissl, G.

More information

Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads

Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads Mitglied der Helmholtz-Gemeinschaft Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads J. Linke, J. Du, N. Lemahieu, Th. Loewenhoff, G. Pintsuk, B. Spilker, T. Weber,

More information

Progress Report on Chamber Dynamics and Clearing

Progress Report on Chamber Dynamics and Clearing Progress Report on Chamber Dynamics and Clearing Farrokh Najmabadi, Rene Raffray, Mark S. Tillack, John Pulsifer, Zoran Dragovlovic (UCSD) Ahmed Hassanein (ANL) Laser-IFE Program Workshop May31-June 1,

More information

Carrier lifetime variations during irradiation by 3-8 MeV K in MCZ Si

Carrier lifetime variations during irradiation by 3-8 MeV K in MCZ Si Carrier lifetime variations during irradiation by 3-8 MeV protons @ 40-300 K in MCZ Si E.Gaubas 1, J.Vaitkus 1, A.Uleckas 1,J.Raisanen 2 Outline 1) Vilnius university, Institute of Materials Science and

More information

CATHODE MATERIAL CHANGE AFTER DEUTERIUM GLOW DISCHARGE EXPERIMENTS

CATHODE MATERIAL CHANGE AFTER DEUTERIUM GLOW DISCHARGE EXPERIMENTS Savvatimova, I., Y. Kucherov, and A.B. Karabut. Cathode Material Change after Deuterium Glow Discharge Experiments. in Fourth International Conference on Cold Fusion. 1993. Lahaina, Maui: Electric Power

More information

physics/ Sep 1997

physics/ Sep 1997 GLAS-PPE/97-6 28 August 1997 Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G12 8QQ, Scotland. Telephone: +44 - ()141 3398855 Fax:

More information

Investigation of SiC by Positrons

Investigation of SiC by Positrons nd/march/000/erlangen Investigation of SiC by Positrons Atsuo KAWASUSO Martin-Luther-Universität Halle-Wittenberg (Humboldt Research Fellow) Japan Atomic Energy Research Institute Takasaki Establishment

More information

Ion irradiation effects on the formation of metal nanoparticles in crystals

Ion irradiation effects on the formation of metal nanoparticles in crystals Ion irradiation effects on the formation of metal nanoparticles in crystals Anna Kozakiewicz 1, Trevor Derry 1, Paul Franklyn 2, S R Naidoo 1 and Chris Theron 3 1 School of Physics and DST/NRF Centre of

More information

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Semiconductor A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Page 2 Semiconductor materials Page 3 Energy levels

More information

High temperature superconductors for fusion magnets - influence of neutron irradiation

High temperature superconductors for fusion magnets - influence of neutron irradiation High temperature superconductors for fusion magnets - influence of neutron irradiation Michal Chudý M.Eisterer, H.W.Weber Outline 1. Superconductors in thermonuclear fusion 2. High temperature superconductors

More information

EROSION AND DEPOSITION MECHANISMS IN FUSION PLASMAS. A. Kirschner

EROSION AND DEPOSITION MECHANISMS IN FUSION PLASMAS. A. Kirschner EROSION AND DEPOSITION MECHANISMS IN FUSION PLASMAS A. Kirschner Institut für Energieforschung (Plasmaphysik), Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, Trilateral Euregio Cluster, 52425

More information

Ion Implant Part 1. Saroj Kumar Patra, TFE4180 Semiconductor Manufacturing Technology. Norwegian University of Science and Technology ( NTNU )

Ion Implant Part 1. Saroj Kumar Patra, TFE4180 Semiconductor Manufacturing Technology. Norwegian University of Science and Technology ( NTNU ) 1 Ion Implant Part 1 Chapter 17: Semiconductor Manufacturing Technology by M. Quirk & J. Serda Spring Semester 2014 Saroj Kumar Patra,, Norwegian University of Science and Technology ( NTNU ) 2 Objectives

More information

Test Simulation of Neutron Damage to Electronic Components using Accelerator Facilities

Test Simulation of Neutron Damage to Electronic Components using Accelerator Facilities 1 AP/DM-05 Test Simulation of Neutron Damage to Electronic Components using Accelerator Facilities D. King 1, E. Bielejec 1, C. Hembree 1, K. McDonald 1, R. Fleming 1, W. Wampler 1, G. Vizkelethy 1, T.

More information

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices

Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices Comparison of tungsten fuzz growth in Alcator C-Mod and linear plasma devices G.M. Wright 1, D. Brunner 1, M.J. Baldwin 2, K. Bystrov 3, R. Doerner 2, B. LaBombard 1, B. Lipschultz 1, G. de Temmerman 3,

More information

Chapter 9 Ion Implantation

Chapter 9 Ion Implantation Chapter 9 Ion Implantation Professor Paul K. Chu Ion Implantation Ion implantation is a low-temperature technique for the introduction of impurities (dopants) into semiconductors and offers more flexibility

More information

Applications of ion beams in materials science

Applications of ion beams in materials science Applications of ion beams in materials science J. Gyulai Research Institute for Technical Physics and Materials Science (MFA), Hung. Acad. Sci., Budapest Types of processing technologies Top-down - waste

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

Feature-level Compensation & Control. Process Integration September 15, A UC Discovery Project

Feature-level Compensation & Control. Process Integration September 15, A UC Discovery Project Feature-level Compensation & Control Process Integration September 15, 2005 A UC Discovery Project Current Milestones Si/Ge-on-insulator and Strained Si-on-insulator Substrate Engineering (M28 YII.13)

More information

Aspects of Advanced Fuel FRC Fusion Reactors

Aspects of Advanced Fuel FRC Fusion Reactors Aspects of Advanced Fuel FRC Fusion Reactors John F Santarius and Gerald L Kulcinski Fusion Technology Institute Engineering Physics Department CT2016 Irvine, California August 22-24, 2016 santarius@engr.wisc.edu;

More information

Lab 1. Resolution and Throughput of Ion Beam Lithography

Lab 1. Resolution and Throughput of Ion Beam Lithography 1 ENS/PHY463 Lab 1. Resolution and Throughput of Ion Beam Lithography (SRIM 2008/2013 computer simulation) Objective The objective of this laboratory work is to evaluate the exposure depth, resolution,

More information

Comparisons of DFT-MD, TB- MD and classical MD calculations of radiation damage and plasmawallinteractions

Comparisons of DFT-MD, TB- MD and classical MD calculations of radiation damage and plasmawallinteractions CMS Comparisons of DFT-MD, TB- MD and classical MD calculations of radiation damage and plasmawallinteractions Kai Nordlund Department of Physics and Helsinki Institute of Physics University of Helsinki,

More information

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments)

Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Molecular Dynamics Simulations of Fusion Materials: Challenges and Opportunities (Recent Developments) Fei Gao gaofeium@umich.edu Limitations of MD Time scales Length scales (PBC help a lot) Accuracy of

More information

R&T PROTON DIRECT IONIZATION

R&T PROTON DIRECT IONIZATION R&T PROTON DIRECT IONIZATION Assessment of the Direct Ionization Contribution to the Proton SEU Rate N. Sukhaseum,, J. Guillermin,, N. Chatry, F. Bezerra and R. Ecoffet TRAD, Tests & Radiations Introduction

More information

Neutron-Induced Reactions Investigations in the Neutrons Energy Range up to 16 MeV

Neutron-Induced Reactions Investigations in the Neutrons Energy Range up to 16 MeV NUCLEAR THEORY, Vol. 33 (2014) eds. A.I. Georgieva, N. Minkov, Heron Press, Sofia Neutron-Induced Reactions Investigations in the Neutrons Energy Range up to 16 MeV R. Avetisyan, R. Avagyan, G. Bazoyan,

More information

Introduction. Neutron Effects NSEU. Neutron Testing Basics User Requirements Conclusions

Introduction. Neutron Effects NSEU. Neutron Testing Basics User Requirements Conclusions Introduction Neutron Effects Displacement Damage NSEU Total Ionizing Dose Neutron Testing Basics User Requirements Conclusions 1 Neutron Effects: Displacement Damage Neutrons lose their energy in semiconducting

More information

NEUTRONIC ANALYSIS OF HE-EFIT EFIT ADS - SOME RESULTS -

NEUTRONIC ANALYSIS OF HE-EFIT EFIT ADS - SOME RESULTS - NEUTRONIC ANALYSIS OF HE-EFIT EFIT ADS - SOME RESULTS - Alan Takibayev & Danas Ridikas CEA Saclay / DSM / IRFU Atelier GEDEPEON 'Accelerator Driven System' Aix-en-Provence 15-10-2008 HE-EFIT MAIN CHARACTERISTICS

More information

Radiation damage calculation in PHITS

Radiation damage calculation in PHITS Radiation Effects in Superconducting Magnet Materials (RESMM'12), 13 Feb. 15 Feb. 2012 Radiation damage calculation in PHITS Y. Iwamoto 1, K. Niita 2, T. Sawai 1, R.M. Ronningen 3, T. Baumann 3 1 JAEA,

More information

Surface analysis techniques

Surface analysis techniques Experimental methods in physics Surface analysis techniques 3. Ion probes Elemental and molecular analysis Jean-Marc Bonard Academic year 10-11 3. Elemental and molecular analysis 3.1.!Secondary ion mass

More information

Milko Jakšić Laboratory for ion beam interactions Division for experimental physics Ruđer Bošković Institute

Milko Jakšić Laboratory for ion beam interactions Division for experimental physics Ruđer Bošković Institute Milko Jakšić Laboratory for ion beam interactions Division for experimental physics Ruđer Bošković Institute. 2. 3. Facilities IBIC Application examples Ruđer Bošković Institute 973 956 987 29 962 25 Ruđer

More information

Re: Understanding Heterogeneity in Genesis Diamond like Carbon Film Using SIMS Analysis of Implants (Jurewicz et. al)

Re: Understanding Heterogeneity in Genesis Diamond like Carbon Film Using SIMS Analysis of Implants (Jurewicz et. al) Online Resource Re: Understanding Heterogeneity in Genesis Diamond like Carbon Film Using SIMS Analysis of Implants (Jurewicz et. al) This packet of supplementary material is a record of different hypotheses

More information

Helium Diffusion and Accumulation in Gd2Ti2O7 and Gd2Zr2O7

Helium Diffusion and Accumulation in Gd2Ti2O7 and Gd2Zr2O7 University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 Helium Diffusion and Accumulation in Gd2Ti2O7 and Gd2Zr2O7 Caitlin Anne

More information

The role of PMI in MFE/IFE common research

The role of PMI in MFE/IFE common research The role of PMI in MFE/IFE common research Presented by Doerner for the Team and TITAN 1-1 Participants In 2006, Jupiter II recognized that PMI was a bridge issue between MFE and IFE R&D Both MFE and IFE

More information

Ch 22 Radioactivity Nuclear Chemistry

Ch 22 Radioactivity Nuclear Chemistry AMHS AP Chemistry Name Period S T A T I O N 1 Q U I Z O N P E O P L E Match the people with the following ideas. Each name may be used once, more than once, or not at all. a) Albert Einstein b) Marie Curie

More information

M. De Napoli, F. Giacoppo, G. Raciti, E. Rapisarda, C. Sfienti. Laboratori Nazionali del Sud (LNS) INFN University of Catania. IPRD Oct.

M. De Napoli, F. Giacoppo, G. Raciti, E. Rapisarda, C. Sfienti. Laboratori Nazionali del Sud (LNS) INFN University of Catania. IPRD Oct. M. De Napoli, F. Giacoppo, G. Raciti, E. Rapisarda, C. Sfienti Laboratori Nazionali del Sud (LNS) INFN University of Catania IPRD08 1-4 Oct. Siena Silicon carbide (SiC) is expected to be applied to high-power

More information

Fabrication Technology, Part I

Fabrication Technology, Part I EEL5225: Principles of MEMS Transducers (Fall 2004) Fabrication Technology, Part I Agenda: Microfabrication Overview Basic semiconductor devices Materials Key processes Oxidation Thin-film Deposition Reading:

More information

Finite Element Simulation Of Laser-Induced Diffusion In Silicon

Finite Element Simulation Of Laser-Induced Diffusion In Silicon Available online at www.sciencedirect.com Energy Procedia 8 (2011) 587 591 Silicon PV 2011 Finite Element Simulation Of Laser-Induced Diffusion In Silicon G. Poulain a *, D. Blanc a, B. Semmache b, Y.

More information